α-FUZZY FIXED POINTS FOR α-FUZZY MONOTONE MULTIFUNCTIONS

A. STOUTI

Abstract. In this note, we prove the existence of maximal, minimal, greatest and least α-fuzzy fixed points for α-fuzzy monotone multifunctions.

1. Introduction

Let X be a nonempty set. A fuzzy subset A of X is a function of X into [0, 1] (see [14]). A fuzzy multifunction is a map $T: X \rightarrow[0,1]^{X}$ such that for every $x \in X, T(x)$ is a nonempty fuzzy set. Let $\left.\left.\alpha \in\right] 0,1\right]$ and let $T: X \rightarrow[0,1]^{X}$ be a fuzzy multifunction. We say that an element x of X is an α-fuzzy fixed point of T if $T(x)(x)=\alpha$. When $\alpha=1$, the element x is called a fixed point of T.

During the last few decades several authors established fixed points theorems in fuzzy setting, see for example [1] - [12]. Recently, in [9], we introduced the notion of α-fuzzy ordered sets in which we established some fixed points theorems for fuzzy monotone multifunctions.

The aim of this note is to study the existence of α-fuzzy fixed points for α-fuzzy monotone multifunctions. First, we prove the existence of maximal and minimal α-fuzzy fixed points (see Theorems 3.1 and 3.3). Second, we establish the existence of greatest and least α-fuzzy fixed points (see Theorems 4.1 and 4.2).

2. Preliminaries

First, we recall the definition of α-fuzzy order.

[^0]Definition 2.1. [9] Let X be a nonempty set and $\alpha \in] 0,1]$. An α-fuzzy order on X is a fuzzy subset r_{α} of $X \times X$ satisfying the following three properties:
(i) for all $x \in X, r_{\alpha}(x, x)=\alpha,(\alpha$-fuzzy reflexivity $)$;
(ii) for all $x, y \in X, r_{\alpha}(x, y)+r_{\alpha}(y, x)>\alpha$ implies $x=y$. (α-fuzzy antisymmetry);
(iii) for all $x, z \in X, r_{\alpha}(x, z) \geq \sup _{y \in X}\left[\min \left\{r_{\alpha}(x, y), r_{\alpha}(y, z)\right\}\right]$ (α-fuzzy transitivity).

The pair $\left(X, r_{\alpha}\right)$, where r_{α} is a α-fuzzy order on X is called a r_{α}-fuzzy ordered set. An α-fuzzy order r_{α} is said to be total if for all $x \neq y$ we have either $r_{\alpha}(x, y)>\frac{\alpha}{2}$ or $r_{\alpha}(y, x)>\frac{\alpha}{2}$. A r_{α}-fuzzy ordered set X on which the order r_{α} is total is called r_{α}-fuzzy chain.

Let $\left(X, r_{\alpha}\right)$ be a nonempty r_{α}-fuzzy ordered set and A be a subset of X.
An element u of X is said to be a r_{α}-upper bound of A if $r_{\alpha}(x, u)>\frac{\alpha}{2}$ for all $x \in A$.
If x is a r_{α}-upper bound of A and $x \in A$, then it is called a greatest element of A.
An element m of A is called a maximal element of A if there is $x \in A$ such that $r_{\alpha}(m, x)>\frac{\alpha}{2}$, then $x=m$.
An element l of X is said to be a r_{α}-lower bound of A if $r_{\alpha}(l, x)>\frac{\alpha}{2}$ for all $x \in A$.
If l is a r_{α}-lower bound of A and $l \in A$, then it is called the least element of A.
An element n of A is called a minimal element of A if there is $x \in A$ such that $r_{\alpha}(x, n)>\frac{\alpha}{2}$, then $x=n$. As usual,
$\sup _{r_{\alpha}}(A):=$ the least element of r_{α}-upper bounds of A (if it exists),
$\inf _{r_{\alpha}}(A):=$ the greatest element of r_{α}-lower bounds of A (if it exists),
$\max _{r_{\alpha}}(A):=$ the greatest element of A (if it exists),
$\min _{r_{\alpha}}(A):=$ the least element of A (if it exists).

Next, we shall give four examples of α-fuzzy orders.

Examples.

1. Let $X=\{0,1,2\}$ and r_{α} be the α-fuzzy order relation defined on X by:

$$
\begin{gathered}
r_{\alpha}(0,0)=r_{\alpha}(1,1)=r_{\alpha}(2,2)=\alpha \\
\left\{\begin{array} { l }
{ r _ { \alpha } (0 , 2) = 0 . 5 5 \alpha } \\
{ r _ { \alpha } (2 , 0) = 0 . 1 \alpha }
\end{array} \quad \left\{\begin{array} { l }
{ r _ { \alpha } (2 , 1) = 0 . 2 \alpha } \\
{ r _ { \alpha } (1 , 2) = 0 . 6 \alpha }
\end{array} \quad \left\{\begin{array}{l}
r_{\alpha}(1,0)=0.7 \alpha \\
r_{\alpha}(0,1)=0.15 \alpha
\end{array}\right.\right.\right.
\end{gathered}
$$

As properties of r_{α}, we have $\inf _{r_{\alpha}}(X)=0$ and $\sup _{r_{\alpha}}(X)=2$.
2. Consider the α-fuzzy order relation r_{α} defined on $X=\{0,1,2\}$ by:

$$
\begin{gathered}
r_{\alpha}(0,0)=r_{\alpha}(1,1)=r_{\alpha}(2,2)=\alpha \\
\left\{\begin{array} { l }
{ r _ { \alpha } (0 , 2) = 0 . 6 \alpha } \\
{ r _ { \alpha } (2 , 0) = 0 . 2 \alpha }
\end{array} \quad \left\{\begin{array} { l }
{ r _ { \alpha } (2 , 1) = 0 . 2 \alpha } \\
{ r _ { \alpha } (1 , 2) = 0 . 3 \alpha }
\end{array} \quad \left\{\begin{array}{c}
r_{\alpha}(1,0)=0.3 \alpha \\
r_{\alpha}(0,1)=0.55 \alpha
\end{array}\right.\right.\right.
\end{gathered}
$$

In this case, we have $\inf _{r_{\alpha}}(X)=0$ and $\sup _{r_{\alpha}}(X)$ do not exist in X. Note that 1 and 2 are two maximal elements in $\left(X, r_{\alpha}\right)$.
3. Let r_{α} be the α-fuzzy order defined on $X=\{0,1,2\}$ by:

$$
\begin{gathered}
r_{\alpha}(0,0)=r_{\alpha}(1,1)=r_{\alpha}(2,2)=\alpha \\
\left\{\begin{array} { l }
{ r _ { \alpha } (0 , 2) = 0 . 6 5 \alpha } \\
{ r _ { \alpha } (2 , 0) = 0 . 1 5 \alpha }
\end{array} \quad \left\{\begin{array} { l }
{ r _ { \alpha } (2 , 1) = 0 . 1 \alpha } \\
{ r _ { \alpha } (1 , 2) = 0 . 7 \alpha }
\end{array} \quad \left\{\begin{array}{l}
r_{\alpha}(1,0)=0.15 \alpha \\
r_{\alpha}(0,1)=0.10 \alpha
\end{array}\right.\right.\right.
\end{gathered}
$$

Then, $\sup _{r_{\alpha}}(X)=2$ and $\inf _{r_{\alpha}}(X)$ do not exist in X. In addition, 1 and 0 are two minimal elements in $\left(X, r_{\alpha}\right)$.
4. Let r_{α} be the α-fuzzy order defined on $X=\{0,1,2\}$ by:

$$
r_{\alpha}(0,0)=r_{\alpha}(1,1)=r_{\alpha}(2,2)=\alpha
$$

$$
\left\{\begin{array} { l }
{ r _ { \alpha } (0 , 2) = 0 . 8 \alpha } \\
{ r _ { \alpha } (2 , 0) = 0 . 1 5 \alpha }
\end{array} \quad \left\{\begin{array} { l }
{ r _ { \alpha } (2 , 1) = 0 . 2 0 \alpha } \\
{ r _ { \alpha } (1 , 2) = 0 . 3 0 \alpha }
\end{array} \quad \left\{\begin{array}{l}
r_{\alpha}(1,0)=0.30 \alpha \\
r_{\alpha}(0,1)=0.20 \alpha
\end{array}\right.\right.\right.
$$

In this case, $\inf _{r_{\alpha}}(X)$ and $\sup _{r_{\alpha}}(X)$ do not exist in X. Also, 1 is a maximal and minimal element of $\left(X, r_{\alpha}\right)$.
Next, we recall some definitions and results for subsequent use.
Definition 2.2. [9] Let (X, r_{α}) be a nonempty r_{α}-fuzzy ordered set. The inverse α-fuzzy relation s_{α} of r_{α} is defined by $s_{\alpha}(x, y)=r_{\alpha}(y, x)$, for all $x, y \in X$.

Let us not that by [9, Proposition 3.5], if r_{α} is an α-fuzzy order, then s_{α} is also an α-fuzzy order.
In [10], we proved the following lemma.
Lemma 2.3. Let $\left(X, r_{\alpha}\right)$ be a r_{α}-fuzzy order set and s_{α} be the inverse fuzzy order relation of r_{α}. Then,
(i) If a nonempty subset A of X has a r_{α}-supremum, then A has a s_{α}-infimum and $\inf _{s_{\alpha}}(A)=\sup _{r_{\alpha}}(A)$.
(ii) If a nonempty subset A of X has a r_{α}-infimum, then A has a s_{α}-supremum and $\inf _{r_{\alpha}}(A)=\sup _{s_{\alpha}}(A)$.

The following α-fuzzy Zorn's Lemma is given in [9].
Lemma 2.4. Let $\left(X, r_{\alpha}\right)$ be a nonempty α-fuzzy ordered sets. If every nonemty r_{α}-fuzzy chain in X has a r_{α}-upper bound, then X has a maximal element.

Let $T: X \rightarrow[0,1]^{X}$ be a fuzzy multifunction. Then, for every $x \in X$, we define the following subset of X by setting:

$$
T_{x}^{\alpha}=\{y \in X: T(x)(y)=\alpha\} .
$$

In this note, we shall use the following definition of α-fuzzy monotonicity.
Definition 2.5. Let $\left(X, r_{\alpha}\right)$ be a nonempty r_{α}-fuzzy ordered set. A fuzzy multifunction $T: X \rightarrow[0,1]^{X}$ is said to be r_{α}-fuzzy monotone if the two following properties are satisfied:
(i) for all $x \in X, T_{x}^{\alpha} \neq \emptyset$;
(ii) if $r_{\alpha}(x, y)>\frac{\alpha}{2}$ and $x \neq y$, for $x, y \in X$, then for all $a \in T_{x}^{\alpha}$ and $b \in T_{y}^{\alpha}$, we have $r_{\alpha}(a, b)>\frac{\alpha}{2}$.

We denote by \mathcal{F}_{T}^{α} the set of all α-fuzzy fixed points of T.

3. MAXIMAL AND MINIMAL α-FUZZY FIXED POINTS

In this section, we investigate the existence of maximal and minimal α-fuzzy fixed points of α-fuzzy monotone multifunctions. First, we shall show the following:

Theorem 3.1. Let $\left(X, r_{\alpha}\right)$ be an α-fuzzy ordered set with the property that every nonempty r_{α}-fuzzy chain in $\left(X, r_{\alpha}\right)$ has a r_{α}-supremum. Let $T: X \rightarrow[0,1]^{X}$ be a r_{α}-fuzzy monotone multifunction. If there exist $a, b \in X$ such that $T(a)(b)=\alpha$ and $r_{\alpha}(a, b)>\frac{\alpha}{2}$, then the set \mathcal{F}_{T}^{α} of all α-fuzzy fixed points of T is nonempty and has a maximal element.

Proof. Let H_{α} be the fuzzy ordered subset of X defined by

$$
H_{\alpha}=\left\{x \in X: \text { there exists } y \in X, T(x)(y)=\alpha \text { and } r_{\alpha}(x, y)>\frac{\alpha}{2}\right\}
$$

Since $a \in H_{\alpha}$, then the subset H_{α} is nonempty.
Claim 1. The subset H_{α} has a maximal element. Indeed, if C is a nonempty r_{α}-fuzzy chain in H_{α} and $s=$ $\sup _{r_{\alpha}}(C)$, then we distinguish the following two cases.

First case: $s \in C$, then $s \in H_{\alpha}$.
Second case: $s \notin C$. Then, for every $c \in C, r_{\alpha}(c, s)>\frac{\alpha}{2}$ and $c \neq s$. By our definition $T_{s}^{\alpha} \neq \emptyset$. Then, there exists $z \in X$ such that $T(s)(z)=\alpha$. Since $c \in H_{\alpha}$, there exists $d \in X$ such that $T(c)(d)=\alpha$ and $r_{\alpha}(c, d)>\frac{\alpha}{2}$. As T is r_{α}-fuzzy monotone, we get $r_{\alpha}(d, z)>\frac{\alpha}{2}$. By α-fuzzy transitivity, we obtain $r_{\alpha}(c, z)>\frac{\alpha}{2}$. As c is a general element of C, then z is a r_{α}-upper bound of C. On the other hand, we know that $s=\sup _{r_{\alpha}}(C)$. Hence, $r_{\alpha}(s, z)>\frac{\alpha}{2}$. From this we deduce that $s \in H_{\alpha}$. Therefore every nonemty r_{α}-fuzzy chain in H_{α} has a r_{α}-upper bound in H_{α}. By Lemma 2.4, H_{α} has a maximal element, say m.

Claim 2. The element m is a maximal α-fuzzy fixed point of T. Indeed, by $\operatorname{Claim} 1, m \in H_{\alpha}$. Hence, there exists $y \in X$ such that $T(m)(y)=\alpha$ and $r_{\alpha}(m, y)>\frac{\alpha}{2}$. On the other hand, by our hypothesis, $T_{y}^{\alpha} \neq \emptyset$. Therefore, there exists $t \in X$ such that $T(y)(t)=\alpha$. From r_{α}-fuzzy monotonicity of T we get $r_{\alpha}(y, t)>\frac{\alpha}{2}$. So, $y \in H_{\alpha}$. By Claim $1, m$ is a maximal element of H_{α}. From this and since $T(m)(y)=\alpha, r_{\alpha}(y, m)>\frac{\alpha}{2}$ and $y \in H_{\alpha}$, we deduce that we have $y=m$. So, $T(m)(m)=\alpha$. Thus, $m \in \mathcal{F}_{T}^{\alpha}$. Now, let $x \in \mathcal{F}_{T}^{\alpha}$. Then, $x \in H_{\alpha}$. So, $\mathcal{F}_{T}^{\alpha} \subseteq H_{\alpha}$. As $m \in \mathcal{F}_{T}^{\alpha}$, then m is a maximal element of \mathcal{F}_{T}^{α}.

In order to establish the existence of a minimal α-fuzzy fixed, we shall need the following lemma:
Lemma 3.2. Let $\left(X, r_{\alpha}\right)$ be a r_{α}-fuzzy order set and s_{α} be the inverse fuzzy relation of r_{α}. Then, every r_{α}-fuzzy monotone multifunction is also $s_{\alpha}-f u z z y$ monotone.

Proof. Let $T: X \rightarrow[0,1]^{X}$ be a r_{α}-fuzzy monotone multifunction. Now, let $x, y \in X$ such that $x \neq y$ and $s_{\alpha}(x, y)>\frac{\alpha}{2}$. Then, we have $r_{\alpha}(y, x)>\frac{\alpha}{2}$. Since T is r_{α}-fuzzy monotone, then for all $a, b \in X$ such that $T(x)(a)=\alpha$ and $T(y)(b)=\alpha$, we get $r_{\alpha}(b, a)>\frac{\alpha}{2}$. Therfore, we obtain $s_{\alpha}(a, b)>\frac{\alpha}{2}$.

By using Lemmas 2.3 and 3.2 and Theorem 3.1, we obtain the following result.
Theorem 3.3. Let $\left(X, r_{\alpha}\right)$ be a r_{α}-fuzzy ordered set with the property that every nonempty r_{α}-fuzzy chain has a r_{α}-infimum. Let $T: X \rightarrow[0,1]^{X}$ be a r_{α}-fuzzy monotone multifunction. Assume that there exist $a, b \in X$ such that $T(a)(b)=\alpha$ and $r_{\alpha}(b, a)>\frac{\alpha}{2}$. Then, the set \mathcal{F}_{T}^{α} of all α-fuzzy fixed points of T is nonempty and has a minimal element.

Proof. Let s_{α} be the inverse fuzzy order relation of r_{α}. From Lemma 2.3, every nonempty s_{α}-fuzzy chain has a s_{α}-supremum. On the other hand, by Lemma 3.2 , we know that T is s_{α}-fuzzy monotone. From this and $s_{\alpha}(a, b)>\frac{\alpha}{2}$, by Theorem 3.1, we deduce that T has a maximal α-fuzzy fixed point, l say, in $\left(X, s_{\alpha}\right)$. Let $x \in \mathcal{F}_{T}^{\alpha}$ such that $r_{\alpha}(x, l)>\frac{\alpha}{2}$. Then, $s_{\alpha}(l, x)>\frac{\alpha}{2}$. Since l is a maximal α-fuzzy fixed point of T in $\left(X, s_{\alpha}\right)$, then $l=x$. Therefore, l is a minimal α-fuzzy fixed point of T in $\left(X, r_{\alpha}\right)$.

4. GREATEST AND LEAST α-FUZZY FIXED POINTS

In this section, we shall establish the existence of the greatest and the least α-fuzzy for α-fuzzy monotone multifunctions. First, we shall prove the following:

Theorem 4.1. Let $\left(X, r_{\alpha}\right)$ be a r_{α}-fuzzy ordered set with the property that every nonempty fuzzy ordered subset of X has a r_{α}-supremum. Let $T: X \rightarrow[0,1]^{X}$ be a r_{α}-fuzzy monotone multifunction. If there exist $a, b \in X$ such that $T(a)(b)=\alpha$ and $r_{\alpha}(a, b)>\frac{\alpha}{2}$, then T has the greatest α-fuzzy fixed point. Moreover, we have

$$
\max \left(\mathcal{F}_{T}^{\alpha}\right)=\sup _{r_{\alpha}}\left\{x \in X: \text { there exists } y \in X, T(x)(y)=\alpha \text { and } r_{\alpha}(x, y)>\frac{\alpha}{2}\right\} .
$$

Proof. Let P_{α} be the fuzzy ordered subset defined by

$$
P_{\alpha}=\left\{x \in X: \text { there exists } y \in X, T(x)(y)=\alpha \text { and } r_{\alpha}(x, y)>\frac{\alpha}{2}\right\} .
$$

As $a \in P_{\alpha}$, then the subset P_{α} is nonempty. Let $g=\sup _{r_{\alpha}}\left(P_{\alpha}\right)$.
Claim 1. We have: $g \in P_{\alpha}$. Indeed, assume on the contrary that $g \notin P_{\alpha}$. Then for all $x \in P_{\alpha}$, we have $x \neq g$. As by our definition $T_{g}^{\alpha} \neq \emptyset$, then there exists $z \in T_{g}^{\alpha}$. Let $x \in P_{\alpha}$. Hence, there exists $y \in T_{x}^{\alpha}$ such that $r_{\alpha}(x, y)>\frac{\alpha}{2}$. From α-fuzzy monotonicity of T, we obtain $r_{\alpha}(y, z)>\frac{\alpha}{2}$. By α-fuzzy transitivity, we get $r_{\alpha}(x, z)>\frac{\alpha}{2}$. As x is a general element of P_{α}, so z is a r_{α}-upper bound of P_{α}. On the other hand; by our hypothesis; we have $g=\sup _{r_{\alpha}}\left(P_{\alpha}\right)$. Then, $r_{\alpha}(g, z)>\frac{\alpha}{2}$. Thus, $g \in P_{\alpha}$. That is a contradiction, and our claim is proved.
Claim 2. We have: $\left\{z \in X: T(g)(z)=\alpha\right.$ and $\left.r_{\alpha}(g, z)>\frac{\alpha}{2}\right\}=\{g\}$. By absurd, suppose that there exists $z \in T_{g}^{\alpha}$ such that $r_{\alpha}(g, z)>\frac{\alpha}{2}$ and $z \neq g$. As T is r_{α}-fuzzy monotone and $T_{z}^{\alpha} \neq \emptyset$, then there exists $l \in T_{z}^{\alpha}$ such that $r_{\alpha}(z, l)>\frac{\alpha}{2}$. Therefore, $z \in P$ and $r_{\alpha}(z, g)>\frac{\alpha}{2}$. Hence, we get $r_{\alpha}(z, g)+r_{\alpha}(g, z)>\alpha$. From this and α-fuzzy antisymmetry, we obtain $g=z$. That is a contradiction with the fact that $z \neq g$ and our Claim is proved.
Claim 3. The element g is the greatest α-fuzzy fixed point of T. Indeed, as $g \in P_{\alpha}$, then there exists $z \in T_{g}^{\alpha}$ such that $r_{\alpha}(g, z)>\frac{\alpha}{2}$. Then by Claim 2, we deduce that $z=g$ and g is a α-fuzzy fixed point of T. On the other
hand, let x be an α-fuzzy fixed point of T. So $x \in P_{\alpha}$. Thus, $\mathcal{F}_{T}^{\alpha} \subseteq P_{\alpha}$. Hence, g is a r_{α}-upper bound of \mathcal{F}_{T}^{α}. As $g \in \mathcal{F}_{T}^{\alpha}$, therefore, g is the greatest element of \mathcal{F}_{T}^{α}.

Combining Lemmas 2.3 and 3.2 and Theorem 4.1, we get the following:
 of X has a r_{α}-infimum. Let $T: X \rightarrow[0,1]^{X}$ be a r_{α}-fuzzy monotone multifunction. Assume that there is $a, b \in X$ such that $T(a)(b)=\alpha$ and $r_{\alpha}(b, a)>\frac{\alpha}{2}$. Then, T has a least α-fuzzy fixed point. Furthermore, we have

$$
\min \left(\mathcal{F}_{T}^{\alpha}\right)=\inf _{r_{\alpha}}\left\{x \in X: \text { there exists } y \in X, T(x)(y)=\alpha \text { and } r_{\alpha}(y, x)>\frac{\alpha}{2}\right\} .
$$

Proof. Let s_{α} be the inverse α-fuzzy order of r_{α}. From Lemma 2.3, every nonempty fuzzy ordered subset of X has an infimum in $\left(X, s_{\alpha}\right)$. By Lemma 3.2, T is s_{α}-fuzzy monotone. Since $r_{\alpha}(b, a)>\frac{\alpha}{2}$, then $s_{\alpha}(a, b)>\frac{\alpha}{2}$. From this and by Theorem 4.1 we deduce that the fuzzy multifunction T has a greatest α-fuzzy fixed point in (X, s_{α}), m, say. Therefore, m is the least α-fuzzy fixed point of T in $\left(X, r_{\alpha}\right)$. Since m is the greatest α-fuzzy fixed of T in $\left(X, s_{\alpha}\right)$, then by Theorem 4.1, we have

$$
m=\sup _{s_{\alpha}}\left\{x \in X: \text { there exists } y \in X, T(x)(y)=\alpha \text { and } s_{\alpha}(x, y)>\frac{\alpha}{2}\right\} .
$$

Therefore, by Lemma 2.3, we conclude that

$$
m=\inf _{r_{\alpha}}\left\{x \in X: \text { there exists } y \in X, T(x)(y)=\alpha \text { and } r_{\alpha}(y, x)>\frac{\alpha}{2}\right\} .
$$

1. Beg I., Fixed Points of fuzzy multivalued mappings with values in fuzzy orders sets, J. Fuzzy Math., 6(1) (1998), $127-131$.
2. _, A general theorem on selector of fuzzy multifunctions, J. Fuzzy Math., 9(1) (2001).
3. Bose B. K. and Sahani D., Fuzzy mapping and fixed point theorems, Fuzzy sets and Systems, 21 (1987), 53-58.
4. Butnariu D., Fixed point theorems for fuzzy mappings, Fuzzy sets and Systems, 7 (1982), $191-207$.
5. Fang J. X., On fixed point theorems in fuzzy metric spaces, Fuzzy sets and Systems 46 (1992), 107-113.
6. Hadzic O., Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces, Fuzzy sets and Systems 29 (1989), 115-125.
7. Heilpern S., Fuzzy mapping and fixed point theorem, Jour. Math. Anal. Appl. 83 (1981), 566-569.
8. Kaleva O., A note on fixed points for fuzzy mappings, Fuzzy sets and Systems, 15 (1985), 99-100.
9. Stouti A., Fixed point Theory for fuzzy monotone multifunctions, J. Fuzzy Math., 11(2) (2003), 455-466.
10. \qquad , An α-fuzzy analogue of Tarski's fixpoint Theorem, Inter. Mathematical J., 4(4) (2003), 385-393.
11. \qquad Fixed points of fuzzy monotone multifunctions, Archivum Mathematicum, 39 (2003), 209-212.
12. \qquad , Fixed Points Theorems of non-expending fuzzy multifunctions, Archivum Mathematicum, (accepted).
13. Venugopalan P., Fuzzy ordered sets, Fuzzy sets and systems, 46 (1992), 221-226.
14. Zadeh L. A., Fuzzy sets, Information and Control, 8 (1965), 338-353.
A. Stouti, Unité de Recherche: Mathématiques et Applications, Université Cadi Ayyad, Faculté des Sciences et Techniques de BeniMellal, B.P. 523, 23000 Beni-Mellal, Morocco,
e-mail: stout@fstbm.ac.ma

[^0]: Received February 4, 2004.
 2000 Mathematics Subject Classification. Primary 04A72, 03E72, 06A06, 47H10.
 Key words and phrases. Fuzzy set, α-fuzzy order relation, monotone multifunction, fixed point.

