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ON P-EXTENDING MODULES

M. A. KAMAL and O. A. ELMNOPHY

Abstract. Let R be a ring. A right R-module M is called quasi-principally injective if it is M -principally injective.In

this paper, we give some characterizations and properties of principally injective modules, which generalize results of
Nicholson and Yousif. For a quasi-principally injective module M , we show: 1. For isomorphic submodules H, K of
M , we have SH = SK, where S is the endomorphism ring of M . 2. M has (PC2), and consequently has (PC3).
We characterize when a direct sum of P-extending modules is P-extending, and when a direct sum of a P-extending
module and a semi-simple module is P-extending. We also characterize when a direct sum of FP-extending modules is
FP-extending. Finally, we discuss when a direct sum of P-extending modules with relatively EC-injective is P-extending.

1. Introduction

In [7], Nicholson and Yousif have introduced and studied the structure of principally injective rings, and have
given some characterizations of such rings in terms of the internal properties of these rings. In fact, they defined
principally injective modules in the following sense: A right module M over a ring R is called principally injective
(for short P-injective) if every R-homomorphism from a principal right ideal of R to M can be extended to R.
In [8], Wongwai extended this notion to modules by making use of M -cyclic submodules of M .

Here, we adopt the extension of the concept of principally injective rings, which is given in [7], to modules.
The fact that, cyclic and M -cyclic submodules of a module M are not the same (e.g., as Z-modules, the integers
Z is cyclic submodule, but not a Q-cyclic submodule, of Q, and Q is Q-cyclic but not cyclic, of Q), gives the
independence of the concepts of N-principally injective by Wongwai and the one we are dealing with.

Received August 19, 2004.
2000 Mathematics Subject Classification. Primary 16D50, 16D70, 16D80.
Key words and phrases. Principally injective modules, extending modules.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

We also introduce the definitions of principally extending, (for short P-extending), and P-(quasi-)continuous
modules as follows: For a right R-module M ,

1. M is called a P-extending module if every cyclic submodule of M is essential in a direct summand of M
or, equivalently, every EC-closed submodule of M is a summand. M is called an FP-extending module if
every finite uniform dimension EC-closed submodule of M is a summand.

2. M is called a P-quasi-continuous module if it is P-extending, and the following condition holds: (PC3)
For each a, b ∈ M , if aR and bR ≤⊕ M with aR ∩ bR = 0, then aR⊕ bR ≤⊕ M .

3. M is called a P-continuous module if it is P-extending, and the following condition holds: (PC2) For each
a, b ∈ M , if aR ∼= bR and bR ≤⊕ M , then aR ≤⊕ M .

It is known that in regular rings the condition (C2) is satisfied, and so such rings are continous if and only if
they are extending. Consequently, every regular ring is P-continuous as a module over itself. It is also clear that
regular rings are P-injective rings. This allows us to find P-injective modules, which are not injective.

Direct sums of extending modules have been investigated in great detail, in a long series of papers, by Dung
and Smith [3], and by Kamal and Muller [4], [5]. The present paper studies direct sums of P-extending modules,
and we investigate when such direct sums are P-extending.

It is known that M is N -injective if and only if for every submodule A of N ⊕M with A∩M = 0, there exists
a submodule B of N ⊕ M such that A ≤ B, and N ⊕ M = B ⊕ M . In analogue, we introduce the concept of
N -EC-injectivity, and give a characterization of such modules different from the diagram description. This helps
us to build up blocks of P-extending modules, which are relatively EC-injective to obtain P-extending modules.
We prove that, if M = M1 ⊕ M2, then Mi is P-extending and is Mj-EC-injective (i 6= j = 1, 2) if and only if
M = C ⊕M

′

i ⊕Mj , where M
′

i ≤ Mi, for every EC-closed submodule C of M with C ∩Mj = 0 (i 6= j = 1, 2).
All modules here are right modules over a ring R. The right (respectively, left) annahilator of a subset X of a

module is denoted by rR(X) (resp. lR(X)). A submodule A of a module M is called essential in M or M is an
essential extension of A (denoted by A ≤e M), if every non-zero submodule of M has non-zero intersection with
A. X ≤⊕ M signifies that X is a direct summand of M .
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A submodule A of M is called M-cyclic submodule of M if it is isomorphic to M/X, for some submodule X
of M . The injective hull and the uniform dimension of a module M will be denoted by E(M) and U − dim (M)
respectively. The endomorphism ring of a module M is denoted by End (M). A submodule is closed in M
if it has no proper essential extensions in M . The graph of a homomorphism f : N → M is the submodule
〈f〉 = {n− f(n) : n ∈ N} of N ⊕M .

A module M is extending (n-extending) if every closed submodule A (with U − dim (A) ≤ n) is a direct
summand of M , or equivalently to the requirement that every submodule A (with U − dim (A) ≤ n) is essential
in a direct summand of M .

A module M is called quasi-continuous if it is extending module, and the following condition holds: (C3) For
all X, and Y ≤⊕ M, with X ∩ Y = 0, one has X ⊕ Y ≤⊕ M . M is called continuous if it is extending module,
and the following condition holds: (C2) If a submodule A of M is isomorphic to a direct summand of M , then A
is a direct summand of M .

2. Principally Injective Modules

Let R be a ring and M , N be R-modules. M is called N -principally injective (for short N -P-injective) if every
R-homomorphism from a cyclic submodule of N to M can be extended to N . Equivalently, for each m ∈ M and
n ∈ N with rR(n) ⊆ rR(m), there exists f ∈ Hom R(N,M) such that m = f(n).

Within the proof of [2, Proposition 1.1], it was observed that M is N -injective if and only if N ⊕M = C ⊕M ,
for every complement C of M in N ⊕ M . The condition 3. in the next Proposition is analogous with such
observation.

Proposition 2.1. Let M and N be R-modules, and S = End (M). Then the following are equivalent:

1. M is N P-injective;
2. For each m ∈ M and n ∈ N with rR(n) ⊆ rR(m), we have Sm ⊆ Hom R(N,M)n;
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3. For each m ∈ Mand n ∈ N with rR(n) ⊆ rR(m), there is a complement C of M in N ⊕M with n−m ∈ C
and N ⊕M = C ⊕M ;

4. For each n ∈ N , lMrR(n) = Hom R(N,M)n;
5. For each n ∈ N and a ∈ R, lM [aR ∩ rR(n)] = lM (a) + Hom R(N,M)n.

Proof. 1. ⇒ 2.: Let m ∈ M and n ∈ N with rR(n) ⊆ rR(m). Since M is N -P-injective, then there exists
a homomorphism f : N → M such that m = f(n). Let φ ∈ S, then φ(m) ∈ Hom R(N,M)n. Therefore,
Sm ⊆ HomR(N,M)n.

2. ⇒ 3.: Let m ∈ M and n ∈ N with rR(n) ⊆ rR(m), then by 2. there exists a homomorphism f : N → M
such that m = f(n). Hence N⊕M = 〈f〉⊕M , where 〈f〉 is the graph of a homomorphism f : N → M . Therefore,
C = 〈f〉 is a complement of M in N ⊕M with N ⊕M = C ⊕M and n−m ∈ C.

3. ⇒ 4.: Let n ∈ N and x ∈ lMrR(n), then rR(n) ⊆ rR(x). By 3. there is a complement C of M in N ⊕M
with n − x ∈ C and N ⊕M = C ⊕M . So, there exists a homomorphism f : N → M such that C = 〈f〉. Since
n−x ∈ C, then n−x = n

′−f(n′), for some n′ ∈ N . So, n = n′ and x = f(n′) = f(n). Hence x ∈ HomR(N,M)n,
and lMrR(n) ⊆ HomR(N,M)n. The other conclusion is obvious.

4. ⇒ 5.: Let n ∈ N , a ∈ R, and x ∈ lM [aR ∩ rR(n)], then x(aR ∩ rR(n)) = 0 and so rR(na) ⊆ rR(xa). Hence
lMrR(xa) ⊆ lMrR(na) = Hom R(N,M)na, by 4. Therefore, xa = f(na) = f(n)a, for some f ∈ Hom R(N,M).
So (x − f(n))a = 0 and x − f(n) ∈ lM (a). Thus x ∈ lM (a) + Hom R(N,M)n, and so lM [aR ∩ rR(n)] ⊆
lM (a)+Hom R(N,M)n. On the other hand, let x ∈ lM (a)+Hom R(N,M)n, then x = m+f(n) for some m ∈ lM (a)
and f ∈ Hom R(N,M). So xa = ma + f(n)a = f(na). Let ar ∈ aR ∩ rR(n), then x(ar) = f(na)r = f(nar) = 0,
and so x ∈ lM [aR ∩ rR(n)]. Thus lM (a) + Hom R(N,M)n ⊆ lM [aR ∩ rR(n)].

5. ⇒ 1.: Let m ∈ M and n ∈ N with rR(n) ⊆ rR(m), then lMrR(m) ⊆ lMrR(n). By 5. we get lMrR(n) =
Hom R(N,M)n, and so there is a homomorphism f : N → M such that f(n) = m. Thus M is N -P-injective. �

Proposition 2.2. Let M be N -P-injective, then M is X-P-injective, for every submodule X of N . If, in
addition, X is a direct summand of N , then M is N/X-P-injective.
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Proof. It is clear. �

Lemma 2.3. Let M be N -P-injective and K ≤⊕ M , then K is N-P-injective.

Proof. It is obvious. �

Lemma 2.4. Let {Mi}i∈I be a family of modules. Then the direct product
∏
i∈I

Mi is N -P-injective if and only

if Mi is N -P-injective, for every i ∈ I.

Proof. It is clear. �

Proposition 2.5. If M is a quasi-principally injectivemodule, and S = End(M), then SH = SK, for any iso-
morphic R-submodules H, K of M .

Proof. Since H ∼= K, then there is a right R-isomorphism σ : H → K. For each k ∈ K, k = σ(h) for some
h ∈ H and rR(h) = rR(k). Since M is quasi-principally injective, then Sh = Sk by Proposition 2.1, and so
Sk ⊆ SH, for each k ∈ K. Then SK ⊆ SH. Similarly, we get SH ⊆ SK, and so the result. �

Corollary 2.6. Let R be a P-injective ring and H, K be two-sided ideals of R. If H ∼= K, as right ideals of
R, then H = K.

Remark. In Corollary 2.6, the condition P-injective for the ring R is not avoided. In fact, there are rings
which do not satisfy the result in 2.6, for example, the ring Z of integers.

Theorem 2.7. Let M be a quasi-principally injective module, then M has (PC2).

Proof. Let a, b ∈ M with aR ∼= bR and bR ≤⊕ M . Then bR = eM for some idempotent e ∈ End(M). Since
aR ∼= bR , then there is an isomorphism σ : bR → aR. Let σe = h, then aR = hM and σ−1h = e. Since
bR ≤⊕ M , then by Lemma 2.3, bR is M -P-injective, and so there exists a homomorphism φ : M → bR such that
φ(a) = σ−1(a). Then φ is an epimorphism, φh = e, and so f = hφ is an idempotent endomorphism of M . Hence
fM = hφM = h(bR) = heM = hM , and so aR ≤⊕ M . �
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Remark. It is known that every summand right ideal of a ring R is generated by an idempotent element in R.
Then every summand right ideal of R is cyclic and so, R has (PCi) if and only if R has (Ci), i = 2, 3. Therefore
by [6, Proposition 2.2.], if R has (PC2), then R has (C3).

Corollary 2.8 ([7], Theorem 2.3.). If R is a P-injective ring, then R has (C2).

Lemma 2.9. Let M be an R-module. If M has (PC2), then M has (PC3).

Proof. Let aR ≤⊕ M and bR ≤⊕ M with aR ∩ bR = 0, then aR = eM = Im e, for some e2 = e ∈ End(M),
and so aR ⊕ bR = eM ⊕ (1 − e)bR. Since (1 − e)bR ∼= bR ≤⊕ M and M has (PC2), then (1 − e)bR = fM
for some f2 = f ∈ End(M). Then ef = 0, and h = e + f − fe is an idempotent in End(M). Therefore,
aR⊕ bR = eM ⊕ fM = (e + f − fe)M = hM ≤⊕ M . �

Corollary 2.10. If M is a quasi-principally injective module, then M has (PC3).

Definition 2.1. By an EC-(closed) submodule C of a module M , we mean a (closed) submodule C which
contains essentially a cyclic submodule; i.e. there exists c ∈ C such that cR ≤e C.

Lemma 2.11. Every summand of an EC- submodule of M is EC-submodule.

Proof. Let cR ≤e C be an EC-submodule of M , and C1 ≤⊕ C, then C = C1⊕C2, for some submodule C2 in C.
Let c = c1 + c2, where c1 ∈ C1 and c2 ∈ C2. It is easy to see that c1R ≤e C1. Therefore, C1 is an EC-submodule
of M . �

Corollary 2.12. Every summand of an EC-closed submodule of M is EC-closed.

Lemma 2.13. Every summand of a P-(quasi-)continuous module is P-(quasi-) continuous.

Proof. It is obvious by Corollary 2.12 �

Lemma 2.14. For an indecomposable module M , the following are equivalent:
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1. M is extending;
2. M is P-extending;
3. M is uniform.

Lemma 2.15. A module M over a right noetherian ring R, is 1-extending if and only if it is P-extending.

Proof. Let M be a 1-extending module, and cR ≤e C be an EC-closed submodule of M . Since R is a
noetherian ring, then C has a finite uniform dimension. Since M is 1-extending, then by Proposition (4) in [4],
M is n-extending. Hence C is a summand, and so M is P-extending. For the converse, it is obvious. �

Corollary 2.16. Let M be a module with finite uniform dimension, then the following are equivalent:
1. M is extending;
2. M is 1-extending;
3. M is P-extending.

Proposition 2.17. Let M = M1 ⊕ M2, and let C ∩ M1 be an EC-submodule of M , for every EC-closed
submodule C of M . Then M is P-extending if and only if every EC-closed submodule C, with C ∩ M1 = 0, or
C ∩M2 = 0, is a summand.

Proof. The necessary condition is obvious. For the sufficient condition, let cR ≤e C be an EC-closed submodule
of M . If C ∩M1 = 0, then we are done. Otherwise, C ∩M1 is an EC-submodule of M , by assumption. Let C1

be a maximal essential extension of C ∩M1 in C, then C1 is an EC-closed submodule of M , with C1 ∩M2 = 0.
Hence by the assumption, C1 is a summand of M . Write M = C1 ⊕C2, by the modular law, C = C1 ⊕ (C ∩C2).
By Corollary 2.12, C ∩ C2 is an EC-closed submodule of M with (C ∩ C2) ∩M1 = 0, and therefore, C ∩ C2 is a
summand of M . Thus C is a summand of M , and therefore, M is P-extending. �

Proposition 2.18. Let M = M1 ⊕ M2, where M1 is of finite uniform dimension. Then M is P-extending
if and only if every EC-closed submodule C of M , with C ∩ M1 = 0, or C is of finite uniform dimension, is
a summand.
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Proof. The necessary condition is obvious. For the sufficient condition, let mR ≤e C be an EC-closed submod-
ule of M . If C ∩M1 = 0, then we are done. Now let 0 6= c ∈ C ∩M1, and C1 be a maximal essential extension
of cR in C. Since M1 is of finite uniform dimension, so is C1. By the given assumption, C1 is a summand of
M . Write M = C1 ⊕ K. Hence C = C1 ⊕ C∗, where C∗ := K ∩ C is closed in M . Let m = c1 + c∗, where
c1 ∈ C1 and c∗ ∈ C∗. Since C∗ is a summand of an EC-closed submodule C, then by Corollary 2.12, C∗ is
EC-closed. If C∗ ∩ M1 = 0, then by assumption C∗ is a summand, and hence C is a summand of M . On the
other hand, if C∗∩M1 6= 0, then by repeating the previous steps, we have C∗ = C2⊕C3, where C2 is a summand
and has a nonzero intersection with M1. Continuing in this manner, we should stop after a finite steps (due to
M1 a finite uniform dimensional module) and end with C = C1 ⊕ C2 ⊕ . . . ⊕ Cn, where Ci is a summand of M
(i = 1, 2, . . . , n− 1), and Cn contains an essential cyclic submodule with Cn ∩M1 = 0. Hence Cn is a summand
of M , by assumption, and therefore C is a summand of M . �

Corollary 2.19. Let M = M1⊕M2, where M1 is of finite uniform dimension. Then M is P-extending if and
only if every EC-closed submodule C of M , with C ∩M1 = 0, or C ∩M2 = 0, is a summand.

Proposition 2.20. Let M = M1⊕M2. Then M is FP-extending if and only if every EC-closed submodule C
of M with finite uniform dimensional such that C ∩M1 = 0, or C ∩M2 = 0, is a summand.

Proof. Is similar to the proof of Proposition 2.18 �

Proposition 2.21. Let M = M1 ⊕ M2, where M1 is a semisimple module. Then M is P-extending if and
only if every EC-closed submodule C of M with C ∩M1 = 0, is a summand.

Proof. The necessary condition is obvious. For the sufficient condition, let C be an EC-closed submodule of
M . If C ∩M1 = 0, then we are done. On the other hand, since M1 is a semisimple, we get C ∩M1 ≤⊕ M1 and
so C = C ∩M1 ⊕C∗. Since C∗ is an EC-closed submodule of M and C∗ ∩M1 = 0, then C∗ is a summand of M .
Therefore, C is a summand of M . �
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Proposition 2.22. Let M = M1 ⊕M2, where M1 is P-extending and M2 is M1-P-injective. If M2 is nonsin-
gular, then every EC-closed submodule C of M , with C ∩M2 = 0, is a summand of M .

Proof. Let cR ≤e C be an EC-closed submodule of M with C ∩M2 = 0, and write c = c1 + c2, where c1 ∈ M1

and c2 ∈ M2. Since M2 is M1-P-injective, then by Lemma 5 in [4],

cR = (c1R)∗ = {c1r + φ(c1)r : r ∈ R} ⊆ (M1)∗ := {m1 + φ(m1) : m1 ∈ M1} ∼= M1

and that M = (M1)∗ ⊕ M2, where φ ∈ Hom R(M1,M2). Let x ∈ C and write x = y + m2, where y ∈ (M1)∗

and m2 ∈ M2. Since cR ≤e C, then there exists an essential right ideal I of R such that m2I = 0. Since M2

is nonsingular, then m2 = 0. It follows that C ⊆ (M1)∗. Since (M1)∗ is P-extending, we have C ≤⊕ (M1)∗ ≤⊕

M . �

Definition 2.2. Let M = M1 ⊕ M2 be a module. The module M2 is called M1-EC-injective, if for every
EC-(closed) submodule N of M1, and every homomorphism from N to M2 can be extended to M1.

This is equivalent to for every EC-(closed) submodule N of M such that N ∩M2 = 0, there exists N
′ ≤ M

such that N ≤ N
′
, and M = N

′ ⊕M2.
Observe that every module over a regular ring R is R-EC-injective.

Lemma 2.23. Let M = M1 ⊕M2 and M2 be M1-EC-injective. Then:
1. M2 is K-EC-injective, for all K ≤ M1.
2. H is M1-EC-injective, for all H ≤⊕ M2.
3. H is K-EC-injective, for all K ≤⊕ M1, and H ≤⊕ M2.

Proof. Let K be a submodule of M1, and N be an EC-submodule of K ⊕M2 with N ∩M2 = 0. Then N is an
EC-submodule of M . Since M2 is M1-EC-injective, then there is N

′ ≤ M such that N ≤ N
′
, and M = N

′ ⊕M2

. Then K ⊕ M2 = (K ⊕ M2) ∩ (N
′ ⊕ M2) = (N

′ ∩ (K ⊕ M2)) ⊕ M2 and N ≤ N
′ ∩ (K ⊕ M2). Hence M2 is

K-EC-injective.
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2. Let H be a summand of M2, and N be an EC-submodule of M1 ⊕ H with N ∩ H = 0. Then N is an
EC-submodule of M and N ∩M2 = 0. Since M2 is M1-EC-injective, then there is N

′ ≤ M such that N ≤ N
′
,

and M = N
′ ⊕ M2. Since H ≤⊕ M2, then M2 = H ⊕ H

′
, and so M1 ⊕ H = (M1 ⊕ H) ∩ (N

′ ⊕ H ⊕ H
′
) =

H ⊕ (M1 ⊕H) ∩ (N
′ ⊕H

′
) . Since N ≤ N

′
, then N ≤ (M1 ⊕H) ∩ (N

′ ⊕H
′
). Therefore, H is M1-EC-injective.

3. Follows from 1. and 2. �

Proposition 2.24. Let M = M1 ⊕ M2 , where M1 is P-extending and M2 is M1-EC-injective. Then M =
C ⊕M

′

1 ⊕M2; where M
′

1 ≤ M1, for every EC-closed submodule C of M , with C ∩M2 = 0.
Proof. Let cR ≤e C be an EC-closed submodule of M with C ∩M2 = 0. Define X := M1 ∩ (C ⊕M2). Then

c1R ≤e X , where c = c1 + c2, where c1 ∈ M1 and c2 ∈ M2. Let N1 be a maximal essential extension of X in M1.
Then N1 is an EC-closed submodule of M1. Since M1 is P-extending, we have N1 ≤⊕ M1. Write M1 = N1⊕M

′

1,
where M

′

1 ≤ M1. Now C ⊕ M2 = X ⊕ M2 ≤e N1 ⊕ M2; i.e. C ≤ N1 ⊕ M2, and C ≤c N1 ⊕ M2. Then C is a
complement of M2 in N1 ⊕M2. Since M2 is M1-EC-injective, and N1 is a summand of M1, then by Lemma 2.23
1., M2 is N1-EC-injective, and so there exists N

′ ≤ N1 ⊕ M2 such that C ≤ N
′
, and N1 ⊕ M2 = N

′ ⊕ M2.
Hence N

′
is a complement of M2 in N1⊕M2, but C is a complement of M2 in N1⊕M2. Therefore, N

′
= C and

M = M1 ⊕M2 = N1 ⊕M
′

1 ⊕M2 = C ⊕M
′

1 ⊕M2. �

Corollary 2.25. Let M = M1 ⊕ M2 , where Mi is P-extending and is Mj-EC-injective (i 6= j = 1, 2) if
and only if M = C ⊕ M

′

i ⊕ Mj; where M
′

i ≤ Mi, for every EC-closed submodule C of M , with C ∩ Mj = 0
(i 6= j = 1, 2).

Proposition 2.26. Let M = M1 ⊕M2 , where M1 and M2 are relatively EC-injective, and either M1 or M2

is of finite uniform dimension. Then M is P-extending if and only if M1 and M2 are P-extending.

Proof. It is follows by Corollaries 2.25, and 2.19. �

Proposition 2.27. Let M =
⊕
i∈I

Mi be an R-module, where M(F ) is P-extending and M(I \ F ) is M(F )-EC-

injective, for all finite subset F of I. Then M is P-extending.
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Proof. Let Let c ∈ M and C be a maximal essential extension of cR in M . Then cR ≤ M(F ) and cR ∩M(I \
F ) = 0, for a finite subset F of I. Since cR ≤e C , then C ∩ M(I \ F ) = 0. Since M(I \ F ) is M(F )-EC-
injective and C is EC-closed submodule of M , then by Proposition 2.24, C is a summand of M . Hence M is
P-extending. �
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