NEW CLASSES OF k-UNIFORMLY CONVEX AND STARLIKE FUNCTIONS WITH RESPECT TO OTHER POINTS

C. SELVARAJ and K. A. SELVAKUMARAN

Abstract

In this paper we introduce new subclasses of k-uniformly convex and starlike functions with respect to other points. We provide necessary and sufficient conditions, coefficient estimates, distortion bounds, extreme points and radii of close-to-convexity, starlikeness and convexity for these classes. We also obtain integral means inequalities with the extremal functions for these classes.

1. Introduction, Definitions and Preliminaries

Let A denote the class of functions given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are regular in the unit disc $D=\{z:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$.

Go back

Full Screen

 Let S be the subclass of A consisting of functions that are regular and univalent in D. Let S^{*} be the subclass of S consisting of functions starlike in D. It is known that $f \in S^{*}$ if and only if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in D$.[^0]44 $4 \rightarrow \stackrel{\rightharpoonup}{ }$
Go back

Full Screen
In [6], Sakaguchi defined the class of starlike functions with respect to symmetric points as follows:

Let $f \in S$. Then f is said to be starlike with respect to symmetric points in D if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, \quad z \in D .
$$

We denote this class by S_{s}^{*}. Obviously, it forms a subclass of close-to-convex functions and hence univalent. Moreover, this class includes the class of convex functions and odd starlike functions with respect to the origin, see [6]. EL-Ashwah and Thomas in [2] introduced two other classes, namely the class S_{c}^{*} consisting of functions starlike with respect to conjugate points and $S_{s c}^{*}$ consisting of functions starlike with respect to symmetric conjugate points.

Motivated by S_{s}^{*}, many authors discussed the following class C_{s}^{*} of functions convex with respect to symmetric points and its subclasses (See $[4,5,7,11]$).

Let $f \in S$. Then f is said to be convex with respect to symmetric points in D if and only if

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)+f^{\prime}(-z)}\right\}>0, \quad z \in D
$$

Let T denote the class consisting of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{2}
\end{equation*}
$$

where a_{n} is a non-negative real number.
Silverman [8] introduced and investigated the following subclasses of T :

$$
T^{*}(\alpha):=S^{*}(\alpha) \cap T \quad \text { and } \quad C(\alpha):=K(\alpha) \cap T \quad(0 \leq \alpha<1) .
$$

In this paper we introduce the class $S_{s}(\lambda, k, \beta)$ of functions regular in D given by (1) and defined as follows
(3)

Definition 1.1. A function $f(z) \in A$ is said to be in the class $S_{s}(\lambda, k, \beta)$ if for all $z \in D$,

$$
\begin{align*}
& \operatorname{Re}\left[\frac{2 z f^{\prime}(z)+2 \lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda)(f(z)-f(-z))+\lambda z\left(f^{\prime}(z)+f^{\prime}(-z)\right)}\right] \\
& \quad>k\left|\frac{2 z f^{\prime}(z)+2 \lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda)(f(z)-f(-z))+\lambda z\left(f^{\prime}(z)+f^{\prime}(-z)\right)}-1\right|+\beta, \tag{3}
\end{align*}
$$

for some $0 \leq \lambda \leq 1, \quad 0 \leq \beta<1$ and $k \geq 0$.
For suitable values of λ, k, β the class of functions $S_{s}(\lambda, k, \beta)$ reduces to various new classes of regular functions. We also observe that

$$
S_{s}(0,0,0) \equiv S_{s}^{*} \quad \text { and } \quad S_{s}(1,0,0) \equiv C_{s}^{*}
$$

We now let $T S_{s}(\lambda, k, \beta)=S_{s}(\lambda, k, \beta) \cap T$.
In the present investigation of the function class $T S_{s}(\lambda, k, \beta)$ we obtain necessary and sufficient conditions, coefficient estimates, distortion bounds, extreme points, radii of close-to-convexity, starlikeness and convexity. We also obtain integral means inequality for the functions belonging to this class. Analogous results are also obtained for the class of functions $f \in T$ and k -uniformly convex and starlike with respect to conjugate points. The class is defined below:

$$
\begin{align*}
& \operatorname{Re}\left[\frac{2 z f^{\prime}(z)+2 \lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda)(f(z)+\overline{f(\bar{z})})+\lambda z\left(f^{\prime}(z)+\overline{f^{\prime}(\bar{z})}\right)}\right] \tag{4}\\
& \quad>k\left|\frac{2 z f^{\prime}(z)+2 \lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda)(f(z)+\overline{f(\bar{z})})+\lambda z\left(f^{\prime}(z)+\overline{f^{\prime}(\bar{z})}\right)}-1\right|+\beta,
\end{align*}
$$

for some $0 \leq \lambda \leq 1, \quad 0 \leq \beta<1$ and $k \geq 0$.

44 4 | \mid |
Go back

Full Screen

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{2 z f^{\prime}(z)+2 \lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda)(f(z)-f(-z))+\lambda z\left(f^{\prime}(z)+f^{\prime}(-z)\right)}\left(1+k \mathrm{e}^{i \theta}\right)-k \mathrm{e}^{i \theta}\right\}>\beta \tag{6}\\
-\pi \leq \theta \leq \pi
\end{gather*}
$$

That is, $\operatorname{Re}\left\{\frac{A(z)}{B(z)}\right\} \geq \beta$, where

$$
\begin{aligned}
& A(z):=\left[2 z f^{\prime}(z)+2 \lambda z^{2} f^{\prime \prime}(z)\right]\left(1+k \mathrm{e}^{i \theta}\right)-k \mathrm{e}^{i \theta}\left[(1-\lambda)(f(z)-f(-z))+\lambda z\left(f^{\prime}(z)+f^{\prime}(-z)\right)\right], \\
& B(z):=(1-\lambda)(f(z)-f(-z))+\lambda z\left(f^{\prime}(z)+f^{\prime}(-z)\right) .
\end{aligned}
$$

In view of Lemma 1.3, we only need to prove that

$$
|A(z)+(1-\beta) B(z)|-|A(z)-(1+\beta) B(z)| \geq 0 .
$$

For $A(z)$ and $B(z)$ as above, we have

$$
\begin{aligned}
&|A(z)+(1-\beta) B(z)|=\mid(4-2 \beta) z- \sum_{n=2}^{\infty}\left[2 n+(1-\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n} z^{n} \\
&-k \mathrm{e}^{i \theta} \sum_{n=2}^{\infty}\left[2 n-\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n} z^{n} \mid \\
& \geq(4-2 \beta)|z|-\sum_{n=2}^{\infty}\left[2 n+(1-\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n}|z|^{n} \\
&-k \sum_{n=2}^{\infty}\left[2 n-\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n}|z|^{n} .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
& |A(z)-(1+\beta) B(z)| \\
& \leq 2 \beta|z|+\sum_{n=2}^{\infty}\left[2 n-(1+\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n}|z|^{n} \\
& + \\
& \quad k \sum_{n=2}^{\infty}\left[2 n-\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n}|z|^{n} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\mid A(z) & +(1-\beta) B(z)|-|A(z)-(1+\beta) B(z)| \\
& \geq 4(1-\beta)|z|-2 \sum_{n=2}^{\infty}\left[2(1+k) n-(k+\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n}|z|^{n} \\
& \geq 0
\end{aligned}
$$

by the given condition (5). Conversely, suppose $f \in T S_{s}(\lambda, k, \beta)$. Then by Lemma 1.4 we have (6). Choosing the values of z on the positive real axis the inequality (6) reduces to

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{2(1-\beta)-\sum_{n=2}^{\infty}\left[2 n-\beta\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n} z^{n-1}}{2-\sum_{n=2}^{\infty}(1-\lambda+\lambda n)\left(1-(-1)^{n}\right) a_{n} z^{n-1}}\right. \\
&\left.-\frac{k \mathrm{e}^{i \theta} \sum_{n=2}^{\infty}\left[2 n-\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n} z^{n-1}}{2-\sum_{n=2}^{\infty}(1-\lambda+\lambda n)\left(1-(-1)^{n}\right) a_{n} z^{n-1}}\right\} \geq 0 .
\end{aligned}
$$

In view of the elementary identity $\operatorname{Re}\left(-\mathrm{e}^{i \theta}\right) \geq-\left|\mathrm{e}^{i \theta}\right|=-1$, the above inequality becomes

$$
\operatorname{Re}\left\{\frac{2(1-\beta)-\sum_{n=2}^{\infty}\left[2(1+k) n-(k+\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n} r^{n-1}}{2-\sum_{n=2}^{\infty}(1-\lambda+\lambda n)\left(1-(-1)^{n}\right) a_{n} r^{n-1}}\right\} \geq 0 .
$$

Letting $r \rightarrow 1^{-}$we get the desired inequality (5).
The following coefficient estimate for $f \in T S_{s}(\lambda, k, \beta)$ is an immediate consequence of Theorem 2.1.

Theorem 2.2. If $f \in T S_{s}(\lambda, k, \beta)$, then

$$
a_{n} \leq \frac{2(1-\beta)}{\Phi(\lambda, k, \beta, n)}, \quad n \geq 2
$$

where $\Phi(\lambda, k, \beta, n)=(1-\lambda+\lambda n)\left[2(1+k) n-(k+\beta)\left(1-(-1)^{n}\right)\right]$.
The equality holds for the function

$$
f(z)=z-\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, n)} z^{n} .
$$

$$
\begin{equation*}
\sum_{n=2}^{\infty}[(1+k) n-(k+\beta)](1-\lambda+\lambda n) a_{n} \leq(1-\beta) \tag{7}
\end{equation*}
$$

for $0 \leq \lambda \leq 1, \quad 0 \leq \beta<1$ and $k \geq 0$.

Theorem 2.4. If $f \in T S_{c}(\lambda, k, \beta)$, then

$$
a_{n} \leq \frac{(1-\beta)}{\Theta(\lambda, k, \beta, n)}, \quad n \geq 2
$$

where $\Theta(\lambda, k, \beta, n)=(1-\lambda+\lambda n)[(1+k) n-(k+\beta)]$.
The equality holds for the function

$$
f(z)=z-\frac{(1-\beta)}{\Theta(\lambda, k, \beta, n)} z^{n} .
$$

3. Distortion and Covering Theorems

Theorem 3.1. Let f be defined by (2). If $f \in T S_{s}(\lambda, k, \beta)$ and $|z|=r<1$, then we have the sharp bounds

$$
\begin{equation*}
r-\frac{1-\beta}{2(1+k)(1+\lambda)} r^{2} \leq|f(z)| \leq r+\frac{1-\beta}{2(1+k)(1+\lambda)} r^{2} \tag{8}
\end{equation*}
$$

and

$$
1-\frac{1-\beta}{(1+k)(1+\lambda)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{1-\beta}{(1+k)(1+\lambda)} r
$$

Proof. We only prove the right side inequality in (8), since the other inequalities can be justified using similar arguments.
First, it is obvious that

$$
4(1+k)(1+\lambda) \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty}\left[2(1+k) n-(k+\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n) a_{n}
$$

and as $f \in T S_{s}(\lambda, k, \beta)$, the inequality (5) yields

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{1-\beta}{2(1+k)(1+\lambda)}
$$

From (2) with $|z|=r(r<1)$, we have

$$
|f(z)| \leq r+\sum_{n=2}^{\infty} a_{n} r^{n} \leq r+\sum_{n=2}^{\infty} a_{n} r^{2} \leq r+\frac{1-\beta}{2(1+k)(1+\lambda)} r^{2}
$$

The distortion bounds in Theorem 3.1 are sharp for

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{2(1+k)(1+\lambda)} z^{2}, \quad z= \pm r . \tag{9}
\end{equation*}
$$

Theorem 3.2. If $f \in T S_{s}(\lambda, k, \beta)$, then $f \in T^{*}(\delta)$, where

$$
\delta=1-\frac{1-\beta}{2(1+k)(1+\lambda)-(1-\beta)}
$$

The result is sharp for the function given by (9).
Proof. It is sufficient to show that (5) implies

$$
\sum_{n=2}^{\infty}(n-\delta) a_{n} \leq 1-\delta
$$

that is

$$
\frac{n-\delta}{1-\delta} \leq \frac{\left[2(1+k) n-(k+\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n)}{2(1-\beta)}, \quad n \geq 2 .
$$

Since, (10) is equivalent to

$$
\delta \leq 1-\frac{2(n-1)(1-\beta)}{\left[2(1+k) n-(k+\beta)\left(1-(-1)^{n}\right)\right](1-\lambda+\lambda n)-2(1-\beta)}=\psi(n), \quad n \geq 2
$$

and $\psi(n) \leq \psi(2)$, (10) holds true for any $n \geq 2, k \geq 0$ and $0 \leq \beta<1$. This completes the proof of Theorem 3.2.

For completeness, we now state the following results with regards to the class $T S_{c}(\lambda, k, \beta)$.
Theorem 3.3. Let f be defined by (2) and $f \in T S_{c}(\lambda, k, \beta)$. Then for $\{z: 0<|z|=r<1\}$ we have the sharp bounds

$$
\begin{equation*}
r-\frac{1-\beta}{(2+k-\beta)(1+\lambda)} r^{2} \leq|f(z)| \leq r+\frac{1-\beta}{(2+k-\beta)(1+\lambda)} r^{2} \tag{11}
\end{equation*}
$$

and

$$
1-\frac{2(1-\beta)}{(2+k-\beta)(1+\lambda)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\beta)}{(2+k-\beta)(1+\lambda)} r .
$$

The result in (11) is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{(2+k-\beta)(1+\lambda)} z^{2}, \quad z= \pm r . \tag{12}
\end{equation*}
$$

Theorem 3.4. If $f \in T S_{c}(\lambda, k, \beta)$, then $f \in T^{*}(\delta)$, where

$$
\delta=1-\frac{1-\beta}{(2+k-\beta)(1+\lambda)-(1-\beta)} .
$$

The result is sharp for the function given by (12).

4. Extreme Points

Theorem 4.1. Let $f_{1}(z)=z$ and

$$
f_{n}(z)=z-\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, n)} z^{n} \quad(n \geq 2)
$$

where $\Phi(\lambda, k, \beta, n)$ is defined in Theorem 2.2. Then $f(z)$ is in $T S_{s}(\lambda, k, \beta)$ if and only if it can be expressed in the form $f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)$ where $\lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$.

Proof. Adopting the same technique used by Silverman [8], we first assume that

$$
\begin{gathered}
f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)=z-\sum_{n=2}^{\infty} \lambda_{n}\left[\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, n)} z^{n}\right] \\
\sum_{n=2}^{\infty} \lambda_{n}\left\{\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, n)}\right\} \cdot\left\{\frac{\Phi(\lambda, k, \beta, n)}{2(1-\beta)}\right\}=\sum_{n=2}^{\infty} \lambda_{n}=1-\lambda_{1} \leq 1 .
\end{gathered}
$$

Therefore by Theorem 2.1, $f \in T S_{s}(\lambda, k, \beta)$.
Conversely, suppose $f \in T S_{s}(\lambda, k, \beta)$. Then by Theorem 2.2

$$
a_{n} \leq \frac{2(1-\beta)}{\Phi(\lambda, k, \beta, n)}, \quad n \geq 2 .
$$

Now, by letting

$$
\lambda_{n}=\left\{\frac{\Phi(\lambda, k, \beta, n)}{2(1-\beta)}\right\} a_{n}, \quad n \geq 2
$$

and $\lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n}$ we conclude the theorem, since

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}=\lambda_{1} f_{1}(z)+\sum_{n=2}^{\infty} \lambda_{n} f_{n}(z) .
$$

Now, we give extreme points for functions belonging to $T S_{c}(\lambda, k, \beta)$. We omit the proof of Theorem 4.2 as it is similar to that of Theorem 4.1.

Theorem 4.2. Let $f_{1}(z)=z$ and

$$
f_{n}(z)=z-\frac{(1-\beta)}{\Theta(\lambda, k, \beta, n)} z^{n} \quad(n \geq 2)
$$

where $\Theta(\lambda, k, \beta, n)$ is defined in Theorem 2.4. Then $f(z)$ is in $T S_{c}(\lambda, k, \beta)$ if and only if can be expressed in the form $f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)$ where $\lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$.

5. Radil of Close-To-Convexity, Starlikeness and Convexity

Theorem 5.1. If $f(z) \in T S_{s}(\lambda, k, \beta)$, then f is close-to-convex of order γ

$$
\begin{equation*}
r_{1}(\lambda, k, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma) \Phi(\lambda, k, \beta, n)}{2 n(1-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2 \tag{13}
\end{equation*}
$$

and $\Phi(\lambda, k, \beta, n)$ is defined in Theorem 2.2.

Proof. By a computation, we have

$$
\left|f^{\prime}(z)-1\right|=\left|-\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1}
$$

Now, f is close-to-convex of order γ if we have the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n}{1-\gamma}\right) a_{n}|z|^{n-1} \leq 1 . \tag{14}
\end{equation*}
$$

Considering the coefficient conditions required by Theorem 2.1, the above inequality (14) is true if

$$
\left(\frac{n}{1-\gamma}\right)|z|^{n-1} \leq \frac{\Phi(\lambda, k, \beta, n)}{2(1-\beta)}
$$

or if

$$
|z| \leq\left\{\frac{(1-\gamma) \Phi(\lambda, k, \beta, n)}{2 n(1-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2 .
$$

This last expression yields the bound required by the above theorem.
Theorem 5.2. If $f(z) \in T S_{s}(\lambda, k, \beta)$, then f is starlike of order $\gamma(0 \leq \gamma<1)$ in $|z|<$ $r_{2}(\lambda, k, \beta, \gamma)$, where

$$
\begin{equation*}
r_{2}(\lambda, k, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma) \Phi(\lambda, k, \beta, n)}{2(n-\gamma)(1-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2 \tag{15}
\end{equation*}
$$

and $\Phi(\lambda, k, \beta, n)$ is defined in Theorem 2.2.

Proof. By a computation, we have

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| & =\left|\frac{-\sum_{n=2}^{\infty}(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n} z^{n-1}}\right| \\
& \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
\end{aligned}
$$

Now, f is starlike of order γ if we have the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n-\gamma}{1-\gamma}\right) a_{n}|z|^{n-1} \leq 1 \tag{16}
\end{equation*}
$$

Considering the coefficient conditions required by Theorem 2.1, the above inequality (16) is true if

$$
\left(\frac{n-\gamma}{1-\gamma}\right)|z|^{n-1} \leq \frac{\Phi(\lambda, k, \beta, n)}{2(1-\beta)}
$$

or if

$$
|z| \leq\left\{\frac{(1-\gamma) \Phi(\lambda, k, \beta, n)}{2(n-\gamma)(1-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

This last expression yields the bound required by the above theorem.

Theorem 5.3. If $f(z) \in T S_{s}(\lambda, k, \beta)$, then f is convex of order $\gamma(0 \leq \gamma<1)$ in $|z|<$ $r_{3}(\lambda, k, \beta, \gamma)$, where

$$
\begin{equation*}
r_{3}(\lambda, k, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma) \Phi(\lambda, k, \beta, n)}{2 n(n-\gamma)(1-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2 \tag{17}
\end{equation*}
$$

and $\Phi(\lambda, k, \beta, n)$ is defined in Theorem 2.2.
Proof. By a computation, we have

$$
\begin{aligned}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| & =\left|\frac{-\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n} z^{n-1}}\right| \\
& \leq \frac{\sum_{n=2}^{\infty} n(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}}
\end{aligned}
$$

Go back
Now, f is convex of order γ if we have the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n(n-\gamma)}{1-\gamma} a_{n}|z|^{n-1} \leq 1 . \tag{18}
\end{equation*}
$$

Considering the coefficient conditions required by Theorem 2.1, the above inequality (18) is true if

$$
\left(\frac{n(n-\gamma)}{1-\gamma}\right)|z|^{n-1} \leq \frac{\Phi(\lambda, k, \beta, n)}{2(1-\beta)}
$$

44 4 • \mid •
Go back

Full Screen

$$
\begin{equation*}
r_{6}(\lambda, k, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma) \Theta(\lambda, k, \beta, n)}{n(n-\gamma)(1-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2 \tag{21}
\end{equation*}
$$

and $\Theta(\lambda, k, \beta, n)$ is defined in Theorem 2.4.

6. Integral means Inequalities

In [8], Silverman found that the function $f_{2}(z)=z-\frac{z^{2}}{2}$ is often extremal over the family T. He applied this function to resolve his integral means inequality, conjectured in [9] and settled in [10], that

$$
\int_{0}^{2 \pi}\left|f\left(r \mathrm{e}^{i \theta}\right)\right|^{\eta} \mathrm{d} \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r \mathrm{e}^{i \theta}\right)\right|^{\eta} \mathrm{d} \theta
$$

for all $f \in T, \eta>0$ and $0<r<1$. In [10], he also proved his conjecture for the subclasses $T^{*}(\alpha)$ and $C(\alpha)$ of T.

Now, we prove Silverman's conjecture for the class of functions $T S_{s}(\lambda, k, \beta)$. An analogous result is also obtained for the family of functions $T S_{c}(\lambda, k, \beta)$.

We need the concept of subordination between analytic functions and a subordination theorem of Littlewood [3].

Two given functions f and g, which are analytic in D, the function f is said to be subordinate to g in D if there exists a function w analytic in D with

$$
w(0)=0, \quad|w(z)|<1 \quad(z \in D),
$$

such that

$$
f(z)=g(w(z)) \quad(z \in D) .
$$

We denote this subordination by $f(z) \prec g(z)$.
Lemma 6.1. If the functions f and g are analytic in D with $f(z) \prec g(z)$, then for $\eta>0$ and $z=r \mathrm{e}^{i \theta}(0<r<1)$

$$
\int_{0}^{2 \pi}\left|g\left(r \mathrm{e}^{i \theta}\right)\right|^{\eta} \mathrm{d} \theta \leq \int_{0}^{2 \pi}\left|f\left(r \mathrm{e}^{i \theta}\right)\right|^{\eta} \mathrm{d} \theta
$$

Now, we discuss the integral means inequalities for functions f in $T S_{s}(\lambda, k, \beta)$.
Theorem 6.2. Let $f \in T S_{s}(\lambda, k, \beta), \quad 0 \leq \lambda \leq 1,0 \leq \beta<1, k \geq 0$ and $f_{2}(z)$ be defined by

$$
f_{2}(z)=z-\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, 2)} z^{2},
$$

where $\Phi(k, \beta, \lambda, n)$ is defined in Theorem 2.2. Then for $z=r \mathrm{e}^{i \theta}, 0<r<1$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}|f(z)|^{\eta} \mathrm{d} \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} \mathrm{d} \theta \tag{22}
\end{equation*}
$$

Proof. For $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$, (22) is equivalent to

$$
\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty} a_{n} z^{n-1}\right|^{\eta} \mathrm{d} \theta \leq \int_{0}^{2 \pi}\left|1-\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, 2)} z\right|^{\eta} d \theta
$$

By Lemma 6.1, it is enough to prove that

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1} \prec 1-\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, 2)} z .
$$

Assuming

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1}=1-\frac{2(1-\beta)}{\Phi(\lambda, k, \beta, 2)} w(z)
$$

44
and using (5), we obtain

$$
\begin{aligned}
|w(z)| & =\left|\sum_{n=2}^{\infty} \frac{\Phi(\lambda, k, \beta, 2)}{2(1-\beta)} a_{n} z^{n-1}\right| \\
& \leq|z| \sum_{n=2}^{\infty} \frac{\Phi(\lambda, k, \beta, n)}{2(1-\beta)} a_{n} \\
& \leq|z|
\end{aligned}
$$

This completes the proof by Theorem 2.1.
For completeness, we now give the integral means inequality for the class $T S_{c}(\lambda, k, \beta)$. The method of proving Theorem 6.3 is similar as that of Theorem 6.2.

Theorem 6.3. Let $f \in T S_{c}(\lambda, k, \beta), 0 \leq \lambda \leq 1,0 \leq \beta<1, k \geq 0$ and $f_{2}(z)$ be defined by

$$
f_{2}(z)=z-\frac{(1-\beta)}{\Theta(\lambda, k, \beta, 2)} z^{2},
$$

where $\Theta(\lambda, k, \beta, n)$ is defined in Theorem 2.4. Then for $z=r \mathrm{e}^{i \theta}, 0<r<1$, we have

Go back

$$
\int_{0}^{2 \pi}|f(z)|^{\eta} \mathrm{d} \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} \mathrm{d} \theta
$$

1. Aqlan E., Jahangiri J. M. and Kulkarni S. R., New classes of k-uniformly convex and starlike functions, Tamkang J. Math. 35(3) (2004), 261-266.
2. El-Ashwah R. Md. and Thomas D. K., Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc. 2(1) (1987), 85-100.

Go back

Full Screen

Close

Quit
3. Littlewood J. E., On inequalities in the theory of functions, Proceedings of the London Mathematical Society, 23(1) (1925), 481-519.
4. Parvatham R. and Radha S., On α-starlike and α-close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math. 17(9) (1986), 1114-1122.
5. Ravichandran V., Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 20(1) (2004), 31-37.
6. Sakaguchi K., On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
7. Shanmugam T. N., Ramachandran C. and Ravichandran V., Fekete-Szegő problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43(3) (2006), 589-598.
8. Silverman H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), $109-116$.
9. \qquad , A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain J. Math. 21(3) (1991), 1099-1125.
10. \qquad , Integral means for univalent functions with negative coefficients, Houston J. Math. 23(1) (1997), 169-174.
11. Wang Z.-G., A new subclass of quasi-convex functions with respect to k-symmetric points, Lobachevskii J. Math. 19 (2005), 41-50.
C. Selvaraj, Department of Mathematics, Presidency College (Autonomous), Chennai-600 005, India, e-mail: pamc9439@yahoo.co.in
K. A. Selvakumaran, Department of Mathematics, R.M.K. Engg. College, Kavaraipettai-601 206, India, e-mail: selvaa1826@gmail.com

[^0]: Received January 11, 2008; revised April 09, 2008.
 2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C50, 30C75.
 Key words and phrases. Regular; univalent; starlike with respect to symmetric points; integral means; subordination.

