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A GENERALIZATION OF BAIRE CATEGORY IN A CONTINUOUS SET

B. KING

Abstract. The following discusses a generalization of Baire category in a continuous set. The objective is to provide
a meaningful classification of subsets of a continuous set as “large” or “small” sets in linearly ordered continuous sets.
In particular, for cardinal number κ, the continuous ordered set κ2∗ a subset of the set of dyadic sequences of length κ

is discussed. We establish that this space, and its Cartesian square is not the union of cf(κ) many nowhere dense sets.
Further we provide comparative results between Baire category in R and “generalized Baire category” in κ2∗ as well as
some of the significant differences concerning Baire category in R and κ-category in κ2∗. For example we have shown
that a residual set in κ2∗ need not contain a perfect set and that there exist perfect sets of cardinality |<κ2∗|.

1. Introduction

The goal of this paper is to discuss a generalization of Baire category in an ordered continuous set and its Cartesian
square. By a continuous set, we are referring to a linearly ordered Dedekind complete set, a set for which every
partition into nonempty initial and remainder parts produces a unique element. (We will use the terms continuous
set and Dedekind complete set interchangeably.) The underlying concept of Baire category in R, the set of real
numbers, is that it classifies subsets of R as either “large” (second category) or “small” (first category). Our goal
is to generalize the notion of Baire category to other linearly ordered continuous sets. Fundamental to the success
of this generalization is the assumption of certain prescribed properties on our continuous set. Two principles
one would want to establish in a generalization, would be:

(a) that a nonempty open set is classified as “large”, and
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(b) that a “large” set M is somewhere “everywhere large” (there exists some open set for which every open
subset intersects M in a set classified as “large”).

In addition to developing this generalization of Baire category, we provide examples of sets which satisfy our
generalization of a “Baire set”, and discuss the similarities and differences between this “generalized Baire set”
and the set of real numbers R.

2. Definitions and Notation

Terminology and notation will be consistent with that which is used in Jech [5]. The power of ordinal number κ
will be denoted by |κ|. An ordinal number κ may be referred as a cardinal number if for all ordinals β with β < κ
we have |β| < |κ|. At the same time we may use ωα to denote the smallest ordinal of power ℵα. For cardinal κ,
let κ+ denote the successor cardinal to κ. For limit ordinal κ, cf(κ) will denote the smallest ordinal with which κ
is cofinal with (i.e. there exists an increasing sequence of ordinals {κξ}ξ<cf(κ) such that κ = lim

ξ<cf(κ)
κξ). A ordinal

number κ is said to be a regular ordinal provided κ = cf(κ). For ordinals ν, κ we will use κν to denote the set of all
sequences of length κ formed from terms in ν (i.e. (xξ)ξ<κ such that xξ is an ordinal less than ν). In particular,
κ2 will denote the set all dyadic sequences of length κ. We will let 2κ denote the power of the set κ2.

Let (C,<) denote a linear ordered Dedekind complete set, throughout this paper we will assume that C has
the order topology. Let C2 denote the Cartesian square of C and give C2 the product topology. For each x ∈ C,
the character of x, denoted by char(x), is the ordered pair (λ, τ) where λ is the smallest ordinal for which the
initial segment determined by x, i.e. the set {y ∈ C : y < x} is cofinal with λ, and τ is the smallest ordinal for
which the remaining segment determined by x. Hence {y ∈ C : x < y} is coinitial with τ . When the char(x) is
(λ, τ), then λ may be referred to as the left character of x, and τ as the right character of x.

An ordered set M is said to be an ηα-set if M is cofinal and coinitial with cardinals ≥ ωα, and for every pair
A,B of neighboring subsets either A or B is of power ≥ ωα. Historically Hausdorff [3] described the ηα-set as
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a generalization of the set of rational numbers, which has been called the η-set. Of course if a continuous set
contains an ηα-set, then for all x, char(x) = (λ, τ) where at least one of λ, τ ≥ ωα.

2.1. Previous work in generalizing Baire category

In literature there exists several generalizations of Baire category. In [1], Folley defined the notion of ωα-category
in a continuous set C. His work is based on the assumption of an ordered continuous set containing a dense
ηα-subset of cardinality ωα.

In [4], Heckler discussed his notion of “ωα-category” called “*-category” in a topological space T = (T,O).
The weight of T (denoted by wt(T )), is the least cardinal λ such that O admits a basis of cardinality λ. A set
is called an f-set if it is the union of wt(T ) many nowhere dense sets. Otherwise it is called an s-set. However,
without making any cardinal assumptions, if one was to use the weight of a space, in classifying sets as “large”
and “small”, it is possible that the space itself could be classified as an f -set (“small”).

In [7], Milner and Prikry discussed their notion of “ωα-category” called µ-category in a partially ordered set
(P,<). The depth of a partially ordered set P is the smallest ordinal number γ such that P does not contain a
reverse well-ordered subset of length γ. Here they defined a set to be of the first (second) µ-category if it is (is
not) the union of fewer than µ many nowhere dense sets. A set C has the µ-Baire property if every open set of C
is of the second µ-category. Milner and Prikry established that if ν ≥ ω, and κ ≥ 2 then νκ, the lexicographically
ordered set consisting of sequences of length ν with terms in κ, is a cf(ν)+-Baire set.

3. Definition of ωα category

We define the notion ωα-category for a topological space T as follows: M is said to be a set of first ωα-category
if it is the union of at most ωα many nowhere dense sets. M is said to be a set of second ωα-category if it is not
a set of first ωα-category. Thus if M is a set of first ωα-category, and τ ≥ α then M is a set of first ωτ -category.
Consequently if one wants to use “ωα-category” to classify subsets as “large” or “small”, then one would want to
choose the most efficient α. Efficiency will be measured along the lines when both (a) and (b) can be achieved.
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We say T is an ωα-Baire space if every open subset of T is a set of second ωα-category. In an ωα-Baire space,
a subset M is called an ωα-residual set if its complement M̃ is a set of first ωα-category. In an ωα-Baire space,
a subset M is said to be everywhere of second ωα-category in open set O, if for all nonempty open set U ⊂ O,
U ∩M is a set of second ωα-category.

To ensure that when using ωα-category as a means of classifying subsets of C and C2 as “large” or “small”
sets that properties (a) and (b) are realized, we will assume that continuous set C is ωα-good, where we define
ωα-good as follows.

Definition 3.1. Let ωα be a regular ordinal and C a linearly ordered Dedekind complete set. Then C has the
ωα-good property provided:

(i) for each x ∈ C char(x) = (λ, τ) implies that λ ≥ ωα and/or τ ≥ ωα, and
(ii) there exists a set Q ⊂ C, such that Q is a set of first ωα-category, and there exists a system of open sets

U such that U =
⋃

ξ<ωα

Uξ where

(ii-1) for each ξ < ωα, O1, O2 ∈ Uξ if O1 6= O2 then O1 ∩O2 = ∅, and
(ii-2) for all x ∈ C \Q, the set {O ∈ U : x ∈ O} forms a basis for the open sets containing x.

Observe that if C possesses a dense ηα-subset, then C possesses property (i).
The following argument demonstrates that the the set of real numbers R is ω0-good. Let Q be any subset of R of
the first category. The set of rational intervals, open intervals with rational end points, is a countable collection of
open intervals. Thus we can represent the set of rational intervals as U =

⋃
ξ<ω Uξ, where for each ξ, Uξ contains

only one rational interval. It immediately follows that (ii-1) and (ii-2) hold and so R is ω0-good.
Now suppose C possesses property (ii). Define

U (2) =
⋃

µ<ωα

 ⋃
ξ<ωα

{O1 ×O2 : O1 ∈ Uµ, O2 ∈ Uξ}

 .
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Note U (2) can be written as the union of ωα many collections, i.e.

U (2) =
⋃

τ<ωα

U (2)
τ

where for each τ there exists ξ, µ < ωα such that

U (2)
τ = {O1 ×O2 : O1 ∈ Uµ, O2 ∈ Uξ}.

Now for all U1, U2 ∈ U (2) if U1 6= U2 then U1 ∩ U2 = ∅. Further, if N is nowhere dense in C, and A is any
subset of C, then both N × A and A ×N are nowhere dense in C2. Therefore if B is a set of first ωα-category
in C, and A is any subset of C then both B × A and A × B are sets of first ωα-category in C2. Thus the set
Q(2) = (Q×C)∪ (C ×Q) is a set of first ωα-category in C2. Consequently, for each ζ ∈ C2 \Q(2), the collection
{U ∈ U (2) : ζ ∈ U} forms a basis for the open sets which contains ζ. And so we find that C2 possesses property
(ii).

4. ωα category in ωα-good sets

We assume throughout this section that C is ωα-good. The theorems in this section, unless explicitly stated
otherwise, are valid for both the linear space C and its Cartesian square C2.

Theorem 4.1. Let C be ωα-good, then every nonempty open set of C and of C2 is a set of second ωα-category.
Thus both C and C2 are ωα-Baire sets.

The above result implies that an ωα-residual set is everywhere dense. This result Theorem 4.1 is established for
an ordered space in each of the versions [1, 3, 7]. In each case the proof is pretty much the same, and analogous
to the proof of the Baire category version performed in R. What is essential in the linear case is that no point
has character (τ, γ) where both τ and γ are less than ωα.

The next two theorem are essentially results by Folley. Although Folley assumed the existence of an ordered
continuous set containing a dense ηα-subset of cardinality ωα, it is clear that property (i) of ωα-good is the only
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assumption that is required in Folley’s argument to establish these results. We state these results and omit the
proofs. Again they are stated for both C and C2.

Theorem 4.2. [1] Let λ be a cardinal number less than ωα, then the union of λ many nowhere dense sets is
a nowhere dense set.

Theorem 4.3. [1] Let C be an ωα-good set then the cardinality of an ωα-residual set of C is greater than or
equal to 2ωα .

By an isomorphism between two ordered sets, we are referring to a 1-1 map f : A −→ B between the two ordered
sets A and B, such that for all a1, a2 ∈ A with a1 < a2 we have f(a1) < f(a2). The next result is explicitly
stated for subsets A of the linear space C. The Baire category in R version of this result was established in [6].
We provide the proof to the generalization, but this proof is merely a generalization of the proof in [6].

Theorem 4.4. [6] Let C be an ωα-good set. If A is a set of first ωα-category such that A is a dense subset of
open set O, then every subset of C isomorphic to A ∩O is a set of first ωα-category.

Proof. Let B ' A ∩ O, and f a isomorphism mapping A ∩ O onto B. Thus B =
⋃

ξ<ωα
f(Aξ), where Aξ is

nowhere dense. So we are left to show f(Aξ) is nowhere dense. Let U be a nonempty open set. Then there
exists an open interval I ⊂ U . If |I ∩ f(Aξ)| ≤ 1, then we are done, so assume b1, b2 ∈ I ∩ f(Aξ) with b1 < b2.
Thus a1 < a2, where f(ai) = bi. As Aξ is nowhere dense, there exists an open subset of (a1, a2) ⊂ O which
does not intersect Aξ. Since A is dense in O, there exists an interval (a3, a4) with end points in A which is a
subset of this open set. Thus (a3, a4) ∩ Aξ = ∅, and (a3, a4) ⊂ (a1, a2). Let b3 = f(a3) and b4 = f(a4). Then
(b3, b4) ⊆ (b1, b2) ⊂ I which is a subset of U . Further f(Aξ)∩ (b3, b4) = ∅. Therefore B is of first ωα-category. �

Of course this result holds true for sets of first category in R. The property that A is dense is required as we
illustrate. Consider (0, 1) ⊂ R. Let C ⊂ (0, 1) be a Cantor set. Then there exists an isomorphism h such that
the interval (0, 1) = h(C1) where C1 ⊂ C. Obviously C1 is of 1st category (since it is nowhere dense), but C1 is
isomorphic to (0, 1), a set of 2nd category.
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The following result is true for ωα-category in both C and C2. We will provide a proof only for the linear space
C, the proof for C2 is analogous to what is done here. What is essential in the following proof is property (ii).

Theorem 4.5. Let C be an ωα-good set. If A is a set of the second ωα-category, then there exists an open set
O such that A is everywhere of second ωα-category in O.

Proof. Suppose the contrary. Since Q is a set of first ωα-category, it intersects the set A in a set of first
ωα-category, so we may assume without loss of generality that A ∩Q = ∅.

For each ξ < ωα, let Kξ = {O ∈ UC,ξ : A ∩ O is a set of first ωα-category }. Thus, for all O ∈ Kξ,
A ∩O =

⋃
ξ<ωα

AO
ξ where AO

ξ is nowhere dense. Let τ < ωα. Set

Aτ =
⋃

O∈Kτ

(A ∩O) =
⋃

O∈Kτ

 ⋃
ξ<ωα

AO
ξ

 =
⋃

ξ<ωα

( ⋃
O∈Kτ

AO
ξ

)
.

We find that for each ξ < ωα, the set
⋃

O∈Kτ
AO

ξ is nowhere dense. For if U is any nonempty open set, and
U ∩

⋃
O∈Kτ

AO
ξ 6= ∅, then U ∩ AO1

ξ 6= ∅ for some O1 ∈ Kτ . As AO1
ξ is nowhere dense, there exists open set

V ⊂ U ∩O1 such that V ∩AO1
ξ = ∅. Now V is an open subset of U ∩O1 such that V ∩

⋃
O∈Kτ

AO
ξ = ∅. Thus Aτ

is a set of first ωα-category.
Let N = A \

(⋃
τ<ωα

Aτ

)
. Since

⋃
τ<ωα

Aτ is a set of first ωα-category, we must have that N is of second
ωα-category. If there would exist an open set U such that N is everywhere of second ωα-category in U , then A
would be everywhere of second ωα-category in U . So we assume that for each open set U , there exists an open
subset U1 ⊂ U such that N ∩ U1 is of first ωα-category. We will show that this assumption implies that N is
nowhere dense.

Let U be a nonempty open set such that U ∩N 6= ∅ and let ζ ∈ U ∩N . As N ⊂ (C \Q), there exists O1 ∈ UC

such that ζ ∈ O1 ⊆ U . Since N is not everywhere of second ωα-category in O1, there exists a nonempty open set
U1 ⊆ O1 such that U1 ∩N is a set of first ωα-category. As our goal is to establish that N is a nowhere dense set,
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so we will assume the case that U1 ∩N is nonempty. Let ζ1 ∈ U1 ∩N . Then since ζ1 6∈ Q, there exists U2 ∈ UC

such that ζ1 ∈ U2 ⊆ U1. Now U2 ∩ A = (U2 ∩ (A \ N)) ∪ (U2 ∩ N). Thus U2 ∩ A is a set of first ωα-category.
Consequently there exists a ξ < ωα, such that U2 ∈ Kξ. Hence U2∩A ⊆ (A\N) contrary to the fact ζ1 ∈ U2∩N .
And so we find that U1 ∩N = ∅, implying that N is nowhere dense.

As N is nowhere dense, the set A = (A \ N) ∪ N is a set of first ωα-category which is a contradiction.
Consequently we find that there must exist an open set O such that A is everywhere of second ωα-category in
O. �

5. ωα-category in a continuous set consisting of dyadic sequences

Definition 5.1. For ordinal number κ, we will use κ2 to represent the lexicographically ordered set consisting
of all dyadic sequences of length κ. Let κ2∗ = {f ∈ κ2 : f = (fξ)ξ<κ such that there exists a τ < κ with fτ = 0,
and τ ′ < κ such that fτ ′ = 1 and for all ξ with fξ = 0 there exists ξ′ with ξ < ξ′ < κ and fξ′ = 0 }.

If κ is a limit ordinal then κ2∗ is a continuous set without the first and the last element. Let <κ2∗ denote all
dyadic sequences of length < κ which have a final term that is 1. Then <κ2∗ is a dense subset of κ2∗. Further
κ2∗ possesses property (i), where ωα = cf(κ). Thus the Dedekind completion of <κ2∗ is κ2∗. Of course ω2∗ is
isomorphic to the set of real numbers R, and <ω2∗ is isomorphic to the set of rational numbers.

We will assume that κ is an initial ordinal number, i.e. κ is a cardinal number. For such an assumption, due
to Harzheim [2], we have the following:

1. |κ2∗| = 2κ,
2. |<κ2∗| =

∑
ξ<κ 2ξ,

3. every pair of intervals in κ2∗ determined by end points in <κ2∗ are isomorphic,
4. <κ2∗ is an ηcf(κ)-set,
5. every element of <κ2∗, as a member of κ2∗, has character (cf(κ), cf(κ)), and
6. every gap in <κ2∗ has character (λ, τ) where both λ and τ ≤ κ, and is occupied by an element of κ2∗.
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Let Qκ = {f ∈ κ2∗ : f has character different than (cf(κ), cf(κ))}, then Qκ is a dense subset of κ2∗, and of
cardinality

∑
ξ<κ 2ξ. Observe that |Qκ| = |<κ2∗|.

Hausdorff [3] has shown that any two ηα-sets of cardinality ℵα are isomorphic. Hence their Dedekind comple-
tions are isomorphic, as well. Further an ηα-set is a universal set for the cardinal ℵα, i.e. for each ordered set B
of cardinality ≤ ℵα, an ηα-set contains a subset isomorphic to B. In addition, it has been established that every
ηα-set contains a subset isomorphic to <ωα2∗. Thus Folley’s assumption of a continuous set containing an ηα-set
of cardinality ℵα is equivalent to assuming that he was working in the ordered space ωα2∗, for regular α, and
assuming that |<ωα2∗| = ℵα.

An ordered set M is said to be κ-free if it contains neither a subset of type κ nor κ∗. If the ordered set M is
κ-free, then the depth ρ of M is such that ρ < κ. Harzheim in [2] has established that <κ2∗ is the union of κ
many κ-free sets. Thus <κ2∗ =

⋃
ξ<κ Hξ where each Hξ is κ-free. Further, by examining Harzheim’s construction

of this decomposition, using the fact that the union of less than κ many κ-free sets is itself a κ-free set, and by
observing that for all β < κ, <β2∗ ⊂ <κ2∗, we find that by taking appropriate unions we may assume that the
sets Hξ satisfy the following properties:

1. Hξ is an infinite set without the first and the last element, and there exists a regular ordinal β, with
ξ ≤ β < κ such that Hξ is a β-free set,

2. for all a, b ∈ Hξ, |(a, b) ∩Hξ| = |Hξ|,
3. for all ξ < µ < κ, Hξ is a subset of Hµ, and
4. for all ξ, µ with ξ < µ < κ and every partition {I,R} of Hξ into initial and remainder parts, there exists

a c ∈ Hµ such that I < c < R, (one may choose I or R to be empty).
Observe that if β < κ and M a β-free set then M is nowhere dense in κ2∗. As κ = lim

ξ<cf(κ)
κξ, for some

increasing sequence of ordinals {κξ}ξ<cf(κ), we see that <κ2∗ =
⋃

ξ<cf(κ) Hκξ
. Consequently, <κ2∗ is a set of first

cf(κ)-category.

Theorem 5.1. Qκ is a set of first cf(κ)-category.
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Proof. Due to Harzheim [2], we have <κ2∗ =
⋃

ξ<cf(κ) Hκξ
where Hξ is a β-free set for some β < κ. Thus each

Hξ is nowhere dense. Let

A =
⋃

τ<cf(κ)

⋃
ξ≤τ

Hκξ

 =
⋃

τ<cf(κ)

Hκτ
.

Noting that if a set is β-free, then its closure is as well β-free, we find that for each τ < cf(κ), there exists a β < κ
such that

⋃
τ<cf(κ) Hκτ is β-free. Hence it is nowhere dense. Consequently A is a set of first cf(κ)-category.

We claim that Qκ ⊂ A . Let p ∈ Qκ, then p has character different than (cf(κ), cf(κ)), let us assume that
p has left character ρ, so ρ < κ. As <κ2∗ is dense in κ2∗, there exists an increasing sequence {xξ}ξ<ρ formed
out of <κ2∗ with limit p. Since cf(κ) is a regular ordinal and ρ 6= cf(κ), there exists a φ < cf(κ) such that
{xξ : ξ < ρ} ⊂

⋃
ξ≤φ Hκξ

= Hκφ
. Thus p ∈ A. �

Lemma 5.1. If A ⊂ κ2∗, and |A| < | <κ2∗|, then A is nowhere dense.

Proof. In [8], Rotman established that if an ordered set A contains no ηα-set then the Dedekind completion
of A contains no ηα-set. Therefore if A is a dense subset of κ2∗, for each ξ < cf(κ), A must contain a ηκξ

-set
Aκξ

. This set Aκξ
contains a set isomorphic to <κξ2∗. Consequently |A| ≥ |<κξ2∗| for all ξ < cf(κ). Hence

|A| ≥
∑

ξ<cf(κ) |<κξ2∗|, and so |A| ≥ |<κ2∗|, which would lead to a contradiction. �

Thus we see that any set of cardinality less that |<κ2∗| is nowhere dense. This property is comparable to a
property in R regarding the set of rationals. That is, any set of cardinality less than the cardinality of the
rationals is nowhere dense in R. Recall that Theorem 4.4 stated that every set isomorphic to <κ2∗, is a set of
first cf(κ)-category, the following theorem strengthens this result.

Theorem 5.2. If A ⊂ κ2∗ and is isomorphic to a subset of Qκ ∪ <κ2∗, then A is a set of first cf(κ)-category.
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Proof. Clearly Qκ ∪ <κ2∗ ⊆
⋃

τ<cf(κ) Hκτ
. Suppose A is isomorphic to D where D ⊆Qκ ∪ <κ2∗. Let f be an

isomorphism from D to A. Since D = ∪τ<cf(κ)(D ∩ (Hκτ
)), and as the property that a β-free is preserved under

isomorphisms, we find that for each τ < cf(κ), f(D ∩Hκτ
) is nowhere dense. Hence A is the union of cf(κ) many

nowhere dense sets, and so it is of first cf(κ)-category. �

Notice that when one considers cf(κ)-category in κ2∗, and compares a set to Qκ ∪ <κ2∗, the discussion has been
limited to isomorphisms. That is, if one establishes an isomorphism between a set A and a subset of Qκ ∪ <κ2∗,
then it is of first cf(κ)-category. However in R, one only needs to establish a 1-1 correspondence between A and a
subset of the rationals to show that it is of first category. (It is true that any countable set will be isomorphic to
some subset of the rationals). The question whether one can establish the property that a cardinality equivalence
of a set with Qκ ∪ <κ2∗ will establish first cf(κ)-category is unlikely. For it is unknown whether there exists a
regular cardinal number κ such that |κ2∗| = |<κ2∗|. Of course if |κ2∗| satisfied this property then there exists
sets of second cf(κ)-category of this power.

Definition 5.2. A set M is dense-in-itself provided that it is nonempty and that every element of M is a limit
point of M . A set P is a perfect set provided that it is closed and dense-in-itself.

Theorem 5.3. For each ξ < cf(κ), Pξ = Hκξ
\Hκξ

is a perfect set.

Proof. We claim that Pξ 6= ∅. Suppose Pξ = ∅, then Hκξ
= Hκξ

. For each x ∈ Hκξ
, let x+ = inf y∈Hκξ

y>x

y and

x− = sup y∈Hκξ
y<x

y. So x− ≤ x ≤ x+ and x−, x+, x ∈ Hκξ
(since we are assuming Hκξ

= Hκξ
). Clearly x− 6< x and

x 6< x+, because |(a, b) ∩Hκξ
| = |Hκξ

| for all a, b ∈ Hκξ
with a < b. Hence x− = x+ = x. Consider the following

partition of Hκξ
, let I = {y ∈ Hκξ

: y < x} and R = Hκξ
\ I. Then {I,R} is a partition of Hκξ

into nonempty
initial and remainder parts. Thus for all τ < cf(κ), with ξ < τ there exists a c ∈ Hκτ such that I < c < R. But
x = sup y∈Hκξ

y<x

y, where x ∈ R and {y ∈ Hκξ
: y < x} ⊆ I. This would imply that x− ≤ c < x, which contradicts

that x− = x. Hence Pξ 6= ∅.
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We now show that P̃ξ is an open set. Let q ∈ P̃ξ. As H̃κξ
is an open set where H̃κξ

⊂ P̃ξ, we shall assume

that q 6∈ H̃κξ
. Since q ∈ P̃ξ where Pξ = Hκξ

\Hκξ
, we have q 6∈ Pξ and q ∈ Hκξ

. Consequently we have q ∈ Hκξ
.

Let q− = sup t∈Hκξ
t<q

t and q+ = inf t∈Hκξ
t>q

t. By an argument analogous to what occurred above, we find that both

q− and q+ 6∈ Hκξ
. Thus q− < q < q+, and so q ∈ (q−, q+) ⊂ P̃ξ. Hence Pξ is closed.

Now to show Pξ is dense-in-itself. Let q ∈ Pξ and O an open interval containing q, there exists either an
increasing or a decreasing sequence {zµ}µ<ρ formed out of Hκξ

for which q is a limit point. Without loss of
generality, let us assume it is increasing. Fix a µ < ρ such that zµ ∈ O, then |(zµ, zµ+1)∩Hκξ

| = |Hκξ
|. It follows

that Pξ ∩ (zµ, zµ+1) 6= ∅. As (zµ, zµ+1) ⊂ O, we have established that Pξ is dense-in-itself. Hence Pξ is a perfect
set. �

Theorem 5.4. Suppose κ is a regular ordinal. For all ξ < κ, (i) Pξ ⊂ Qκ and (ii) Pξ ∩ <κ2∗ = ∅

Proof. If p ∈ Pξ then p is a limit point of Hκξ
, and thus p is the limit of an increasing sequence or a decreasing

sequence formed out of Hκξ
. As the closure of a β-free set is as well a β-free set, we find that either the left or

the right character of p is ≤ β which is less than κ. Thus if κ is regular then
⋃

ξ<cf(κ) Pξ = Qκ, and so Pξ ⊂ Qκ.
We claim that Pξ ∩<κ2∗ = ∅ . Let p ∈ Pξ = Hκξ

\Hκξ
, and p ∈ <κ2∗, then there exists a τ with ξ < τ < cf(κ)

such that p ∈ Hκτ . As C is a continuous set, and as p ∈ Hκξ
\Hκξ

, there exists a monotonic sequence {zµ}µ<ρ

formed out of Hκξ
with a limit point of p. Let us assume without loss of generality that this sequence is increasing.

Thus p = sup
µ<ρ

zµ. We define a partition in Hκτ
by setting I = {y ∈ Hκτ

: y < p}, and R = Hκτ
\ I. Now for all

ν with τ < ν < cf(κ) there exists a c ∈ Hκν such that I < c < R. Therefore as {y ∈ Hκξ
: y < p} ⊂ I, we have

supµ<ρ zµ < c < p which is a contradiction. Consequently p 6∈ <κ2∗. �

For the remainder of this paper, let Q =
⋃

ξ<cf(κ) Pξ. Clearly Q ⊆ Qκ. It also follows that Q is a set of first
cf(κ)-category. Lastly, |Pξ| = |Hκξ

| = 2κξ . Thus |Q| = |<κ2∗| =
∑

ξ<cf(κ) 2κξ .
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A well known result in analysis is that every perfect set in R is of cardinality 2ℵ0 . Reminder, <κ2∗ is a
generalization of the set of rational numbers and κ2∗ its Dedekind completion, so it is important to realize what
results can be extended to κ2∗. Since Pξ ⊂ Q, and since |Q| = |<κ2∗| , we find that a perfect set in κ2∗ need not
necessarily be of the same power as κ2∗ .

Another well known result in analysis is that every residual set contains a perfect set. Folley in [1], erroneously
established that every ωα-residual set contains a perfect set. In [1], Folley was working with a complete set C
which has a dense ηκ-set of cardinality κ, hence under Folley’s assumption, C is isomorphic to κ2∗. (Note that
Folley’s assumption implied cf(κ) = κ.) We have already shown that Qκ is a set of first cf(κ)-category. Now
every perfect set is infinite, thus it must contain a sequence of type ω or ω∗, and so it must contain a point of
character (ω, κ) or (κ, ω). Also cf(κ) = κ > ω (if κ = ω we would be discussing the set of real numbers R and
Baire category). Consequently every perfect set intersects Qκ. It will be shown in the following section that κ2∗
is a cf(κ)-Baire set. Thus Q̃κ is a cf(κ)-residual set, and so we find that there does exist a cf(κ)-residual set which
does not contain a perfect set.

Theorem 5.5. For κ satisfying cf(κ) = κ > ω:
(i) there exists a perfect set P ⊂ κ2∗ such that P is of cardinality |<κ2∗|;
(ii) there exists a set X of first κ-category such that every perfect set in κ2∗ intersects X.

The proof follows from the above remarks.

6. κ2∗ is a cf(κ)-Baire set

Theorem 6.1. κ2∗ is a cf(κ)-Baire set.

Proof. We will show that is a cf(κ)-good set. By Theorem 4.1 we see that κ2∗ is a cf(κ)-Baire set. For all
ξ < cf(κ), Pξ = Hκξ

\Hκξ
. Let P−

ξ = {f ∈ Pξ : f is a left hand limit of Hκξ
}, and let P+

ξ = Pξ \P−
ξ . The set Pξ

has an initial element denoted by mξ ∈ P+
ξ , and a terminal element denoted by nξ ∈ P−

ξ .
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Let p be any element such that p ∈ P−
ξ \ {nξ}, there exists a qp ∈ P+

ξ such that qp is the immediate successor
of p in Pξ. This result follows from the fact Pξ is a β-free set for some β < κ, and that <κ2∗ is everywhere dense
in κ2∗.

Now consider any t such that t ∈ <κ2∗ \ Q, and any open interval (a, b) containing t. Then there exists a
ξ0 < cf(κ) such that both (a, t) ∩ Hκξ0

6= ∅ and (t, b) ∩ Hκξ0
6= ∅. This can be seen by the following argument:

Since <κ2∗ is dense in κ2∗, there exist ξ, τ such that (a, t) ∩Hκξ
6= ∅, and (t, b) ∩Hκτ

6= ∅. Let ξ0 = max(ξ, τ).

For each ξ < cf(κ), let
Uξ = {O : O = (p, qp), p ∈ P−

ξ , p 6= nξ, qp ∈ P+
ξ }.

Set U =
⋃

ξ<cf(κ)

Uξ. For all O1, O2 ∈ Uξ if O1 6= O2 then O1 ∩O2 = ∅.

For all t ∈ κ2∗ \Q, the collection {O ∈ Uκ2∗ : t ∈ O} forms a basis for the open sets which contain t. This
follows from the following argument. Let U be any open set containing t. Then there exists an open interval
(a, b) such that t ∈ (a, b) ⊂ U . By the above argument, there exists a ξ < cf(κ) such that both (a, t), (t, b)
intersect Hκξ0

. We will assume that both (a, t) and (t, b) contain at least two elements of Hκξ0
. It follows then

that both (a, t) and (t, b) intersect Pξ0 . Let p = sup y∈Pξ0
y<t

y. As Pξ0 is closed, p ∈ Pξ0 , hence p ∈ P−
ξ0

, thus there

exists qp ∈ P+
ξ0

. It follows then that t < qp. Hence p < t < qp, and so there exists an (p, qp) ∈ Uξ0 such that
t ∈ (p, qp) ⊂ O.

Now Q is a set of first cf(κ)-category. Further κ2∗ contains a dense ηcf(κ)-set. Consequently κ2∗ is cf(κ)-good,
and so κ2∗ is a cf(κ)-Baire set. �

Let

U (2) =
⋃

µ<cf(κ)

 ⋃
ξ<cf(κ)

{O1 ×O2 : O1 ∈ Uµ, O2 ∈ Uξ}

 .
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Then U (2) can be written as the union of cf(κ) many collections, i.e.

U (2) =
⋃

τ<cf(κ)

U (2)
τ

where for each τ there exists ξ, µ < cf(κ) such that U (2)
τ = {O1 × O2 : O1 ∈ Uκ2∗,µ, O2 ∈ Uκ2∗,ξ}. Now for

all U1, U2 ∈ U(κ2∗)2 if U1 6= U2 then U1 ∩ U2 = ∅. For all ζ ∈ (κ2∗)2 \ [(κ2∗ ×Q) ∪ (Q× κ2∗)], the collection
{O ∈ U(κ2∗)2 : ζ ∈ O} forms a basis for the open sets which contain ζ.
It follows then that (κ2∗)2 is also a cf(κ)-Baire set.

7. Examples

Example 7.1. Denote

C = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (x, y) 6= (0, 0), (1, 1)}
and give C the lexicographic order. Then C is a continuous set without the first and the last element, where
every element of C has character (ω, ω). The smallest cardinal for which there exists a basis is 2ℵ0 (i.e. the weight
of C is 2ℵ0). However, Q = {(x, 0) : (x, 0) ∈ C} is nowhere dense in C. Hence it is a set of first ω-category.

Let B = {(an, bn)}n<ω denote the open intervals of (0,1) with rational end points. We use 〈. . .〉 to denote an
open interval in C to avoid confusion between a point and an interval. Now let

UC =
⋃

n<ω

{〈(x, an), (x, bn)〉 : x ∈ [0, 1]}.

Then C is ω0-good set. Hence C is an ω0-Baire space (i.e. a Baire space).

Example 7.2. Let κ > ω be an initial ordinal number, and f, g ∈ κ2∗ where [f, g] ⊂ κ2∗. Now let C =
{(x, y) : x ∈ [f, g], y ∈ [0, 1], (x, y) 6= (f, 0), (g, 1)}, and give C the lexicographic order. Then C is a continuous
set without the first and the last element. Every element of C has character (λ, τ) where both λ, τ ≥ ω. Then
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the set Q = {(x, 0) : (x, 0) ∈ C} is nowhere dense in C. Let {(an, bn)}n<ω denote the open intervals in (0,1) with
rational end points, and set

Uc =
⋃

n<ω

{〈(x, an), (x, bn)〉 : x ∈ [f, g]}.

Then C is an ω0-good set. Hence C is an ω0-Baire space.
This example illustrates that using the weight of the space, as in ∗-category, to distinguish between“large” (i.e.

an s-set) and “small” (i.e. an f -set) inefficiently classifies sets. This follows from the fact that the weight of C
exceeds ω0.

Observe that both of the above examples have the property that C can be represented as C = A× B, where
B is an ω0-good set, and that C is given the lexicographic ordering. The consequence is that C is ω0-good set.

Example 7.3. Let κ be an regular ordinal number > ω (i.e. cf(κ) = κ), and [f, g] ⊂ κ2∗. Thus κ2∗ is cofinal
and coinitial with κ. Let

C = {(x, y) : x ∈ [0, 1], y ∈ [f, g], (x, y) 6= (0, f), (1, g)}
and give C the lexicographic order. Then C is a continuous set without the first and the last element. Every
element of C has character (λ, τ) where at least one of λ or τ equals κ (because κ is regular). It would be best to
use κ-category to classify subsets of C as “large” or “small”. For there exists a dense set of first κ-category in C,
the set {(x, y) ∈ C : y ∈ <κ2∗}. Let Q = {(x, y) ∈ C : y ∈ Qκ}, and Vξ be the intervals of Uξ which are subsets of
[f, g]. Now let U =

⋃
ξ<κ

{〈(x, t1), (x, t2)〉 : x ∈ [0, 1], (t1, t2) ∈ Vξ}. As Q is a set of first κ-category in C, we find

that C is a κ-good set. Consequently C is a κ-Baire set.
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