
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

CONVERGENCE OF BANACH LATTICE VALUED STOCHASTIC PROCESSES
WITHOUT THE RADON-NIKODYM PROPERTY

V. MARRAFFA

Abstract. We obtain almost sure convergence theorems for stochastic processes consisting of Bochner integrable func-

tions taking values in a Banach lattice without assuming the Radon-Nikodym property. It is shown that if the limit
exists in a weak sense then the almost sure convergence follows.

1. Introduction

For Banach lattice valued subpramarts the Radon-Nikodym property is equivalent to the convergence a. e. (see
[4], [11] and [6]). If the Radon-Nikodym property is not assumed it is natural to ask how small can be the class
T of functionals f such that the a.s. convergence of fXn to fX for f ∈ T implies the convergence of Xn to X in
some stronger sense. In case of Banach valued processes it was established that T can be a total set. In particular
in [8] it was proved that an amart (Xn) converges scalarly almost surely to a random variable X if fXn converges
to fX a. s for each f in a total subset of the dual. In [3], under the same assumption, the strong a.s. convergence
for martingales follows. Analogous results has been obtained also for weak amarts and uniform amarts in [1].

In §3 we obtain similar results for subpramarts taking values in a Banach lattice (see Theorem 2).
In §4, under a suitable covering condition (Vitali condition V ), we generalize the subpramarts result to directed

sets.
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2. Definitions and notations

Throught this note (Ω,F , P ) is a probability space and (Fn)n∈IN a family of sub-σ-algebras of F such that
Fm ⊂ Fn if m < n. Moreover, without loss of generality, we will assume that F is the completion of σ(∪nFn).
From now on E will denote a Banach lattice with norm ‖ · ‖ and E∗ its dual. A subset T of E∗ is called a total
set over E if f(x) = 0 for each f ∈ T implies x = 0. For an element x ∈ E we denote by x+ the least upper
bound between x and 0. The Banach lattice E is said to have the order continuous norm or, briefly, to be order
continuous, if for every downward directed set {xα}α in E with ∧αxα = 0, then limα ‖xα‖ = 0. The norm on E
has the Kadec-Klee property with respect to a set D ⊂ E∗ if whenever limn f(xn) = f(x) for every f ∈ D and
limn ‖xn‖ = ‖x‖, then limn xn = x strongly. If D = E∗ we say that the norm has the Kadec-Klee property. It
was proved in [2] the following renorming theorem for Banach lattices.

Theorem 1. A Banach lattice E is order continuous if and only if there is an equivalent lattice norm on E
with the Kadec-Klee property.

It is obvious that if E is separable, the equivalent norm has the Kadec-Klee property with respect to a countable
set of functionals.
A stopping time is a map τ : Ω → IN ∪ {∞} such that, for each n ∈ IN , {τ ≤ n} = {ω ∈ Ω : τ(ω) ≤ n} ∈ Fn.
We denote by Γ the collection of all simple stopping times (i.e. taking finitely many values and not taking the
value ∞). Then Γ is a set filtering to the right.
We recall that a stochastic process (Xn,Fn) is called

(i) a submartingale if Xn ≤ E(Xn+1|Fn) a.s. for each n ∈ IN , or equivalently if∫
A

Xn ≤
∫

A

Xn+1,

for each A ∈ Fn and for each n ∈ IN ;
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(ii) a subpramart if for each ε > 0 there exists τ0 ∈ Γ such that for all τ and σ in Γ, τ > σ > τ0 then

P ({‖(Xσ − E(Xτ |Fσ))+‖ > ε}) ≤ ε.

We remind that if (Xn,Fn) is a positive subpramart (i.e. Xn(ω) ≥ 0 for each n ∈ IN and ω ∈ Ω), then for each
f ∈ (E∗)+, where (E∗)+ denotes the nonnegative cone in E∗, (fXn,Fn) and (‖Xn‖,Fn) are real valued positive
subpramarts [5, Lemma viii.1.12].

3. Convergence theorems for processes indexed by IN

We will need the following Propositions.

Proposition 1. [5, p. 303] Let E be a Banach space and let (Xn,Fn) be a L1-bounded stochastic process.
Then there exists a subsequence (nk)k in IN such that for every k ∈ IN

Xnk
= Ynk

+ Znk

where Ynk
and Znk

are Fnk
-measurable, (Ynk

)k is uniformly integrable and
limk Znk

= 0 a.s..

Proposition 2. [5, p. 298] Let (Xm
n ,Fn)n be a sequence of real valued positive subpramarts for which for each

ε > 0 there exists τ0 ∈ Γ such that for all τ and σ in Γ, τ > σ > τ0 then

P ({sup
m

(Xm
σ − E(Xm

τ |Fσ)) ≤ ε}) ≥ 1− ε.

Suppose, moreover, that there is a subsequence (nk)k such that

sup
k

∫
sup
m

Xm
nk

< ∞.
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Then each subpramart (Xm
n ,Fn)n converges a.s. to an integrable function Xm and we have

lim
n

(sup
m

Xm
n ) = sup

m
Xma.s..

We are able to prove the following theorem.

Theorem 2. [9, Theorem 3.8] Let E be an order continuous Banach lattice, which is weakly sequentially
complete and let T be a total subset of E∗. Let (Xn,Fn) be a positive subpramart with an L1-bounded subsequence
and let X be a strongly measurable random variable. Assume that, for each f ∈ T , fXn converges to fX a.s.
(the null depends on f). Then Xn converges to X strongly, a.s..

Proof. Since (Xn) and X are strongly measurable it is possible to assume that E is separable. Using Propo-
sition 1 and the fact that a subsequence of (Xn)n, still denoted by (Xn)n, is L1-bounded we can also assume
that

Xnk
= Ynk

+ Znk

where Ynk
and Znk

are Fnk
-measurable, (Ynk

)k is uniformly integrable and

lim
k

Znk
= 0 a.s..

For each f ∈ (E∗)+, (fXn)n is a real valued subpramart with a L1-bounded subsequence, then it converges
a.s. to a real random variable Xf . Also fYnk

converges to Xf a.s. and in L1. In particular for each f ∈ T ,
limk fYnk

= fX. So for A ∈ F

lim
k

∫
A

fYnk

exists in IR. Hence (
∫

A
Ynk

)k is weakly Cauchy. Since the Banach lattice E is weakly sequentially complete, let
for every A ∈ F

µ(A) = w − lim
k

∫
A

Ynk
.
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Then µ is a measure of bounded variation and it is absolutely contionuous with respect to P . For each f ∈ T we
have

f(µ(A)) = lim
k

∫
A

fYnk
=

∫
A

fX.

Let An = {‖X‖ ≤ n}, then XIAn is Bochner integrable and

f(µ(An)) =
∫

An

fX = f

∫
An

X.

Since T is a total set it follows that

µ(An) =
∫

An

X.

Moreover the uniform integrability of (Ynk
)k implies that∫

An

‖X‖ = ‖µ‖(An) ≤ sup
k

∫
Ω

Ynk
,(1)

and since X is strongly measurable, P (∪n(‖X‖ ≤ n)) = 1. Letting n → ∞ in (1), we get that X is Bochner
integrable and for each A ∈ F

µ(A) =
∫

A

X.

It follows that ∫
A

fX = f(µ(A)) = lim
k

∫
A

fYnk
=

∫
A

Xf ,

for each f ∈ (E∗)+ and A ∈
⋃
F . Hence fX = Xf a.s. and for each f ∈ (E∗)+, fXn converges to fX a.s.. Let

||| · ||| denote the Kadec-Klee norm equivalent to ‖ · ‖, as in Theorem 1, and let D ∈ (E∗)+ be a countable norming
subset. Applying Proposition 2 to the sequence {(fXn,Fn), n ∈ IN, f ∈ D} it follows that limn |||Xn||| = |||X|||,
a.s.. Now invoking again Theorem 1 we get the strong convergence of Xn to X and the assertion follows. �
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The following corollary holds.

Corollary 1. Let E be a Banach lattice not containing c0 as an isomorphic copy and let T be a total subset
of E∗. Let (Xn,Fn) be a positive subpramart with a L1-bounded subsequence and let X be a strongly measurable
random variable. Assume that, for each f ∈ T , fXn converges to fX a.s. (the null set depends on f). Then Xn

converges to X strongly a.s..

Proof. If E does not contain c0, E is an order continuous Banach lattice which is weakly sequentially complete
[7, p. 34] and the assertion follows from Theorem 2. �

Since a submartingale is a subpramart we get

Corollary 2. [3, Proposition 11] Let E be a Banach lattice not containing c0 as an isomorphic copy and let T
be a total subset of E∗. Let (Xn,Fn) be a L1-bounded positive submartingale and let X be a strongly measurable
random variable. Assume that, for each f ∈ T , fXn converges to fX a.s. (the null set depends on f). Then Xn

converges to X strongly a.s..

4. A convergence theorem for subpramarts
indexed by a directed set

In this section we will consider stochastic processes indexed by a directed set. Let J be a directed set filtering
to the right. Throughout this section we assume that there is an increasing cofinal sequence (tn) in J . Let (Ft)
be a filtration, that is an increasing family of sub-σ-algebras of F . A filtration (Ft) is said to satisfy the Vitali
condition V if for every adapted family of sets (At) and for every ε > 0 there exists a simple stopping time τ ∈ Γ
such that P (lim supJ At \Aτ ) < ε. Even in the real-valued case the Vitali condition on the filtration is necessary
for the convergence of classes of random variables. Under the condition V , the analogue of Theorem 2 holds for
subpramarts indexed by directed sets.
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Theorem 3. Let the filtration satisfy the condition V and let E be a separable order continuous Banach lattice,
which is weakly sequentially complete. Let (Xt,Ft) be a L1-bounded positive subpramart and let X be a strongly
measurable random variable. Let T be a total subset of E∗ and assume that, for each f ∈ T , fXt converges to
fX a.s.. Then Xt converges to X strongly a.s..

Proof. Let (tn) be an increasing cofinal sequence in J . Set Xtn
= Yn and Ftn

= Gn. We first show that (Yn,Gn)
is a subpramart sequence. Since (Xt) is a subpramart, for every ε > 0 there exists τo ∈ Γ such that if τ > σ > τo

then
P ({‖(Xσ − E(Xτ |Fσ))+‖ > ε}) ≤ ε.

Now if σ is a stopping time for G then tσ is a stopping time for Ft. Thus choose σo such that tσo ≥ τo. Now for
each τ > σ > σo it follows

P ({‖(Yσ − E(Yτ |Gσ))+‖ > ε}) = P ({‖(Xtσ
− E(Xtτ

|Ftσ
))+‖ > ε}) ≤ ε.

Then Yn is a subpramart sequence. For each f ∈ T , fYn converges to fX a.s.. Therefore by Theorem 2, Yn

converges to X a.s. and also scalarly. As E is a separable Banach lattice there exists a countable norming subset
D of (E∗)+ (i.e. ‖x‖ = sup{|x∗(x)| : x∗ ∈ D ∩ B(X∗)}). Now, for each f ∈ D, fXt is a L1-bounded real
valued subpramart and since the filtration satisfies V , by [10] Theorem 4.3, fXt converges to Xf a.s.. Since fXtn

converges to fX, it follows that fX = Xf . As in Theorem 1, we denote by ||| · ||| the Kadec-Klee norm equivalent
to ‖ · ‖. Applying [6] Lemma 2.3 to the sequence {(fXt,Ft), t ∈ T, f ∈ D} it follows that limt |||Xt||| = |||X|||, a.s..
Now invoking again Theorem 1 we get the strong convergence of Xt to X and the assertion follows. �
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