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DISTRIBUTION CHARACTERIZATION IN A PRACTICAL MOMENT PROBLEM

H. C. JIMBO

Abstract. We investigate a problem connected with the evaluation of the asymptotic probability distribution function

(APDFs) given from a set of finite order moments by applying the Gram-Schmidt process with the aid of computer
algebra. By selecting weighting (discrete or continuous) function of similar shape to desired (APDFs), orthogonal

polynomial series are obtained that are stable at high order and allow accurate approximation of tail probabilities.

1. Introduction

Many mathematicians have investigated the problem of moments, which consists of determining a probability
density function from a set of its moments, since the pioneering work of Tchebycheff and Stieltjes during the
19th century [13]. Since then a variety of techniques for approaching the problem have been developed. In 2000
[5], [6] have introduced a new technique “factorial behaviors based” to characterize the distribution of some
classes of discrete functions or processes. In the present paper a method of extending the existing technique using
orthogonal polynomial expansion is presented. This is of potential use to practitioners since it constitute part
of an alternative approach to the Monte Carlo technique for probability risk analysis; it also has application as
a method for predicting the probability of extreme events, for fitting distribution to large data sets. The need
to develop alternative to Monte Carlo and other simulation technique has been noted by several authors [4],
[2], [15]. While the simplicity of simulation techniques are desirables, there are lacking in terms of efficiency.
It may take thousand of simulations and consequently many hours of computer time in order to achieve a high
level of accuracy, especially in a fat tail distribution [13]. An alternative to the histogram produce by the Monte

Received September 11, 2003.
2000 Mathematics Subject Classification. Primary 62B05, 2B99, 37C75, 37D99.
Key words and phrases. Tail probabilities, problem of moments, probabilistic programming.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Carlo simulation is an accurate form of probability density function of frequency distribution. In general most
probabilistic calculations are too complicated for exact PDF’s to be determined. However for simple problems
implicitly those that involve implicit calculations, it often possible to calculate the moment of the PDF. The
remaining step is the determination of the PDF, which require solution to real or practical problem of moments.
One of the difficulties with this step is that there exist no unique PDF for a given set of moments. However from
a practical stance, this difficulty can be overcome just by increasing the constraint on the PDF by accounting a
greater number of moments. Nevertheless most of the existing techniques generally only make use of a few lower
order moments (often not more than four) in forming the probability function. The main contribution of this
paper is the demonstration of a technique that incorporates informations given by high order moments by the
use of discrete and continuous weigh functions. Many authors support the idea that a better approximation to a
distribution can be archive by using a weighting function, which closely resembles to the desired PDF. But this
is true only for the continuous case. If the chosen weighing function is discrete then the discussion is opened.

2. Background

In a strict sense, the problem of moments is concerned with the question of whether a set moment uniquely
determines a PDF. Stuart and Ord [7] state that: “in it full generality the problem of moments consider a set of
constants and inquires whether they can be the moments of a distribution.” However, it is added that for statistical
purposes a more pertinent question is: “given that the set of constants are the moments of a distribution, can
any other distribution have the same set?”. An important result due to Carlman [2] is that a distribution on the
range [−∞,+∞] can be determined uniquely by its moments µr, if the series

∞∑
k=0

1
(µ2k)1/2

converges.
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Similar results exist for functions on the range [0,+∞]or alternatively in terms of absolute moments [15].
Godwin [3] roughly interprets these results as meaning that the moment must not be too large or the distribution
must not be too spread out. Several examples of functions, which cannot be uniquely determined from their full
set of moments, have been demonstrated in the literature. Many of these see little applications, although the
lognormal distribution is an exception [2]. Nevertheless, there are at least two reasons why the closure problem
may not be of practical application. Firstly, many randomly distributed quantities encountered in practice have
finite range and a probability distribution with finite range can be uniquely determined from it full set of moments.
Secondly, as Stuart and Ord point out, ”if two distributions have a certain number of moment in common, they
will bear some resemblance to each other“. In practice full (infinite) set of moment will never be attainable and
the question of uniqueness does arises. However the infinite number of PDFs, which may be obtained from a
finite set of moments become increasable similar as the number of given moments increases. Approximation of
a distribution function by another function possessing even just the same four lower moments is often found
remarquably good.

Several techniques have been developed for establishing a PDF from a set of moments. Most of the methods
are discussed in detail by Elderton, Johnson and Ord [9], other insightful reviews are given by Wallace [16]
and Springer [14]. The Pearson family of distributions often provides reasonable approximation to a PDF, base
on just the first four moments. The traditional alternative is the use of series, which are expressed in term of
Tchebycheff-Hermite polynomials; and its coefficients are determined by orthogonalization. Other orthogonal
polynomials such as Jacobi or Laguerre polynomials have also been used to approximate PDF’s. Other methods
of approximation include Burr’s [1] general system for fitting cumulative distribution functions; a step function
method due to Von Mises [2] and a further distribution system proposed by Perk [10]. Of the methods describe
above, no single one is indisputably recognized as being the best way o approximating a PDF. In general most
of the method work reasonably well, although it has been found that difference between approximating functions
are greater for more skewed PDF’s [13].

Orthogonal polynomials have featured in several of the methods above and they have useful properties for
approximating functions in general. According to Weistrass theorem, for any function on the range [a, b] there
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exist an algebraic polynomial, which converges to that function as the order of approximation increases [12].
Orthogonal polynomial are usually are particularly useful since they are inexpensive to compute. They also
possess the property of minimum least squares estimate of the ratio of the objective function of the square root
of the weighting function at a given order. Nevertheless, there are some limitations to the use of orthogonal
polynomials as approximating functions. Firstly, to obtain a very high degree of accuracy an excessive number
of polynomials may sometime be required. Secondly, convergence is not guaranteed to be uniform. So while
orthogonal polynomials may be used to give good approximation to PDF’s, they may not necessary produce
series that asymytotically approach the actual PDF. In the following work, it will be shown that these potential
limitations may be overcome by the choice of the weighting function for the approximation of specific function.

3. Method

We want to determine the frequency distribution f(x), which fits a given set of moments µf (k), k = 1, . . . , n.
Firstly a weighting function that can be discrete or continuous are established by fitting the lower moment using
the Pearson distribution for example, then a family of orthogonal polynomial φk(x) is sought such that:

+∞∫
−∞

w(x)φk(x)φl(x) = 0, k 6= l(1)

The equation (1) produces a set of n simultaneous equations formed from the moments µw(k). This set can be
efficiently solved using Mat lab toolbox to give the coefficient of the polynomials. The squared norms hn are also

determined from µw(k) via: hn =
+∞∫
−∞

w(x)φ2
n(x)dx and the desired PDF is given by the approximate solution of:

f(x) ≈
r∑

k=1

akw(x)(2)
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where the coefficients akare determined from the moments µf (k) by:

ak =
1
h

+∞∫
−∞

f(x)φk(x)dx(3)

Order Coefficient
1 0
2 0
3 0.80083
4 1.41367
5 1.62130
6 1.61819
7 1.57784
8 1.53637
9 1.41483
10 1.12148
11 0.76986
12 1.00375
13 −1.79600
14 0.69985
15 0.10281

Table 1. Coefficients of orthogonal series for approximating χ2 distribution
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Figure 1. Approximation of a χ2 distridution (solid line) by a 11th order series expansion based on the lognormal weighting function.

4. Verification using the cases studied

The proposed method for fitting a PDF to a given set of moments may be first verified by using the moments
from an exactly known distribution. As a demonstration, a χ2 PDF with shape parameter υ = 15, is chosen
as the known PDF and an attempt shall be made to approximate this density function using the non classical
orthogonal polynomials. A lognormal density function is used as weighting function for the orthogonal expansion
since this family of functions is relatively similar to in shape to χ2distribution. The most appropriate lognormal
weighting function is that transformed from a normal function. This weighting function has the same first two
moments as the χ2 PDF. Using the Gram-Schmidt process a set of orthogonal polynomials is determined from
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the moments of the weighting function. Then using the specifique moments the coefficients ak are determined. In
this case the coefficients demonstrate that the orthogonal expansion is well behaved up to 11th order (Table 1).
The 12th and 13th order coefficients show slight increases magnitude, although the associated series expansions
are still good.

5. Example

To demonstrate the use of general orthogonal series expansion for approximating PDF’s three further examples
are considered where probabilities of extrem events are required given only limited data set. For the first example,
a PDF is sought for the result of 40 compressions strength test s conducted by Mathur [8]. Values indicated that
Pearson type 1 distribution is suitable as the weighting function for this case (Table 2). The type 1 PDF has the
form:

w(x) = ye

(
1 +

x

A1

)m1
(

1 +
x

A2

)m2

(4)

with parameters:

ye = 0.10892; A1 = 7.64336; A2 = 9.16439
m1 = 1.59333; m2 = 2.10940.

For the concrete strength data, the difference between the weighting function and series expansion is not so
significant. Nevertheless, the eight order series does produce a slightly better fit as can be seen from the moments
in Table 2. The second example is concerned with establishing a density function for a complex process; the
incomplete Gauss process is used for that matter.

wh(x) =
x+h∑

n=x+1

Υ(n) · e2πi an
p(5)
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Moment Data Pearson type I Eighth order series
1 0.25295×102 0.25295×102 0.25295×102

2 0.65029×103 0.65029×103 0.65029×103

3 0.16981×105 0.16981×105 0.16981×105

4 0.45018×106 0.45018×106 0.45018×106

5 0.12106×108 0.12106×108 0.12106×108

6 0.32997×109 0.32995×109 0.32997×109

7 0.91086×1010 0.91071×1010 0.91086×1010

8 0.25444×1012 0.25434×1012 0.25443×1012

Table 2. Moments about origine for for a concrete strenght data, Perason type 1 distribution, and 8th orderseries expansion.

Figure 2. Approximation of a χ2 distridution (solid line) by a 11th order series expansion based on the lognormal weighting function.

with parameters: h = 10; p = 11; 0 < x < 11; (a, p) = 1; Υ: Legendre symbol.
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In this case the PDF has a standard exponential form with parameter λ = 1 (see [5] for proof).
Let us now consider a much more complicated weighting function to fit our distribution.

For s ≤ a, Q =
s∏

k=1

pk, Q →∞, h →∞, log h
log Q → 0, a discrete type of weighting function wt(x, p1, . . . , ps) =

x+t∑
n=x+1

(
n+a1

p1

)
. . .

(
n+as

ps

)
is proposed;

(
·
)

stands for the Jacobi symbol.

In this last case the PDF has a standard normal distribution. The theoretical proof of this part can be found
in [6].

Some explanations about our proof.

1. First we compute the 2r-th moment [Ap1...ps(2r)] of our weighting function

wt(x, p1, . . . , ps) =
x+t∑

n=x+1

(
n + a1

p1

)
. . .

(
n + as

ps

)
.

2. Use the Chinese remainder theorem: x = Qp−1
1 x1 + . . . + Qp−1

s x1(mod Q); Q = p1 . . . ps.

3. Range x over the complete set of residues modulo p; range xs over the set of residues modulo ps and rewrite
wt(x, p1, . . . , ps).

4. Partition of Ap1...ps
(2r) = B1 + B2 depending on whether r is odd or even.

5. Moments estimation :

{
Ap1...ps(2r) = 1 · 3 . . . · (2r − 1) + O(h−1)

Ap1...ps
(2r − 1) � hrQ

1
2a
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6. Conclusion

A method of producing probability density functions by choosing appropriate weighting functions on the one hand
and by solving the practical moment problem using non-classical orthogonal polynomials on the other hand is
presented. The approach which utilizes orthogonal process has potential applications in many area of probability
theory, for example: determining frequency distribution from large large data sets, for estimating the probability
distributions of extreme events given limited data. The presented examples have shown that stable high order
series expansion may be obtained with moments that closely match those which are prescribed and a proper
choose of the weighting function highly recommended.
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