ON (k, l)-RADIUS OF RANDOM GRAPHS

M. HORVÁTHOVÁ

Abstract. We introduce the concept of (k, l)-radius of a graph and prove that for any fixed pair k, l the (k, l)-radius is equal to $2\binom{k}{2}-\binom{l}{2}$ for almost all graphs. Since for $k=2$ and $l=0$ the (k, l)-radius is equal to the diameter, our result is a generalization of the known fact that almost all graphs have diameter two.

All graphs in this note are finite, undirected and simple. As usual, by distance between two vertices in a graph we mean the minimum length of a path connecting them. Then the diameter is the maximum distance between two vertices. The transmission of the graph, also called a distance of the graph, is defined as the sum of distances between all pairs of vertices (for general properties of the distance see [4]). The concepts of diameter and distance were generalized by Goddard, Swart and Swart in [3] by introducing the k-diameter as follows. The distance of k vertices $d_{k}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is the sum of distances between all pairs of vertices from $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. The k-diameter is the maximum distance of a set of k vertices. Hence the 2 -diameter is the usual diameter and if n is the order of the graph, the n-diameter is the distance of the graph.

In this note we use the definition of distance of a set of k vertices to define (k, l)-eccentricity and (k, l)-radius. We study (k, l)-radius of random graphs and determine the value of this parameter for almost all graphs in a probability space. We also discus the relationship between the (k, l)-radius and the k-diameter of a graph.

[^0]Let S be a set of l vertices, $0 \leq l \leq k$. We define (k, l)-eccentricity of $S, e_{k, l}(S)$, as the maximum distance of k vertices $u_{1}, u_{2}, \ldots, u_{k}$, such that $S \subseteq\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. In symbols,

$$
e_{k, l}(S)=\max _{T}\left\{d_{k}(T),|T|=k, S \subseteq T \subseteq V(G)\right\}
$$

The (k, l)-radius, $\operatorname{rad}_{k, l}(G)$, is the minimum (k, l)-eccentricity of a set of l vertices in G, that is

$$
\operatorname{rad}_{k, l}(G)=\min _{S}\left(e_{k, l}(S)\right)=\min _{S}\left(\max _{S \subseteq T \subseteq V(G)} d_{k}(T)\right)
$$

where $|S|=l,|T|=k$.
We recall that the eccentricity $e(v)$ of a vertex v is the maximum distance to another vertex, the radius $\operatorname{rad}(G)$ is the minimum eccentricity, whereas the diameter $\operatorname{diam}(G)$ is the maximum eccentricity. From the definition of (k, l)-radius it follows that $\operatorname{rad}_{2,1}(G)$ is the usual radius and $\operatorname{rad}_{k, 0}(G)$ is the k-diameter.

Now, consider the probability space in the following sense. Let p be a real number, $0<p<1$, and let n be an integer. By $G(n, p)$ we denote a class of labelled random graphs on n vertices, in which the probability of an edge equals p. More precisely, for every $u, v \in V(G)$, we have $P[u v \in E(G)]=p$. Hence $G(n, p)$ is a probability space the elements of which are the $2^{\binom{n}{2}}$ differently labelled graphs. We say that almost all graphs have property A if

$$
\lim _{n \rightarrow \infty} P[G \in G(n, p) \text { has property } A]=1
$$

The space of random graphs is one of the random structures studied in connection with the 0-1 law. This law states that for many properties. The probability that a random structure satisfies the property is guaranteed to approach either 0 or 1 . The $0-1$ law for graphs was proved by Glebskij [2] and later on by Fagin [1]. Fagin's method is based on considering the following properties.

Let r and s be nonnegative integers. By $A_{r, s}$ we denote the property that for any disjoint sets of vertices X and Y, such that $|X|=r$ and $|Y|=s$, there exists a vertex $z, z \notin X \cup Y$ such that z is adjacent to every vertex of X and to no vertex of Y.

The following statements are well-known and their proofs can be found in the excellent survey by Winkler [5].

Theorem 1. [5] For any fixed nonnegative integers r and s and a real number $p, 0<p<1$ we have

$$
\lim _{n \rightarrow \infty} P\left[G \in G(n, p) \text { has property } A_{r, s}\right]=1
$$

Theorem 2. [5] Let be $T=\left\{A_{r_{1}, s_{1}}, A_{r_{2}, s_{2}}, \ldots, A_{r_{k}, s_{k}}\right\}$ for some $k \geq 0$. Then almost all graphs have all the properties of T.

From the fact that almost every graph has property $A_{2,0}$ (the distance of every pair of vertices is at most 2) and $A_{0,1}$ (the graph is not complete) we have:

Corollary 3. For any fixed real $p, 0<p<1$, almost all graphs are connected and have diameter 2 .
Now we are in a position to prove the main statement of this note.
Theorem 4. Let k, l be nonnegative integers, $l \leq k$. For any fixed real $p, 0<p<1$, almost all graphs G have

$$
\operatorname{rad}_{k, l}(G)=2\binom{k}{2}-\binom{l}{2} .
$$

Proof. Let L be a set of l vertices in a graph $G \in G(n, p)$. Let p_{n} denote the probability $P[G \in G(n, p)$ has diameter 2]. Then with the same probability p_{n} it holds

$$
\begin{equation*}
e_{k, l}(L) \leq d_{l}(L)+2 l(k-l)+2\binom{k-l}{2} . \tag{1}
\end{equation*}
$$

By Corollary $3 \lim _{n \rightarrow \infty} p_{n}=1$, so that (1) holds for almost all graphs $G \in G(n, p)$. Now we prove that for almost all graphs

$$
\begin{equation*}
e_{k, l}(L) \geq d_{l}(L)+2 l(k-l)+2\binom{k-l}{2} \tag{2}
\end{equation*}
$$

To do this, it sufficies to prove that for almost all graphs there exist $k-l$ vertices from $V(G) \backslash L$ that are mutually nonadjacent and that are adjacent to no vertex of L. Let $T=\left\{A_{0, l}, A_{0, l+1}, \ldots, A_{0, k-1}\right\}$. By Theorem 2, $\lim _{n \rightarrow \infty} P[G \in G(n, p)$ has all properties of $T]=1$, i.e. almost all graphs G have all properties of T.

1. Let $L_{l}=L$. Property $A_{0, l}$ says that there exists a vertex $z_{l+1} \in V(G) \backslash L$ that is adjacent to no vertex of L.
2. For $i=l+1, l+2, \ldots, k-1$ we define L_{i} inductively by $L_{i}=L_{i-1} \cup z_{i}$. Then property $A_{0, i}$ impies that there exists a vertex z_{i+1} that is adjacent to no vertex of L_{i}.

Hence, we have $k-l$ vertices $z_{l+1}, z_{l+2}, \ldots, z_{k}$ that are mutually nonadjacent and are adjacent to no vertex of L_{l}, which proves (2). Thus, from (1) and (2) we have that for almost all graphs

$$
\begin{equation*}
e_{k, l}(L)=d_{l}(L)+2 l(k-l)+2\binom{k-l}{2} . \tag{3}
\end{equation*}
$$

Since $\operatorname{rad}_{k, l}(G)=\min _{L} e_{k, l}(L)$, the radius is minimal whenever $d_{l}(L)$ is minimal, (see (3)). We show that in almost all graphs $G \in G(n, p)$ there exists a set L^{\prime} of l vertices, such that $d_{l}\left(L^{\prime}\right)=\binom{l}{2}$. In other words, we show that there is a set L^{\prime} of l mutually adjacent vertices. Let $T^{\prime}=\left\{A_{1,0}, A_{2,0}, \ldots, A_{l-1,0}\right\}$. Then almost all graphs have all properties of T^{\prime}, since by Theorem $2 \lim _{n \rightarrow \infty} P\left[G \in G(n, p)\right.$ has all properties of $\left.T^{\prime}\right]=1$.

1. Let L_{1}^{\prime} be a set containing a single vertex of G , say $L_{1}^{\prime}=\left\{z_{1}^{\prime}\right\}$. Then $\left|L_{1}^{\prime}\right|=1$ and $A_{1,0}$ says that there exists a vertex z_{2}^{\prime} that is adjacent to z_{1}^{\prime}.
2. For $i=2,3, \ldots l-1$ let L_{i}^{\prime} be a set of vertices, such that $L_{i}^{\prime}=L_{i-1}^{\prime} \cup z_{i}^{\prime}$. Then $\left|L_{i}^{\prime}\right|=i$ and $A_{i, 0}$ implies that there exists a vertex z_{i+1}^{\prime} that is adjacent to all vertices of L_{i}^{\prime}.

In this way we obtain a set $L^{\prime}=L_{l}^{\prime}$ of l vertices that are mutually adjacent, so that $d_{l}\left(L^{\prime}\right)=\binom{l}{2}$. Since $d_{l}(L)$ cannot be less then $\binom{l}{2}$ for any set of l vertices, we have

$$
\operatorname{rad}_{k, l}=\binom{l}{2}+2 l(k-l)+2\binom{k-l}{2}=2\binom{k}{2}-\binom{l}{2}
$$

for almost all graphs $G \in G(n, p)$, as required.
Setting $l=0$ in Theorem 2 we obtain:
Corollary 5. For any $k \geq 0$ and for almost all graphs G we have

$$
\operatorname{diam}_{k}(G)=k(k-1) .
$$

It is obvious that Corollary 5 generalizes Corollary 3. Further, setting $k=2$ and $l=1$ we obtain:
Corollary 6. For almost all graphs G we have $\operatorname{rad}(G)=2$.

1. Fagin R., Probabilities on finite models, J. Symbolic Logic 41(1) (1976), 50-58.
2. Glebskij Y. V., Kogan D. I., Liogon'kii M. I. and Talanov V. A., Range and degree of reliability of formulas in the restricted predicate calculus, Kibernetika 2 (1969), 17-28.
3. Goddard W., Swart Ch. S. and Swart H. C., On the graphs with maximum distance on k-diameter, (preprint).
4. Šoltés L., Transmission in graphs: a bound and vertex removing, Math. Slovaca 41 (1991), 1-16.
5. Winkler P., Random structures and zero-one laws, Finite and Infinite Combinatorics of Sets and Logic, in: Sauer N.,Woodrow R. and Sands B. eds., NATO Advanced Science Institutes Series, Kluwer Academic Publishers, Kluwer Academic, Dordrecht 1993, 283-288.
M. Horváthová, Department of Mathematics Slovak University of Technology, Radlinského 11, 81368 Bratislava, Slovak Republic, e-mail: mhorvath@math.sk

[^0]: Received October 4, 2004.
 2000 Mathematics Subject Classification. Primary 05C12, 05C80, 05C99.
 Key words and phrases. random graphs, distance in graphs.

