NOTE ON THE Ψ -BOUNDEDNESS OF THE SOLUTIONS OF A SYSTEM OF DIFFERENTIAL EQUATIONS

A. DIAMANDESCU

ABSTRACT. It is proved a necessary and sufficient condition for the existence of Ψ -bounded solutions of a linear nonhomogeneous system of ordinary differential equations.

1. INTRODUCTION

The purpose of this note is to give a necessary and sufficient condition so that the nonhomogeneous system

(1)
$$x' = A(t)x + f(t)$$

have at least one Ψ -bounded solution for every continuous and Ψ -bounded function f, in supplementary hypothesis that A(t) is a Ψ -bounded matrix on \mathbb{R}_+ .

Here, Ψ is a continuous matrix function. The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the components of the solutions.

The problem of Ψ -boundedness of the solutions for systems of ordinary differential equations has been studied by many authors, as e.q. O. Akinyele [1], A. Constantin [3], C. Avramescu [2], T. Hallam [8], J. Morchalo [10]. In these papers, the function Ψ is a scalar continuous function (and increasing, differentiable and bounded in [1], nondecreasing and such that $\Psi(t) \ge 1$ on \mathbb{R}_+ in [3]).

Received March 17, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 34D05, 34C11.

Key words and phrases. Ψ -bounded solution, matrix function Ψ .

Let \mathbb{R}^d be the Euclidean *d*-space. For $x = (x_1, x_2, \ldots, x_d)^T \in \mathbb{R}^d$, let $||x|| = \max\{|x_1|, |x_2|, \ldots, |x_d|\}$ be the norm of x. For a $d \times d$ real matrix A, we define the norm |A| by $|A| = \sup_{||x|| \leq 1} ||Ax||$. Let $\Psi_i : \mathbb{R}_+ \to (0, \infty)$, $i = 1, 2, \ldots, d$, be continuous functions and

$$\Psi = \operatorname{diag}[\Psi_1, \Psi_2, \dots, \Psi_d].$$

Definition 1.1. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}^d$ is said to be Ψ -bounded on \mathbb{R}_+ if $\Psi(t)\varphi(t)$ is bounded on \mathbb{R}_+ .

Let A be a continuous $d \times d$ real matrix and the associated linear differential system

$$(2) y' = A(t)y$$

Let Y be the fundamental matrix of (2) for which $Y(0) = I_d$ (identity $d \times d$ matrix).

Let X_1 denote the subspace of \mathbb{R}^d consisting of all vectors which are values of Ψ -bounded solutions of (2) for t = 0 and let X_2 an arbitrary fixed subspace of \mathbb{R}^d , supplementary to X_1 .

We suppose that X_2 is a closed subspace of \mathbb{R}^d . We denote by P_1 the projection of \mathbb{R}^d onto X_1 (that is P_1 is a bounded linear operator $P_1 : \mathbb{R}^d \to \mathbb{R}^d$, $P_1^2 = P_1$, Ker $P_1 = X_2$) and $P_2 = I - P_1$ the projection onto X_2 .

In our papers [5] and [6] we have proved the following results (Lemma 1, Lemma 2 and respectively Theorem 2.1.):

Lemma 1. Let Y(t) be an invertible matrix which is a continuous function of t on \mathbb{R}_+ and let P be a projection. If there exist a continuous function $\varphi : \mathbb{R}_+ \to (0, \infty)$ and a positive constant M such that

$$\int_{0}^{t} \varphi(s) |\Psi(t)Y(t)PY^{-1}(s)\Psi^{-1}(s)| \, ds \le M, \qquad for \ all \ t \ge 0,$$

and

$$\int\limits_{0}^{\infty}\varphi(s)\,ds=+\infty,$$

then, there exists a constant N > 0 such that

$$|\Psi(t)Y(t)P| \le N e^{-M^{-1} \int_0^t \varphi(s) \, ds}, \qquad for \ all \ t \ge 0.$$

Consequently,

$$\lim_{t \to \infty} |\Psi(t)Y(t)P| = 0.$$

Lemma 2. Let Y(t) be an invertible matrix which is a continuous function of t on \mathbb{R}_+ and let P be a projection. If there exists a constant M > 0 such that

$$\int_{t}^{\infty} |\Psi(t)Y(t)PY^{-1}(s)\Psi^{-1}(s)| \, ds \le M, \qquad for \ all \ t \ge 0,$$

then, for any vector $x_0 \in \mathbb{R}^d$ such that $Px_0 \neq 0$,

$$\limsup_{t \to \infty} \|\Psi(t)Y(t)Px_0\| = +\infty.$$

Theorem 2.1. If A is a continuous $d \times d$ matrix, then the system (1) has at least one Ψ -bounded solution on \mathbb{R}_+ for every continuous and Ψ -bounded function f on \mathbb{R}_+ if and only if there is a positive constant K such that

(3)
$$\int_{0}^{t} |\Psi(t)Y(t)P_{1}Y^{-1}(s)\Psi^{-1}(s)| \, ds + \int_{t}^{\infty} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)| \, ds \leq K$$

for all $t \geq 0$.

2. The main results

In this section we give the main results of this note.

Theorem 2.1. Let A be a continuous $d \times d$ real matrix such that

$$|\Psi(t)A(t)\Psi^{-1}(t)| \le L, \quad for \ all \ t \ge 0.$$

Let $\Psi(t)$ such that

$$|\Psi(t)\Psi^{-1}(s)| \le M, \qquad for \ t \ge s \ge 0.$$

Then, the system (1) has at least one Ψ -bounded solution on \mathbb{R}_+ for every continuous and Ψ -bounded function f on \mathbb{R}_+ if and only if there are two positive constants K_1 and α such that

(4)
$$\begin{aligned} |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| &\leq K_1 e^{-\alpha(t-s)}, \quad 0 \leq s \leq t, \\ |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| &\leq K_1 e^{-\alpha(s-t)}, \quad 0 \leq t \leq s, \end{aligned}$$

Proof. First, we prove the "only if" part.

From the hypotheses and Theorem 2.1, [6], it follows that there is a positive constant K such that

$$\int_{0}^{t} |\Psi(t)Y(t)P_{1}Y^{-1}(s)\Psi^{-1}(s)| \, ds + \int_{t}^{\infty} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)| \, ds \le K$$

for all $t \geq 0$.

From $Y'(t) = A(t)Y(t), t \ge 0$, it follows that

$$Y(t) = Y(s) + \int_{s}^{t} A(u)Y(u) \, du, \qquad \text{for } t \ge s \ge 0.$$

Therefore,

$$\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s) = \Psi(t)\Psi^{-1}(s) + \int_{s}^{t} \Psi(t)A(u)Y(u)Y^{-1}(s)\Psi^{-1}(s)du.$$

Thereafter, for $t \ge s \ge 0$,

$$\begin{aligned} |\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)| \\ &\leq |\Psi(t)\Psi^{-1}(s)| + \int_{s}^{t} |\Psi(t)\Psi^{-1}(u)||\Psi(u)A(u)\Psi^{-1}(u)||\Psi(u)Y(u)Y^{-1}(s)\Psi^{-1}(s)| \, du. \end{aligned}$$

From the hypotheses and Gronwall's inequality it follows that

(5)
$$|\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)| \le M e^{LM(t-s)}, \quad t \ge s \ge 0.$$

Now, we show that (3) and (5) imply (4). For $v \in \mathbb{R}^d$ and $0 \le s \le t \le s + 1$, we have

(6)
$$\|\Psi(t)Y(t)P_{1}v\| = \|\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)\Psi(s)Y(s)P_{1}v\| \\ \leq |\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)| \cdot \|\Psi(s)Y(s)P_{1}v\| \\ \leq Me^{LM}\|\Psi(s)Y(s)P_{1}v\|$$

For $P_1 v \neq 0$, let

$$q(t) = \|\Psi(t)Y(t)P_1v\|^{-1}$$
 and $Q(t) = \int_0^t q(s) \, ds.$

We have

$$q(t) \ge M^{-1} e^{-LM} q(s), \quad \text{for } 0 \le s \le t \le s+1.$$

Thus,

$$Q(s+1) = \int_{0}^{s+1} q(u) \, du \ge \int_{s}^{s+1} q(u) \, du \ge M^{-1} e^{-LM} q(s).$$

From Lemma 1, [5], it follows that

$$\|\Psi(t)Y(t)P_1v\| \le KQ^{-1}(s+1)e^{-K^{-1}(t-s-1)}, \quad \text{for } t \ge s+1$$

and hence

(7)

$$\begin{aligned} \|\Psi(t)Y(t)P_{1}v\| &\leq KMe^{LM}q^{-1}(s)e^{-K^{-1}(t-s-1)} \\ &= KMe^{LM}e^{-K^{-1}(t-s-1)}\|\Psi(s)Y(s)P_{1}v\|, \quad \text{for } t \geq s+1 \end{aligned}$$

From (6) and (7) it results that

(8)
$$\|\Psi(t)Y(t)P_1v\| \le N_1 e^{-K^{-1}(t-s)} \|\Psi(s)Y(s)P_1v\|$$

for $t \ge s$ and $v \in \mathbb{R}^d$, where $N_1 = M e^{LM + K^{-1}} \max\{1, K\}$. Similarly, for $P_2 v \ne 0$, let

$$r(t) = \|\Psi(t)Y(t)P_2v\|^{-1}.$$

From (3) and Lemma 2, [5], it follows that the function $R(t) = \int_t^\infty r(u) \, du$ exists for $t \ge 0$ and

(9)
$$r^{-1}(t) \int_t^T r(u) \, du \le K, \quad \text{for } T \ge t \ge 0.$$

Hence,

$$R'(t) = -r(t) \le -K^{-1}R(t)$$

and then,

(10)
$$R(t) \le R(t_0) e^{-K^{-1}(t-t_0)}, \qquad t \ge t_0 \ge 0.$$

On the other hand, for $t \ge s \ge 0$, we have

$$r^{-1}(t) = \|\Psi(t)Y(t)P_2v\| = \|\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)\Psi(s)Y(s)P_2v\|$$

$$\leq \|\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s)| \cdot \|\Psi(s)Y(s)P_2v\|$$

$$\leq Me^{LM(t-s)}r^{-1}(s).$$

Consequently,

$$r(s) \ge M^{-1} e^{-LM(s-t)} r(t), \qquad s \ge t \ge 0.$$

Hence,

$$R(t) \ge M^{-1}r(t) \int_{t}^{\infty} e^{-LM(s-t)} ds = L^{-1}M^{-2}r(t).$$

Combining this with (9) and (10), we obtain, for $t \ge t_0 \ge 0$:

$$\begin{aligned} \|\Psi(t)Y(t)P_{2}v\| &= r^{-1}(t) \ge L^{-1}M^{-2}R^{-1}(t) \\ &\ge L^{-1}M^{-2}R^{-1}(t_{0})e^{K^{-1}(t-t_{0})} \\ &= (LM^{2})^{-1}e^{K^{-1}(t-t_{0})}\|\Psi(t_{0})Y(t_{0})P_{2}v\|. \end{aligned}$$

It results that

(11)
$$\|\Psi(t)Y(t)P_2v\| \le N_2 e^{-K^{-1}(s-t)} \|\Psi(s)Y(s)P_2v\|$$

for $s \ge t \ge 0$, $v \in \mathbb{R}^d$, where $N_2 = LM^2$. Now, we show that

$$p_i(t) = |\Psi(t)Y(t)P_iY^{-1}(t)\Psi^{-1}(t)|, \qquad i = 1, 2,$$

are bounded for $t \ge 0$. Let $\sigma > 0$ be such that

$$p = N_2^{-1} e^{K^{-1}\sigma} - N_1 e^{-K^{-1}\sigma} > 0.$$

From (8) and (11) we deduce that

$$\begin{aligned} |\Psi(t+\sigma)Y(t+\sigma)P_1Y^{-1}(t)\Psi^{-1}(t)| &\leq N_1 e^{-K^{-1}\sigma}p_1(t), \\ |\Psi(t+\sigma)Y(t+\sigma)P_2Y^{-1}(t)\Psi^{-1}(t)| &\geq N_2^{-1}e^{K^{-1}\sigma}p_2(t). \end{aligned}$$

Hence,

$$|p_1^{-1}(t)\Psi(t+\sigma)Y(t+\sigma)P_1Y^{-1}(t)\Psi^{-1}(t) + p_2^{-1}(t)\Psi(t+\sigma)Y(t+\sigma)P_2Y^{-1}(t)\Psi^{-1}(t)| \ge p_2$$

It follows that

$$\begin{aligned} |\Psi(t+\sigma)Y(t+\sigma)Y^{-1}(t)\Psi^{-1}(t)(p_1^{-1}(t)\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t) \\ &+ p_2^{-1}(t)\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t))| \ge p \end{aligned}$$

or

$$p \leq |p_1^{-1}(t)\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t) + p_2^{-1}(t)\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)|Me^{LM\sigma}.$$

Therefore,

$$pM^{-1}e^{-LM\sigma}$$

$$\leq |p_1^{-1}(t)I_d + (p_2^{-1}(t) - p_1^{-1}(t))\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)|$$

$$\leq p_1^{-1}(t) + |p_2^{-1}(t) - p_1^{-1}(t)|p_2(t) = p_1^{-1}(t)(1 + |p_1(t) - p_2(t)|)$$

$$= p_1^{-1}(t)(1 + ||\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t)| - |\Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)||)$$

$$\leq p_1^{-1}(t)(1 + |\Psi(t)Y(t)P_1Y^{-1}(t)\Psi^{-1}(t) + \Psi(t)Y(t)P_2Y^{-1}(t)\Psi^{-1}(t)|)$$

$$= 2p_1^{-1}(t)$$

It follows that

(12)
$$p_1(t) \le 2Mp^{-1} e^{LM\sigma} = \overline{M}, \qquad t \ge 0.$$

Similarly,

(13)
$$p_2(t) \le \overline{M}, \quad t \ge 0.$$

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Finally, by (8), (11), (12) and (13) we deduce that

$$\begin{aligned} |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| &\leq K_1 e^{-K^{-1}(t-s)}, \qquad 0 \leq s \leq t \\ |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| &\leq K_1 e^{-K^{-1}(s-t)}, \qquad 0 \leq t \leq s, \end{aligned}$$

where $K_1 = \overline{M} \max\{N_1, N_2\}.$

Now, we prove the "if" part. From (4), for $t \ge 0$ we have

$$\int_{0}^{t} |\Psi(t)Y(t)P_{1}Y^{-1}(s)\Psi^{-1}(s)| \, ds + \int_{t}^{\infty} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)| \, ds$$

$$\leq K_{1} \int_{0}^{t} e^{-\alpha(t-s)} \, ds + K_{1} \int_{t}^{\infty} e^{-\alpha(s-t)} \, ds < \frac{2K_{1}}{\alpha}.$$

From this and Theorem 2.1, [6], it follows the conclusion of theorem. The proof is now complete.

Remark 2.1. If $\Psi(t)$ and fundamental matrix Y(t) do not fulfil the condition (5), then the conditions (4) may not be true.

This is shown by the

Example 2.1. Consider the linear system (2) with $A(t) = \begin{pmatrix} -2 & e^t \\ 0 & 2 \end{pmatrix}$. A fundamental matrix for the system (2) is

$$Y(t) = \begin{pmatrix} e^{-2t} & \frac{1}{5}(e^{3t} - e^{-2t}) \\ 0 & e^{2t} \end{pmatrix}.$$

Consider

$$\Psi(t) = \left(\begin{array}{cc} \mathrm{e}^{-t} & 0\\ 0 & \mathrm{e}^{-2t} \end{array}\right).$$

We have

$$\Psi(t)Y(t)Y^{-1}(s)\Psi^{-1}(s) = \begin{pmatrix} e^{-3(t-s)} & \frac{1}{5}e^{2t}(1-e^{-5(t-s)}) \\ 0 & 1 \end{pmatrix}.$$

This shows that (5) is not satisfied.

Instead,

$$\Psi(t)\Psi^{-1}(s) = \begin{pmatrix} e^{-(t-s)} & 0\\ 0 & e^{-2(t-s)} \end{pmatrix},$$

is bounded for $0 \le s \le t$.

But then, in this case, we have

$$P_1 = \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right), \qquad P_2 = \left(\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right).$$

Thereafter,

$$\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s) = \begin{pmatrix} e^{-3(t-s)} & \frac{1}{5}e^{-3t}(1-e^{5s}) \\ 0 & 0 \end{pmatrix},$$

which is unbounded for $0 \le s \le t$.

Thus, the conditions (4) is not true.

Remark 2.2. If in Theorem 2.1 we put $\Psi(t) = I_d$, then the conclusion of the Theorem 3, Chapter V, [4], follows.

We prove finally a theorem in which we will see that the asymptotic behavior of solutions of (1) is determined completely by the asymptotic behavior of f(t) as $t \to \infty$.

Theorem 2.2. Suppose that:

1. the fundamental matrix Y(t) of (2) satisfies the conditions

$$\begin{aligned} |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| &\leq K e^{-\alpha(t-s)}, & 0 \leq s \leq t, \\ |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| &\leq K e^{-\alpha(s-t)}, & 0 \leq t \leq s, \end{aligned}$$

where K and α are positive constants and P_1 , P_2 are supplementary projections, $P_i \neq 0$;

2. the continuous and Ψ -bounded function $f : \mathbb{R}_+ \to \mathbb{R}^d$ satisfies one of the following conditions:

a)
$$\lim_{t \to \infty} \|\Psi(t)f(t)\| = 0,$$

b)
$$\int_{0}^{\infty} \|\Psi(t)f(t)\| dt \text{ is convergent,}$$

c)
$$\lim_{t \to \infty} \int_{0}^{t+1} \|\Psi(s)f(s)\| ds = 0.$$

Then, every Ψ -bounded solution x(t) of (1) is such that

$$\lim_{t \to \infty} \|\Psi(t)x(t)\| = 0.$$

- *Proof.* a) It follows from the Theorem 2.1, [6].
- b) It is similar to the proof of Theorem 2.1, [6].
- c) By the hypothesis 2, it follows that there exists a positive constant C such that

$$\int_{t}^{t+1} \|\Psi(s)f(s)\| \, ds \le C, \qquad \text{for all } t \ge 0.$$

Let x(t) be a Ψ -bounded solution of (1). There is a positive constant M such that $\|\Psi(t)x(t)\| \leq M$, for all $t \geq 0$. Consider the function

$$y(t) = x(t) - Y(t)P_1x(0) - \int_0^t Y(t)P_1Y^{-1}(s)f(s)\,ds + \int_t^\infty Y(t)P_2Y^{-1}(s)f(s)\,ds,$$

for all $t \ge 0$. For $v \ge t \ge 0$ we have

$$\begin{split} \| \int_{t}^{v} P_{2}Y^{-1}(s)f(s) \, ds \| &\leq \int_{t}^{v} \| P_{2}Y^{-1}(s)f(s) \| \, ds \\ &\leq |Y^{-1}(t)\Psi^{-1}(t)| \int_{t}^{v} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)| \cdot \|\Psi(s)f(s)\| \, ds \\ &\leq K|Y^{-1}(t)\Psi^{-1}(t)| \int_{t}^{v} e^{-\alpha(s-t)} \|\Psi(s)f(s)\| \, ds \\ &\leq KC(1-e^{-\alpha})^{-1} |Y^{-1}(t)\Psi^{-1}(t)|, \end{split}$$

by using a Lemma of J. L. Massera and J. J. Schäffer, [9].

It follows that the integral

$$\int_{t}^{\infty} Y(t) P_2 Y^{-1}(s) f(s) \, ds$$

is convergent.

Clearly, the function y(t) is continuously differentiable on \mathbb{R}_+ . For $t \ge 0$, we have

$$\begin{aligned} y'(t) &= x'(t) - Y'(t)P_1x(0) - Y'(t) \int_0^t P_1Y^{-1}(s)f(s)\,ds - Y(t)P_1Y^{-1}(t)f(t) \\ &+ Y'(t) \int_t^\infty P_2Y^{-1}(s)f(s)\,ds - Y(t)P_2Y^{-1}(t)f(t) \\ &= A(t)x(t) + f(t) - A(t)Y(t)P_1x(0) - A(t)Y(t) \int_0^t P_1Y^{-1}(s)f(s)ds \\ &+ A(t)Y(t) \int_t^\infty P_2Y^{-1}(s)f(s)ds - Y(t)(P_1 + P_2)Y^{-1}(t)f(t) \\ &= A(t)y(t). \end{aligned}$$

Thus, the function y(t) is a solution of the linear system (2). Since the hypothesis 1. implies that $\lim_{t\to\infty} \Psi(t)Y(t)P_1 = 0$ (see Lemma 1, [5]), there exists a positive constant N such that $|\Psi(t)Y(t)P_1| \leq N$ for all $t \geq 0$. It follows that

$$\begin{split} \Psi(t)y(t)\| &\leq \|\Psi(t)x(t)\| + |\Psi(t)Y(t)P_1| \cdot \|x(0)\| \\ &+ \int_0^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \cdot \|\Psi(s)f(s)\| \, ds \\ &+ \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \|\Psi(s)f(s)\| \, ds \\ &\leq M + N \|x(0)\| + K \int_0^t e^{-\alpha(t-s)} \|\Psi(s)f(s)\| \, ds \\ &+ K \int_t^\infty e^{-\alpha(s-t)} \|\Psi(s)f(s)\| \, ds \\ &\leq M + N \|x(0)\| + 2KC(1 - e^{-\alpha})^{-1}, \quad \text{ for all } t \geq 0, \end{split}$$

by using of above Lemma of Massera and Schäffer.

||1

Thus, the function y(t) is a Ψ -bounded solution of the linear system (2).

On the other hand, $P_1y(0) = 0$. Therefore, $y(t) = Y(t)y(0) = Y(t)P_2y(0)$. If $P_2y(0) \neq 0$, from the Lemma 2, [5], it follows that $\limsup_{t \to \infty} \|\Psi(t)y(t)\| = +\infty$, which is contradictory. Thus, $P_2y(0) = 0$ and then y(t) = 0 for t > 0.

Thus, for $t \ge 0$ we have

$$x(t) = Y(t)P_1x(0) + \int_0^t Y(t)P_1Y^{-1}(s)f(s)\,ds - \int_t^\infty Y(t)P_2Y^{-1}(s)f(s)\,ds.$$

Now, for a given $\varepsilon > 0$, there exists $t_1 \ge 0$ such that

$$\int_{t}^{t+1} \|\Psi(s)f(s)\| \, ds < \varepsilon(4K)^{-1}(1-\mathrm{e}^{-\alpha}), \qquad \text{for all } t \ge t_1.$$

Moreover, there exists $t_2 > t_1$ such that, for $t \ge t_2$,

$$|\Psi(t)Y(t)P_1| \le \frac{\varepsilon}{2} \left(\|x(0)\| + \int_0^{t_1} \|Y^{-1}(s)f(s)\| \, ds \right)^{-1}.$$

Then, for $t \ge t_2$ we have, by using of above Lemma of Massera and Schäffer,

$$\begin{split} \|\Psi(t)x(t)\| &\leq \|\Psi(t)Y(t)P_{1}\|\|x(0)\| + \int_{0}^{t_{1}} |\Psi(t)Y(t)P_{1}|\|Y^{-1}(s)f(s)\| \, ds \\ &+ \int_{t_{1}}^{t} |\Psi(t)Y(t)P_{1}Y^{-1}(s)\Psi^{-1}(s)|\|\Psi(s)f(s)\| \, ds \\ &+ \int_{t}^{\infty} |\Psi(t)Y(t)P_{2}Y^{-1}(s)\Psi^{-1}(s)|\|\Psi(s)f(s)\| \, ds \\ &\leq \|\Psi(t)Y(t)P_{1}|(\|x(0)\| + \int_{0}^{t_{1}} \|Y^{-1}(s)f(s)\| \, ds) \\ &+ K \int_{t_{1}}^{t} e^{-\alpha(t-s)} \|\Psi(s)f(s)\| \, ds + K \int_{t}^{\infty} e^{-\alpha(s-t)} \|\Psi(s)f(s)\| \, ds \\ &< \varepsilon. \end{split}$$

This shows that $\lim_{t\to\infty} \|\Psi(t)x(t)\| = 0.$ The proof is now complete.

Remark 2.3. If in Theorem we put A(t) = A, $\Psi(t) = \varphi^k(t)I_d$, then the conclusion of the Theorem 3.1, [3], follows.

Remark 2.4. If the function f does not fulfill the condition 2 of the theorem, then $\Psi(t)x(t)$ may be such that $\lim_{t \to \infty} \|\Psi(t)x(t)\| \neq 0.$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

This can be seen from

Example 2.2. Consider the linear system (1) with

$$A(t) = \begin{pmatrix} a & 0\\ 0 & b \end{pmatrix} \quad \text{and} \quad f(t) = \begin{pmatrix} e^{(a+1)t}\\ e^{(b-2)t} \end{pmatrix},$$

where $a, b \in \mathbb{R}$.

A fundamental matrix for the homogeneous system (2) is

$$Y(t) = \left(\begin{array}{cc} e^{at} & 0\\ 0 & e^{bt} \end{array}\right).$$

Consider

$$\Psi(t) = \begin{pmatrix} e^{-(a+1)t} & 0\\ 0 & e^{(1-b)t} \end{pmatrix}.$$

The first condition of the Theorem 2.2. is satisfied with

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 $P_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\alpha = 1$, $K = 1$.

Then, we have $\|\Psi(t)f(t)\| = 1$ for all $t \ge 0$ and

$$\Psi(t)x(t) = \begin{pmatrix} c_1 e^{-t} + 1\\ c_2 e^t - \frac{1}{2} e^{-t} \end{pmatrix} \quad \not\rightarrow \quad 0 \quad \text{as} \quad t \to \infty.$$

Remark 2.5. This Example shows that the components of the solution x(t) have a mixed asymptotic behavior.

Acknowledgment. The author would like to thank very much the referee of this paper for valuable comments and suggestions.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

- Akinyele O. On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8 65 (1978), 259–264.
- Avramescu C., Asupra comportării asimptotice a soluțiilor unor ecuații funcționale, Analele Universității din Timişoara, Seria Științe Matematice - Fizice VI (1968), 41–55.
- Constantin A., Asymptotic properties of solutions of differential equations, Analele Universității din Timişoara, Seria Științe Matematice XXX fasc. 2–3 (1992), 183–225.
- 4. Coppel W. A., Stability and Asymptotic Behavior of Differential Equations, Health, Boston, 1965.
- 5. Diamandescu A. On the Ψ -instability of a nonlinear Volterra integro-differential system, Bulletin Mathématique (Bucarest), (to appear).
- **6.** _____, A note on the Ψ -boundedness for differential systems, submitted for publication.
- 7. Gașpar D., Analiză funcțională, Ed. Facla, Timișoara, 1981.
- 8. Hallam T. G., On asymptotic equivalence of the bounded solutions of two systems of differential equations, Mich. Math. Journal 16 (1969), 353–363.
- 9. Massera J. L. and Schäffer J. J., Linear differential equations and functional analysis, Ann. of Math. 67 (1958), 517–573.
- 10. Morchalo J., On (Ψ-L_p)Analele Ştiințifice ale Universității "Al. I. Cuza" Iași XXXVI, s I a, Matematică (1990) f. 4, 353–360.

A. Diamandescu, Department of Applied Mathematics, University of Craiova, 13, "Al. I. Cuza" st., 200585 Craiova, Romania., *e-mail*: adiamandescu@central.ucv.ro