CONVERGENCE OF BANACH LATTICE VALUED STOCHASTIC PROCESSES WITHOUT THE RADON-NIKODYM PROPERTY

V. MARRAFFA

ABSTRACT. We obtain almost sure convergence theorems for stochastic processes consisting of Bochner integrable functions taking values in a Banach lattice without assuming the Radon-Nikodym property. It is shown that if the limit exists in a weak sense then the almost sure convergence follows.

1. INTRODUCTION

For Banach lattice valued subpramarts the Radon-Nikodym property is equivalent to the convergence a.e. (see [4], [11] and [6]). If the Radon-Nikodym property is not assumed it is natural to ask how small can be the class T of functionals f such that the a.s. convergence of fX_n to fX for $f \in T$ implies the convergence of X_n to X in some stronger sense. In case of Banach valued processes it was established that T can be a total set. In particular in [8] it was proved that an amart (X_n) converges scalarly almost surely to a random variable X if fX_n converges to fX a.s for each f in a total subset of the dual. In [3], under the same assumption, the strong a.s. convergence for martingales follows. Analogous results has been obtained also for weak amarts and uniform amarts in [1].

In $\S3$ we obtain similar results for subpramarts taking values in a Banach lattice (see Theorem 2).

In §4, under a suitable covering condition (Vitali condition V), we generalize the subpramarts result to directed sets.

Received December 22, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60G48, 28B05.

Key words and phrases. Random variable, stopping time, subpramart, scalar convergence.

Supported by MURST of Italy.

2. Definitions and notations

Throught this note (Ω, \mathcal{F}, P) is a probability space and $(\mathcal{F}_n)_{n \in \mathbb{N}}$ a family of sub- σ -algebras of \mathcal{F} such that $\mathcal{F}_m \subset \mathcal{F}_n$ if m < n. Moreover, without loss of generality, we will assume that \mathcal{F} is the completion of $\sigma(\bigcup_n \mathcal{F}_n)$. From now on E will denote a Banach lattice with norm $\|\cdot\|$ and E^* its dual. A subset T of E^* is called a *total* set over E if f(x) = 0 for each $f \in T$ implies x = 0. For an element $x \in E$ we denote by x^+ the least upper bound between x and 0. The Banach lattice E is said to have the order continuous norm or, briefly, to be order continuous, if for every downward directed set $\{x_\alpha\}_\alpha$ in E with $\wedge_\alpha x_\alpha = 0$, then $\lim_\alpha \|x_\alpha\| = 0$. The norm on E has the Kadec-Klee property with respect to a set $D \subset E^*$ if whenever $\lim_n f(x_n) = f(x)$ for every $f \in D$ and $\lim_n \|x_n\| = \|x\|$, then $\lim_n x_n = x$ strongly. If $D = E^*$ we say that the norm has the Kadec-Klee property. It was proved in [2] the following renorming theorem for Banach lattices.

Theorem 1. A Banach lattice E is order continuous if and only if there is an equivalent lattice norm on E with the Kadec-Klee property.

It is obvious that if E is separable, the equivalent norm has the Kadec-Klee property with respect to a countable set of functionals.

A stopping time is a map $\tau : \Omega \to \mathbb{N} \cup \{\infty\}$ such that, for each $n \in \mathbb{N}$, $\{\tau \leq n\} = \{\omega \in \Omega : \tau(\omega) \leq n\} \in \mathcal{F}_n$. We denote by Γ the collection of all simple stopping times (i.e. taking finitely many values and not taking the value ∞). Then Γ is a set filtering to the right.

We recall that a stochastic process (X_n, \mathcal{F}_n) is called

(i) a submartingale if $X_n \leq E(X_{n+1}|\mathcal{F}_n)$ a.s. for each $n \in \mathbb{N}$, or equivalently if

$$\int_A X_n \le \int_A X_{n+1},$$

for each $A \in \mathcal{F}_n$ and for each $n \in \mathbb{N}$;

(ii) a subpramart if for each $\varepsilon > 0$ there exists $\tau_0 \in \Gamma$ such that for all τ and σ in Γ , $\tau > \sigma > \tau_0$ then

$$P(\{\|(X_{\sigma} - E(X_{\tau}|\mathcal{F}_{\sigma}))^+\| > \varepsilon\}) \le \varepsilon.$$

We remind that if (X_n, \mathcal{F}_n) is a positive subpramart (i.e. $X_n(\omega) \ge 0$ for each $n \in \mathbb{N}$ and $\omega \in \Omega$), then for each $f \in (E^*)^+$, where $(E^*)^+$ denotes the nonnegative cone in E^* , (fX_n, \mathcal{F}_n) and $(||X_n||, \mathcal{F}_n)$ are real valued positive subpramarts [5, Lemma viii.1.12].

3. Convergence theorems for processes indexed by $I\!\!N$

We will need the following Propositions.

Proposition 1. [5, p. 303] Let E be a Banach space and let (X_n, \mathcal{F}_n) be a L^1 -bounded stochastic process. Then there exists a subsequence $(n_k)_k$ in \mathbb{N} such that for every $k \in \mathbb{N}$

$$X_{n_k} = Y_{n_k} + Z_{n_k}$$

where Y_{n_k} and Z_{n_k} are \mathcal{F}_{n_k} -measurable, $(Y_{n_k})_k$ is uniformly integrable and $\lim_k Z_{n_k} = 0$ a.s..

Proposition 2. [5, p. 298] Let $(X_n^m, \mathcal{F}_n)_n$ be a sequence of real valued positive subpramarts for which for each $\varepsilon > 0$ there exists $\tau_0 \in \Gamma$ such that for all τ and σ in Γ , $\tau > \sigma > \tau_0$ then

$$P(\{\sup_{m}(X_{\sigma}^{m} - E(X_{\tau}^{m}|\mathcal{F}_{\sigma})) \leq \varepsilon\}) \geq 1 - \varepsilon.$$

Suppose, moreover, that there is a subsequence $(n_k)_k$ such that

$$\sup_k \int \sup_m X_{n_k}^m < \infty.$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Then each subpramart $(X_n^m, \mathcal{F}_n)_n$ converges a.s. to an integrable function X^m and we have

$$\lim_{n} (\sup_{m} X_{n}^{m}) = \sup_{m} X^{m} a.s.$$

We are able to prove the following theorem.

Theorem 2. [9, Theorem 3.8] Let E be an order continuous Banach lattice, which is weakly sequentially complete and let T be a total subset of E^* . Let (X_n, \mathcal{F}_n) be a positive subpramart with an L^1 -bounded subsequence and let X be a strongly measurable random variable. Assume that, for each $f \in T$, fX_n converges to fX a.s. (the null depends on f). Then X_n converges to X strongly, a.s..

Proof. Since (X_n) and X are strongly measurable it is possible to assume that E is separable. Using Proposition 1 and the fact that a subsequence of $(X_n)_n$, still denoted by $(X_n)_n$, is L^1 -bounded we can also assume that

$$X_{n_k} = Y_{n_k} + Z_n$$

where Y_{n_k} and Z_{n_k} are \mathcal{F}_{n_k} -measurable, $(Y_{n_k})_k$ is uniformly integrable and

$$\lim_{k} Z_{n_k} = 0 \ a.s.$$

For each $f \in (E^*)^+$, $(fX_n)_n$ is a real valued subpramart with a L^1 -bounded subsequence, then it converges a.s. to a real random variable X_f . Also fY_{n_k} converges to X_f a.s. and in L^1 . In particular for each $f \in T$, $\lim_k fY_{n_k} = fX$. So for $A \in \mathcal{F}$

$$\lim_{k} \int_{A} fY_{n_k}$$

exists in \mathbb{R} . Hence $(\int_A Y_{n_k})_k$ is weakly Cauchy. Since the Banach lattice E is weakly sequentially complete, let for every $A \in \mathcal{F}$

$$\mu(A) = w - \lim_{k} \int_{A} Y_{n_k}.$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Then μ is a measure of bounded variation and it is absolutely continuous with respect to P. For each $f \in T$ we have

$$f(\mu(A)) = \lim_{k} \int_{A} fY_{n_{k}} = \int_{A} fX$$

Let $A_n = \{ \|X\| \le n \}$, then XI_{A_n} is Bochner integrable and

$$f(\mu(A_n)) = \int_{A_n} fX = f \int_{A_n} X.$$

Since T is a total set it follows that

$$\mu(A_n) = \int_{A_n} X.$$

Moreover the uniform integrability of $(Y_{n_k})_k$ implies that

(1)
$$\int_{A_n} \|X\| = \|\mu\|(A_n) \le \sup_k \int_{\Omega} Y_{n_k},$$

and since X is strongly measurable, $P(\bigcup_n (||X|| \le n)) = 1$. Letting $n \to \infty$ in (1), we get that X is Bochner integrable and for each $A \in \mathcal{F}$

$$\mu(A) = \int_A X.$$

It follows that

$$\int_A fX = f(\mu(A)) = \lim_k \int_A fY_{n_k} = \int_A X_f,$$

for each $f \in (E^*)^+$ and $A \in \bigcup \mathcal{F}$. Hence $fX = X_f$ a.s. and for each $f \in (E^*)^+$, fX_n converges to fX a.s.. Let $\|\cdot\|$ denote the Kadec-Klee norm equivalent to $\|\cdot\|$, as in Theorem 1, and let $D \in (E^*)^+$ be a countable norming subset. Applying Proposition 2 to the sequence $\{(fX_n, \mathcal{F}_n), n \in \mathbb{N}, f \in D\}$ it follows that $\lim_n \|X_n\| = \|X\|$, a.s.. Now invoking again Theorem 1 we get the strong convergence of X_n to X and the assertion follows. \Box

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

The following corollary holds.

Corollary 1. Let E be a Banach lattice not containing c_0 as an isomorphic copy and let T be a total subset of E^* . Let (X_n, \mathcal{F}_n) be a positive subpramart with a L^1 -bounded subsequence and let X be a strongly measurable random variable. Assume that, for each $f \in T$, fX_n converges to fX a.s. (the null set depends on f). Then X_n converges to X strongly a.s..

Proof. If E does not contain c_0 , E is an order continuous Banach lattice which is weakly sequentially complete [7, p. 34] and the assertion follows from Theorem 2.

Since a submartingale is a subpramart we get

Corollary 2. [3, Proposition 11] Let E be a Banach lattice not containing c_0 as an isomorphic copy and let T be a total subset of E^* . Let (X_n, \mathcal{F}_n) be a L^1 -bounded positive submartingale and let X be a strongly measurable random variable. Assume that, for each $f \in T$, fX_n converges to fX a.s. (the null set depends on f). Then X_n converges to X strongly a.s..

4. A convergence theorem for subpramarts indexed by a directed set

In this section we will consider stochastic processes indexed by a directed set. Let J be a directed set filtering to the right. Throughout this section we assume that there is an increasing cofinal sequence (t_n) in J. Let (\mathcal{F}_t) be a filtration, that is an increasing family of sub- σ -algebras of \mathcal{F} . A filtration (\mathcal{F}_t) is said to satisfy the *Vitali* condition V if for every adapted family of sets (A_t) and for every $\varepsilon > 0$ there exists a simple stopping time $\tau \in \Gamma$ such that $P(\limsup_J A_t \setminus A_\tau) < \varepsilon$. Even in the real-valued case the Vitali condition on the filtration is necessary for the convergence of classes of random variables. Under the condition V, the analogue of Theorem 2 holds for subpramarts indexed by directed sets. **Theorem 3.** Let the filtration satisfy the condition V and let E be a separable order continuous Banach lattice, which is weakly sequentially complete. Let (X_t, \mathcal{F}_t) be a L¹-bounded positive subpramart and let X be a strongly measurable random variable. Let T be a total subset of E^* and assume that, for each $f \in T$, fX_t converges to fX a.s.. Then X_t converges to X strongly a.s..

Proof. Let (t_n) be an increasing cofinal sequence in J. Set $X_{t_n} = Y_n$ and $\mathcal{F}_{t_n} = \mathcal{G}_n$. We first show that (Y_n, \mathcal{G}_n) is a subpramart sequence. Since (X_t) is a subpramart, for every $\varepsilon > 0$ there exists $\tau_o \in \Gamma$ such that if $\tau > \sigma > \tau_o$ then

$$P(\{\|(X_{\sigma} - E(X_{\tau}|\mathcal{F}_{\sigma}))^+\| > \varepsilon\}) \le \varepsilon.$$

Now if σ is a stopping time for \mathcal{G} then t_{σ} is a stopping time for \mathcal{F}_t . Thus choose σ_o such that $t_{\sigma_o} \geq \tau_o$. Now for each $\tau > \sigma > \sigma_o$ it follows

$$P(\{\|(Y_{\sigma} - E(Y_{\tau}|\mathcal{G}_{\sigma}))^+\| > \varepsilon\}) = P(\{\|(X_{t_{\sigma}} - E(X_{t_{\tau}}|\mathcal{F}_{t_{\sigma}}))^+\| > \varepsilon\}) \le \varepsilon.$$

Then Y_n is a subpramart sequence. For each $f \in T$, fY_n converges to fX a.s.. Therefore by Theorem 2, Y_n converges to X a.s. and also scalarly. As E is a separable Banach lattice there exists a countable norming subset D of $(E^*)^+$ (i.e. $||x|| = \sup\{|x^*(x)| : x^* \in D \cap \mathcal{B}(X^*)\}$). Now, for each $f \in D$, fX_t is a L^1 -bounded real valued subpramart and since the filtration satisfies V, by [10] Theorem 4.3, fX_t converges to X_f a.s.. Since fX_{t_n} converges to fX, it follows that $fX = X_f$. As in Theorem 1, we denote by $||| \cdot |||$ the Kadec-Klee norm equivalent to $|| \cdot ||$. Applying [6] Lemma 2.3 to the sequence $\{(fX_t, \mathcal{F}_t), t \in T, f \in D\}$ it follows that $\lim_t |||X_t||| = |||X|||$, a.s.. Now invoking again Theorem 1 we get the strong convergence of X_t to X and the assertion follows.

 Davis W. J., Ghoussoub N. and Lindenstrauss J., A lattice renorming theorem and applications to vector-valued processes, Trans. Amer. Math. Soc., 263(2) (1981), 531–540.

^{1.} Bouzar N., On almost sure convergence without the Radon-Nikodym property, Acta Math. Univ. Comenianae, LXX(2) (2001), 167–175.

- Davis W. J., Ghoussoub N., Johnson W. B., Kwapien S. and Maurey B., Weak convergence of vector valued martingales, Probability in Banach spaces, 6 (1990), 41–50.
- 4. Egghe L., Strong convergence of positive subpramarts in Banach lattices, Bull. Polish Acad. Sci. Math., 31(9-12) (1984), 415-426.
- 5. Egghe L., Stopping Time Techniques for Analysts and Probabilist, London Mathematical Society, Lecture Notes, 100, Cambridge University Press, Cambridge 1984.
- 6. Frangos N. K., On convergence of vector valued pramarts and subpramarts, Can. J. Math. XXXVII(2) (1985), 260–270.
- 7. Lindenstrauss J. and Tzafiri L., Classical Banach Spaces II. Function Spaces, Ergebnisse der Math. und ihrer Grensgeb. 97, Springer Verlag, Berlin 1979.
- 8. Marraffa V., On almost sure convergence of amarts and martingales without the Radon-Nikodym property, J. of Theoretical Prob. 1(3) (1988), 255–261.
- 9. Marraffa V., Convergenza di processi stocastici senza la proprietà di Radon-Nikodym, Ph.D. Univ. of Palermo 1988.
- 10. Millet A. and Sucheston L., Convergence of classes of amarts indexed by directed sets, Can. J. Math., 32(1) (1980), 86–125.
- 11. Slaby M., Strong convergence of vector valued pramarts and subpramarts, Probab. Math. Statist. 5(2) (1985), 187–196.

V. Marraffa, Department of Mathematics, Via Archirafi 34, 90123 Palermo, Italy,

e-mail: marraffa@math.unipa.it