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A STUDY ON THE GENERALIZATION OF JANOWSKI
FUNCTIONS IN THE UNIT DISC

Y. POLATOG̃LU, M. BOLCAL, A. ŞEN AND E. YAVUZ

Abstract. Let Ω be the class of functions w(z), w(0) = 0, |w(z)| < 1 regular
in the unit disc D = {z : |z| < 1}. For arbitrarily fixed numbers A ∈ (−1, 1],
B ∈ [−1, A), 0 ≤ α < 1 let P (A, B, α) be the class of regular functions
p(z) in D such that p(0) = 1, and which is p(z) ∈ P (A, B, α) if and only if

p(z) =
1+[(1−α)A+αB]w(z)

1+Bw(z)
for some function w(z) ∈ Ω and every z ∈ D.

In the present paper we apply the principle of subordination ([1], [3], [4], [5])
to give new proofs for some classical results concerning the class S∗(A, B, α)
of functions f(z) with f(0) = 0, f ′(0) = 1, which are regular in D satisfying

the condition: f(z) ∈ S∗(A, B, α) if and only if z
f ′(z)
f(z)

= p(z) for some p(z) ∈
P (A, B, α) and for all z in D.

1. Introduction

Let Ω be the family of functions w(z) regular in the unit disc D and satisfying
the conditions w(0) = 0, |w(z)| < 1, for z ∈ D.

For arbitrary fixed numbers A,B, α,−1 ≤ B < A ≤ 1, 0 ≤ α < 1, let P (A, B, α)
denote the family of functions

(1) p(z) = 1 + p1z + p2z
2 + · · ·+ pnzn + · · ·

regular in D and such that p(z) is in P (A,B, α) if and only if

(2) p(z) ≺ 1 + [(1− α)A + αB] z
1 + Bz

⇔ p(z) =
1 + [(1− α)A + αB] w(z)

1 + Bw(z)

for some function w(z) ∈ Ω and every z ∈ D.
Furthermore, let S∗(A, B, α) denote the family of functions

(3) f(z) = z + a2z
2 + a3z

3 + · · ·
regular in D and such that f(z) is in S∗(A,B, α) if and only if

(4) z
f ′(z)
f(z)

= p(z)

for some p(z) in P (A,B, α) and for all z in D.
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2. New Results On The Class S∗(A,B, α)

In this section we shall give representation theorems, distortion theorems and
establish the radius of starlikeness for the class S∗(A,B, α). Our proofs are based
on I.S. Jack’s Lemma [2].

Lemma 1. Let w(z) be a non-constant and analytic function in the unit disc D
with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at the
point z1, then z1w

′(z1) = kw(z1) and k ≥ 1.

From the definition of the class P (1,−1, 0) called the Caratheodory class and
P (A,B, α) we easily obtain the following lemma.

Lemma 2. If p(z) ∈ P (A,B, α) if and only if

(5) p(z) =
[1 + (1− α)A + αB]q(z) + [(1− α)(A + B)]

[1 + B]q(z) + [1−B]

for some q(z) ∈ P (1,−1, 0).

Let ζ be an arbitrary fixed point of D. We consider the functional

(6) F (p) = p(ζ), p(z) ∈ P (A,B, α).

Lemma 3. The set of the values of the functional (6) is the closed disc with centered
at C(r) and having the radius ρ(r), where

{
C(r) =

(
1−B[(1−α)A+αB]r2

1−B2r2 , 0
)

, ρ(r) = (1−α)(A−B)r
1−B2r2 , B 6= 0,

C(r) = (1, 0), ρ(r) = (1− α) |A| r, B = 0.

Proof. Every boundary function p0(z) of P (A,B, α) with respect to the functional
(6) can be written in the form (5), where

q(z) =
1 + εz

1− εz
, |ε| = 1.

Hence

(7) p0(z) =
1 + [(1− α)A + αB]z

1 + Bz
.

Since z = reiθ, 0 ≤ θ ≤ 2π,

(8)
p0(z) = C(r) + ρη,

η = εeiθ 1 + Brε̄e−iθ

1 + Brεeiθ
,

which completes the proof. ¤

Lemma 4. The function

w = w(z) =

{
(1−α)(A−B)z

1+Bz , B 6= 0,

(1− α)Az, B = 0,

maps |z| = r onto the disc centered at C(r), and having the radius ρ(r)
{

C(r) =
(
−B(1−α)(A−B)r2

1−B2r2 , 0,
)

, ρ(r) = (1−α)(A−B)r
1−B2r2 , B 6= 0,

C(r) = (0, 0), ρ(r) = (1− α) |A| r,B = 0.
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Proof. This is immediate from

w =
(1− α)(A−B)z

1 + Bz
⇒

u2 + v2 +
2B(1− α)(A−B)r2

1−B2r2
u− (1− α)2(A−B)2r2

1−B2r2
= 0, B 6= 0,

w = (1− α)Az ⇒ u2 + v2 − (1− α)2A2r2 = 0, B = 0.

(9)

¤

Theorem 1. Let f(z) = z + a2z
2 + · · · be an analytic function in the unit disc D.

If f(z) satisfying

(10)
(

z
f ′(z)
f(z)

− 1
)
≺

{
(1−α)(A−B)z

1+Bz = F1(z), B 6= 0,

(1− α)Az = F2(z), B = 0,

then f(z) ∈ S∗(A,B, α) and this result is as sharp as the function
(

1 + [(1− α)A + Bα]z
1 + Bz

)
.

Proof. We define the function w(z) by

(11)
f(z)

z
=

{
(1 + Bw(z))

(1−α)(A−B)
B , B 6= 0,

e(1−α)Aw(z), B = 0,

where (1 + Bw(z))
(1−α)(A−B)

B and e(1−α)Aw(z) have the value 1 at the origin. Then
w(z) is analytic in D and w(0) = 0. If we take the logarithmic derivate of equality
(11), simple calculations yield

(12)
(

z
f ′(z)
f(z)

− 1
)

=

{
(1−α)(A−B)zw′(z)

1+Bw(z) , B 6= 0,

(1− α)Azw′(z), B = 0.

Now it is easy to realize that the subordination (10) is equivalent to |w(z)| < 1
for all z ∈ D indeed assume the contrary. There exist z1 ∈ D such that |w(z1)| = 1.
Then by I.S. Jack’s Lemma z1w

′(z1) = kw(z1) and k ≥ 1, for such z1 ∈ D and
using Lemma 4 we have

(13)
(

z1
f ′(z1)
f(z1)

− 1
)

=

{
(1−α)(A−B)kw(z1)

1+Bw(z1)
= F1(w(z1)) /∈ F1(D), B 6= 0,

(1− α)Akw(z1) = F2(w(z1)) /∈ F2(D), B = 0,

because |w(z1)| = 1 and k ≥ 1. But this contradicts condition (10) of this theorem
and so |w(z)| < 1 for all z ∈ D. By using condition (10) we get

z
f ′(z)
f(z)

=

{
1+[(1−α)A+αB]w(z)

1+Bw(z) , B 6= 0,

1 + (1− α)Aw(z), B = 0,

which ends the proof. ¤

Corollary 1. Let f(z) ∈ S∗(A,B, α). Then f(z) can be written in the form

f(z) =

{
z(1 + Bw(z))

(1−α)(A−B)
B , B 6= 0,

ze(1−α)Aw(z), B = 0.

Theorem 2. If f(z) ∈ S∗(A,B, α), then

(14)

{
r(1−Br)

(1−α)(A−B)
B ≤ |f(z)| ≤ r(1 + Br)

(1−α)(A−B)
B , B 6= 0,

re−(1−α)|A|r ≤ |f(z)| ≤ re(1−α)|A|r, B = 0.
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These bounds are sharp with the extremal function

(15) f∗(z) =

{
z(1 + Bz)

(1−α)(A−B)
B , B 6= 0,

ze(1−α)Az, B = 0.

Proof. The set of the values of
(
z f ′(z)

f(z)

)
is the closed disc with centered at C(r) =

1−B[A(1−α)+Bα]r2

1−B2r2 and having the radius ρ(r) = (1−α)(A−B)r
1−B2r2 by using Lemma 3,

that is

(16)
∣∣∣∣z

f ′(z)
f(z)

− 1−B[(1− α)A + αB]r2

1−B2r2

∣∣∣∣ ≤
(1− α)(A−B)r

1−B2r2
.

After simple calculations from (16) we get

(17)





1−(1−α)(A−B)r−B[(1−α)A+αB]r2

1−B2r2 ≤ Re
(
z f ′(z)

f(z)

)

≤ 1+(1−α)(A−B)r−B[(1−α)A+αB]r2

1−B2r2 , B 6= 0,

1− (1− α) |A| r ≤ Re
(
z f ′(z)

f(z)

)
≤ 1 + (1− α) |A| r, B = 0.

On the other hand we have

(18) Re

(
z
f ′(z)
f(z)

)
= r

∂

∂r
log |f(z)| , |z| = r.

If we substitute (18) into the (17) we get

(19)

{
1
r − (1−α)(A−B)

1−Br ≤ ∂
∂r log |f(z)| ≤ 1

r + (1−α)(A−B)
1+Br , B 6= 0,

1
r − (1− α) |A| ≤ ∂

∂r log |f(z)| ≤ 1
r + (1− α) |A| , B = 0.

Integrating both sides (19) we obtain (14). ¤

Corollary 2. The radius of starlikeness of the class S∗(A,B, α) is

(20) rs =
2

(1− α)(A−B) +
√

(1− α)2(A−B)2 + 4B[(1− α)A + αB]
.

This radius is sharp because the extremal function is given in (15).

Proof. From (17) we have

(21) Re

(
z
f ′(z)
f(z)

)
≥ 1− (1− α)(A−B)r −B[(1− α)A + αB]r2

1−B2r2
.

Hence for r < rs the first hand side of the preceding inequality is positive this
implies that

rs =
2

(1− α)(A−B) +
√

(1− α)2(A−B)2 + 4B[(1− α)A + αB]
.

Also note that the inequality (20) becomes an equality for the function which is
given in (15). It follows that

rs =
2

(1− α)(A−B) +
√

(1− α)2(A−B)2 + 4B[(1− α)A + αB]
.

and the proof is complete. ¤
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