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SUMS OF SEVENTH POWERS IN THE RING
OF POLYNOMIALS OVER THE FINITE FIELD

WITH FOUR ELEMENTS

MIREILLE CAR

Abstract. We study representations of polynomials P ∈ F4[T ] as sums P = X7
1 + . . . + X7

s .

1. Introduction

Let F be a finite field of characteristic p with q = pm elements. Analogues of the Waring’s problem
for the polynomial ring F [T ] were investigated, ( [19], [12], [16], [6], [17], [8], [5], [13], [14], [10],
[9], [2], [3] [4]). Let k > 1 be an integer. Roughly speaking, Waring’s problem over F [T ] consists
in representing a polynomial M ∈ F [T ] as a sum

M = Mk
1 + . . .+Mk

s(1.1)

with M1, . . . ,Ms ∈ F [T ]. Some obstructions to that may occur ([15]), and lead to consider
Waring’s problem over the subring S(F [T ], k) formed by the polynomials of F [T ] which are sums
of k-th powers. Some cancellations may occur in representations (1.1), so that it is possible to
have a representation (1.1) with degM small and deg(Mk

i ) large. Without degree conditions in
(1.1), the problem of representing M as sum (1.1) is close to the so called easy Waring’s problem
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for Z. In order to have a problem close to the non-easy Waring’s problem, the degree conditions

k degMi < degM + k(1.2)

are required. Representations (1.1) satisfying degree conditions (1.2) are called strict representa-
tions, see [6, Definition 1.8] in opposition to representations without degree conditions. For the
strict Waring’s problem, analogue of the classical Waring numbers gN(k) and GN(k) have been
defined as follows. Let g(pm, k) denote the least integer s (if it exists) such that every polynomial
M ∈ S(F [T ], k) may be written as a sum (1.1) satisfying the degree conditions (1.2); otherwise we
put g(pm, k) =∞.

Similarly, G(pm, k) denotes the least integer fulfilling the above condition for each polynomial
M ∈ S(F [T ], k) of sufficiently large degree. This notation is possible since these numbers depend
only on pm and k. The set S(F [T ], k) and the parameters G(pm, k), g(pm, k) are not sufficient
to describle all possible cases, see [1, Proposition 4.4], so that in [2] and [3] we introduced new
parameters defined as follows.

Let S×(F [T ], k) denote the set of polynomials in F [T ] which are strict sums of k-th powers.
Let g×(pm, k) denote the least integer s (if it exists) such that every polynomial M ∈ S×(F [T ], k)
may be written as a strict sum

M = Mk
1 + . . .+Mk

s .

Similarly, G×(pm, k) denotes the least integer s fulfilling the same condition for each polynomial
M ∈ S×(F [T ], k) of sufficiently large degree. Gallardo’s method for cubes ([8] and [5]) was
generalized in [1] and [11] where bounds for g(pm, k) and G(pm, k) were established when pm and
k satisfy some conditions. A bound for g(pm, k) was established in [1] in the case when F = S(F, k)
if one of the two following conditions is satisfied:

i) p > k
ii) pn > k = hpν − 1 for some integers ν > 0 and 0 < h ≤ p.
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The smallest exponent k satisfying condition ii) is k = 3. It gave a matter for many articles,
see [8], [5], [9], [10]. In the case of even characteristic, the second smallest exponent k satisfying
condition ii) is k = 7. The case k = 7, q = 2m with m > 3 is covered by [1, Theorems 1.2 and 1.3]
or by [11, Theorem 1.4]. For almost all q = 2m, the upper bounds obtained in these articles for
the numbers G(2m, 7) are comparable with the bound GN(7) ≤ 33 known for the corresponding
Waring’s number for the integers ([18]). The case of the numbers g(2m, 7) is different. In the
case when m /∈ {1, 2, 3} [1, Theorem 1.3] as well as [11, Theorem 1.4] gives g(2m, 7) ≤ 239`(2m, 7)
when for the integers, it is known that gN(7) = 143 ([7]). In [4] we obtained better bounds for the
numbers g(2m, 7) in the case when m /∈ {1, 2, 3}, the method yielding also to better bounds for
some numbers G(2m, 7). The aim of this paper is the study of one of the remaining cases, namely,
the case q = 4. The case q = 8 will be the subject of a separate paper. When a finite field with
8 elements is not a 7-Waring field, every field with 4h elements is a 7-Waring field, so that, from
[15], S(F4[T ], 7) = F4[T ]. We will see further that T is not a strict sum of seventh powers in the
ring F4[T ], see Proposition 3.5 below, so that S(F4[T ], 7) 6= S×(F4[T ], 7).

The main results proved in this work are summarized in the following theorems.

Theorem 1.1. We have

S×(F4[T ], 7) = A1 ∪ A2 ∪ A3 ∪ A∞,
where

(i) A1 is the set of polynomials A =
7∑

n=0
anT

n ∈ F4[T ] such that a1 = a4, a2 = a5, a3 = a6;
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(ii) A2 is the set of polynomials A =
14∑
n=0

anT
n ∈ F4[T ] with 7 < degA ≤ 14 such that a1 + a4 + a10 + a13 = 0,

a2 + a5 + a8 + a11 = 0,
a3 + a6 + a9 + a12 = 0;

(iii) A3 is the set of polynomials A =
21∑
n=0

anT
n ∈ F4[T ] with 14 < degA ≤ 21 such that

a3 + a6 + a9 + a12 + a15 + a18 = 0;

(iv) A∞ = {A ∈ F4[T ] | degA > 21}.

See Proposition 6.6 below.

Theorem 1.2. Every polynomial P ∈ F4[T ] with degree ≥ 435 is a strict sum of 33 seventh
powers, so that

G(4, 7) = G×(4, 7) ≤ 33,
and we have

g(4, 7) =∞,
g×(4, 7) ≤ 43.

This theorem is given by Corollaries 3.6, 6.4 and by Theorem 6.7

Proving that polynomials of small degree are sums or strict sums of seventh powers requires
some results on the solvability of systems of algebraic equations over the finite field F4. This is
done in Section 2. A characterization of polynomials of degree ≤ 21 that are strict sums of seventh
powers is given in Section 3. In Section 4, using the general descent process described in [1], we
obtain a first upper bound for G(4, 7). In Section 5 we describe other descent processes. They are
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used in Section 6 to get a better upper bound for G(4, 7) as well as a bound for g(4, 7). We denote
by F the field F4 and by α a root of the equation α2 = α+ 1 .

2. Equations

Proposition 2.1. For every (a, b) ∈ F 2, the system{
x1 + x2 = a,

u1x1 + u2x2 = b,
(A(a, b))

has solutions (u1, u2, x1, x2) ∈ F 4 satisfying the condition x1x2u1u2 6= 0.

Proof. Suppose a = b. Choose x1 ∈ F −{0, a}. Then, (1, 1, x1, a+x1) is a solution of (A(a, b)).
Suppose a 6= b. There is u2 ∈ F − F2 such that au2 + b 6= 0. Then,

(
1, u2,

au2+b
1+u2

, a+ au2+b
1+u2

)
is a

solution of (A(a, b)). Moreover, since a 6= b, we have au2+b
1+u2

6= a, so that

u2 ×
au2 + b

1 + u2
×
(
a+

au2 + b

1 + u2

)
6= 0.

�

Proposition 2.2. For (a, b, c) ∈ F 3, let (Bs(a, b, c)) denote the system of equations x1 + . . . + xs = a,
y1 + . . . + ys = b,

x1y1 + . . . + xsys = c.

(I) For every (a, b, c) ∈ F××F×F , the system (B2(a, b, c)) admits solutions (x1, x2, y1, y2) ∈ F 4

satisfying the condition x1x2 6= 0.
(II) For every (a, b, c) ∈ F 3, the system (B3(a, b, c)) admits solutions (x1, x2, x3, y1, y2, y3) ∈ F 6

satisfying the condition x1x2x3y1y2y3 6= 0.
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(III) For every (a, b, c) ∈ F× × F × F , the system (B3(a, b, c)) admits solutions (x1, x2, x3, y1,
y2, y3) ∈ F 6 satisfying the conditions{

x1x2x3y1y2y3 6= 0,
x2

1y1 6= x2
2y2.

Proof. (I) Suppose a 6= 0. Let x1 ∈ F − {0, a} and let x2 = a+ x1. Then, x2 6= 0 and x2 6= x1.
The matrix (

1 1
x1 x2

)
is invertible. Thus, for each (b, c) ∈ F 2, there exists (y1, y2) ∈ F 2 such that{

y1 + y2 = b,
x1y1 + x2y2 = c.

(II) Let E(a, b, c) denote the set of (x1, x2, x3, y1, y2, y3) ∈ F 6 solutions of (B3(a, b, c)) satisfying
x1x2x3y1y2y3 6= 0, and satisfying {

x1x2x3y1y2y3 6= 0,
x2

1y1 6= x2
2y2,

respectively. For (x1, x2, x3, y1, y2, y3) ∈ F 6, the three following statements are equivalent:
(i) (x1, x2, x3, y1, y2, y3) ∈ E(a, b, c),
(ii) (y1, y2, y3, x1, x2, x3) ∈ E(b, a, c),

(iii) (x1y1, x2y2, x3y3, (y1)2, (y2)2, (y3)2) ∈ E(c, b2, a). Thus, it suffices to deal with the cases
(a, b, c) = (0, 0, 0), (a, b, c) = (a, 0, 0) with a 6= 0, (a, b, c) = (a, b, 0) with ab 6= 0, and
(a, b, c) with abc 6= 0. Firstly, we observe that if x ∈ F − F2, then (1, x, x+ 1, 1, x, x+ 1) ∈
E(0, 0, 0). Now, we consider the systems with a 6= 0. Up to the automorphism x 7→ ax,
and the F2-automorphism α 7→ α + 1, it suffices to consider the cases (a, b, c) = (1, 0, 0),



JJ J I II

Go back

Full Screen

Close

Quit

(a, b, c) = (1, 1, 0), (a, b, c) = (1, 1, 1), (a, b, c) = (1, 1, α). Observe that

(1, 1, 1, 1, α, α+ 1) ∈ E(1, 0, 0),

(α+ 1, α+ 1, 1, 1, α, α) ∈ E(1, 1, 0),

(1, α, α, 1, 1, 1) ∈ E(1, 1, 1),

(1, α+ 1, α+ 1, α+ 1, α+ 1, 1) ∈ E(1, 1, α).
�

Proposition 2.3. For every (a, b, c) ∈ F 3, the system x1 + x2 = a,
y1 + y2 = b,
x1y1z

2
1 + x2

1y
2
1 + x2y2z

2
2 + x2

2y
2
2 = c

(C(a, b, c))

admits solutions (x1, x2, y1, y2, z1, z2) ∈ F 6 satisfying the condition x1x2y1y2 6= 0.

Proof. Let x1 ∈ F be such that x1 6= 0, a, let y1 ∈ F be such that y1 6= 0, b and let z1 ∈ F .
Let x2 = a + x1 and y2 = b + y1. Then, x1x2y1y2 6= 0. Let z2 ∈ F be defined by the relation
x2

2y
2
2z2 = c2 + x2

1y
2
1z1 + x1y1 + x2y2. Then, (x1, x2, y1, y2, z1, z2) is a solution of (C(a, b, c)). �

Lemma 2.4. For every (a, b, c) ∈ F× × F × F , the system of equations{
z1 + αz2 + (α+ 1)z3 = b,
az1 + z2

1 + (α+ 1)az2 + z2
2 + αaz3 + z2

3 = c,
(S1(a, b, c))

admits solutions (z1, z2, z3) ∈ F 3.

Proof. Let ν = ν(a, b, c) denote the number of (z1, z2, z3) ∈ F 3 solutions of (S1(a, b, c)). For
t ∈ F let

Ψ(t) = (−1)tr(t)
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where tr : F → F2 is the absolute trace map. Then Ψ is a non-trivial character, so that by
orthogonality,

ν =
∑

(z1,z2,z3)∈F 3

1
4

∑
t∈F

Ψ(t(b+ z1 + αz2 + (α+ 1)z3))

× 1
4

∑
u∈F

Ψ(u(c+ az1 + z2
1 + (α+ 1)az2 + z2

2 + αaz3 + z2
3)).

Thus,

16ν =
∑

(t,u)∈F 2

Ψ(bt+ cu)

(∑
z∈F

Ψ((t+ au)z + uz2)

)

×

(∑
z∈F

Ψ((αt+ a(α+ 1)u)z + uz2)

)

×

(∑
z∈F

Ψ(((α+ 1)t+ αau)z + uz2)

)
.

From [2, Proposition 2.3], for (v, w) ∈ F 2, we have∑
z∈F

Ψ(vz + wz2) =
{

4 if w = v2,
0 if w 6= v2.

Therefore,

ν = 4
∑

(t,u)∈E

Ψ(bt+ cu),
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where E is the subset of F 2 formed by the pairs (t, u) satisfying the three conditions u = (t+ au)2,
u = (αt+ a(α+ 1)u)2,
u = ((α+ 1)t+ αau)2.

Obviously, (0, 0) ∈ E. Conversely, let (t, u) ∈ E. Then the first and second conditions give that
t + au = αt + a(α + 1)u while the first and last conditions give that t + au = (α + 1)t + αau, so
that (α+ 1)au = t = αau with a 6= 0. Thus, t = u = 0, so that E = {(0, 0)} and ν = 4. �

Proposition 2.5. Let b = (a, b, c, d) ∈ F 4. Then the system of equations

3∑
i=1

yi = a,

3∑
i=1

uiyi = b,

3∑
i=1

u2
i z

2
i yi = c,

3∑
i=1

(u2
i zi + uiz

2
i )yi = d

(D(b))

admits solutions (u1, u2, u3, y1, y2, y3, z1, z2, z3) ∈ F 9 such that u1u2u3y1y2y3 6= 0.

Proof. (I) Suppose that there exists (y1, y2, y3, u) ∈ F 4 satisfying the conditions:
y1 + y2 + y3 = a,
y1 + y2 + uy3 = b,

y1y2y3u 6= 0,
y1 6= y2,
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and denote (H) this hypothesis. Then the matrix

(
y1 y2
y2
1 y2

2

)

is invertible. Let z3 ∈ F . There is (z1, z2) ∈ F 2 such that

y1z1 + y2z2 = c+ d+ (u2z3 + u2z2
3 + uz2

3)y3,
y2
1z1 + y2

2z2 = c2 + uz3y
2
3 .

Then, we have

z2
1y1 + z2

2y2 + u2z2
3y3 = c,

(z1 + z2
1)y1 + (z2 + z2

2)y2 + (u2z3 + uz2
3)y3 = d,

so that (1, 1, u, y1, y2, y3, z1, z2, z3) is a solution of (D(b)) such that uy1y2y3 6= 0.

(II) We prove that if one of the three following conditions:

(i) a = b,
(i) a /∈ {0, b, (α+ 1)b},

(iii) a = (α+ 1)b 6= 0, (so that a 6= b,)

is satisfied, then hypothesis (H) is satisfied, so that the conclusion of the proposition holds.



JJ J I II

Go back

Full Screen

Close

Quit

(i) Suppose a = b. If a = 0, then (1, α, α + 1) is a solution of (e1). If a 6= 0, then (a, y, y) with
y /∈ {0, a} is a solution of (e1). Thus, in the two cases, (e1) admits solutions (y1, y2, y3) ∈ F 3 such
that y1y2y3 6= 0 and y1 6= y2. Hypothesis (H) is satisfied with u = 1.

(ii) Suppose a /∈ {0, b, (α + 1)b}. Then a + α(a + b) 6= 0. Let u = α, y3 = α(a + b). Choose
y1 ∈ F − {0, a+ α(a+ b)} and y2 = y1 + a+ α(a+ b). Then, y1 6= y2 and y1y2y3 6= 0, so that (H)
is satisfied.

(iii) Suppose a = (α+1)b 6= 0. Let u = (α+1), y3 = b. Choose y1 ∈ F−{0, αb} and y2 = y1+αb.
Then, y1 6= y2, y1y2y3 6= 0 and y1 + y2 + y3 = (α+ 1)b = a, y1 + y2 + uy3 = αb+ (α+ 1)b = b, so
that (H) is satisfied.

(III) We examine the remaining case, that is the case a = 0, b 6= 0. Lemma 2.4 gives the
existence of (z1, z2, z3) ∈ F 3, a solution of (S1(b, c2/b, d/b)) such that

b2z2
1 + (α+ 1)b2z2

2 + αb2z2
3 = c,

b2z1 + bz2
1 + (α+ 1)b2z2 + bz2

2 + αb2z3 + bz2
3 = d.

Let
u1 = b, u2 = (α+ 1)b, u3 = αb, y1 = 1, y2 = α, y3 = α+ 1.

Then, (u1, u2, u3, y1, y2, y3, z1, z2, z3) is a solution of (D(b)) such that u1u2u3y1y2y3 6= 0. �

Lemma 2.6. Let (a, b) ∈ F 2. Then the system of equations{
u1 + u2 + u3 = a,
x1 + x2 + x3 = b,

(S2(a, b))

admits solutions (u1, u2, u3, x1, x2, x3) ∈ F 6 satisfying the conditions

u1u2u3 6= 0,(2.1)
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det

 1 1 1
u1 u2 u3

u1x
2
1 u2x

2
2 u3x

2
3.

 6= 0.(2.2)

Proof. If (u1, u2, u3, x1, x2, x3) ∈ F 6 is a solution of (S2(0, 1)) satisfying conditions (2.1) and
(2.2), then for b ∈ F, b 6= 0, (u1, u2, u3, bx1, bx2, bx3) is a solution of (S2(0, b)) satisfying condi-
tions (2.1) and (2.2). If (u1, u2, u3, x1, x2, x3) ∈ F 6 is a solution of (S2(1, 0)) satisfying condi-
tions (2.1) and (2.2), then for a ∈ F, a 6= 0, (au1, au2, au3, x1, x2, x3) is a solution of (S2(a, 0))
satisfying conditions (2.1) and (2.2). If (u1, u2, u3, x1, x2, x3) ∈ F 6 is solution of (S2(1, 1)) sat-
isfying conditions (2.1) and (2.2), then for a, b ∈ F, ab 6= 0, (au1, au2, au3, bx1, bx2, bx3) is a
solution of (S2(a, b)) satisfying conditions (2.1) and (2.2). It is sufficient to examine the cases
(a, b) = (0, 0), (a, b) = (0, 1), (a, b) = (1, 0), (a, b) = (1, 1). Observe that

(1, α, α2, α, 1, α2) is a solution of (S2(0, 0)) satisfying conditions (2.1) and (2.2);
(1, α, α2, 0, 0, 1) is a solution of (S2(0, 1)) satisfying conditions (2.1) and (2.2);
(1, α, α, 1, α, α2) is a solution of (S2(1, 0)) satisfying conditions (2.1) and (2.2);
(1, α, α, 0, 0, 1) is a solution of (S2(1, 1)) satisfying conditions (2.1) and (2.2). �

Lemma 2.7. Let (u1, u2, u3, x1, x2, x3) ∈ F 6 be such that

u1u2u3 6= 0,(2.1)

det

 1 1 1
u1 u2 u3

u1x
2
1 u2x

2
2 u3x

2
3.

 6= 0.(2.2)
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Then, for every (c, d) ∈ F 2, there exists (y1, y2, y3) ∈ F 3 such that{
y1 + y2 + y3 = c,

u2
1y

2
1 + u1x

2
1y1 + . . .+ u2

3y
2
3 + u3x

2
3y3 = d.

(S3(c, d))

Proof. Let N denote the number of (y1, y2, y3) ∈ F 3 solutions of (S3(c, d)). With the notations
used in the proof of Lemma 2.4, we have

N =
∑

(y1,y2,y3)∈F 3

1
4

∑
t∈F

Ψ(t(c+ y1 + y2 + y3))

× 1
4

∑
u∈F

Ψ(u(d+ u2
1y

2
1 + u2

2y
2
2 + u2

3y
2
3)).

Thus,

16N =
∑

(t,u)∈F 2

Ψ(ct+ du)
3∏
i=1

Θi(t, u),

where

Θi(t, u) =
∑
y∈F

Ψ(ty + u(u2
i y

2 + uix
2
i y)).

From [2, Proposition 2.3], Θi(t, u) ∈ {0, 4} and Θi(t, u) = 4 if and only if uu2
i = (t + uuix

2
i )

2.
Thus,

N = 4
∑

(t,u)∈E

Ψ(ct+ du),
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where E is the set of pairs (t, u) ∈ F 2 such that
t+ uu1x

2
1 = u2u1,

t+ uu2x
2
2 = u2u2,

t+ uu3x
2
3 = u2u3.

Observe that (0, 0) ∈ E. Moreover, if (t, 0) ∈ E, then t = 0. Suppose that (t, u) ∈ E with u 6= 0.
Then,

t = u(u1x
2
1 + uu1) = u(u2x

2
2 + uu2) = u(u3x

2
3 + uu3),

so that {
u1x

2
1 + uu1 = u2x

2
2 + uu2,

u1x
2
1 + uu1 = u3x

2
3 + uu3.

Thus, {
u1x

2
1 + u2x

2
2 = u(u1 + u2),

u1x
2
1 + u3x

2
3 = u(u1 + u3),

so that

(u1x
2
1 + u2x

2
2)(u1 + u3) + (u1x

2
1 + u3x

2
3)(u1 + u2),

in contradiction with condition (2.2). �
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Proposition 2.8. Let b = (b1, b2, . . . , b7) ∈ F 7. Then the system of equations

3∑
i=1

ui = b1,

3∑
i=1

xi = b2,

3∑
i=1

(yi + u2
ix

2
i ) = b3,

3∑
i=1

(zi + uix
3
i ) = b4,

3∑
i=1

(u2
i y

2
i + uix

2
i yi) = b5,

3∑
i=1

(uix2
i zi + uixiy

2
i + u2

ix
2
i ) = b6,

3∑
i=1

(u2
i z

2
i + uiy

3
i + u2

ixiyi + uix
3
i ) = b7

(E(b))

admits solutions (u1, u2, u3, x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ F 12 with u1u2u3 6= 0.
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Proof. Lemma 2.6 gives the existence of (u1, u2, u3, x1, x2, x3) ∈ F 6, a solution of S2(b1, b2)
satisfying (2.1) and (2.2). Lemma 2.7 gives the existence of (y1, y2, y3) ∈ F 3, a solution of S3(b3 +
3∑
i=1

u2
ix

2
i , b5). Condition (2.2) insures the existence of (z1, z2, z3) ∈ F 3 such that



z1 + z2 + z3 = b4 +
3∑
i=1

uix
3
i ,

u1z1 + u2z2 + u3z3 = b27 +
3∑
i=1

(u2
ix

3
i + u2

i y
3
i + uix

2
i y

2
i ,

u1x
2
1z1 + u2x

2
2z2 + u3x

2
3z3 = b6 +

3∑
i=1

(uixiy2
i + u2

ix
2
i ).

�

Lemma 2.9. Let (a, b, c) ∈ F× × F 2 be such that ab+ c 6= 0. Then the system
u+ v = a,

x+ y = b,

ux+ vy = c

(S4(a, b, c))

admits a solution (u, x, v, y) ∈ F 4 such that uv 6= 0 and u2x+ v2y 6= 0.

Proof. Let u ∈ F − {0, a} and v = u+ a. Then uv(u+ v) 6= 0, so that with x = (bu+ c+ ab)/a
and y = (bu + c)/a, (u, x, v, y) is a solution of (S4(a, b, c)). Suppose that u2x + v2y = 0. Then,
u2b + uab + ac = 0. If b = 0, then c = 0, in contradiction with ab + c 6= 0. Thus b 6= 0, so that
u2 + au + ac

b = 0 and c
ab ∈ {0, 1}. Thus, c = 0. We have u2x + v2y = 0 and ux + vy = 0. Since

b 6= 0, we have (x, y) 6= (0, 0). If x = 0, then vy = 0, so that y = 0, a contradiction. Similarly,
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y = 0 is impossible. Thus, xy 6= 0. Therefore u = u2x/ux = v2y/vy = v in contradiction with
u+ v 6= 0. Hence, (u, x, v, y) is a solution of (S4(a, b, c)) such that uv 6= 0 and u2x+ v2y 6= 0. �

Proposition 2.10. Let b = (b1, b2, . . . , b8) ∈ F 8. Then the system of equations

3∑
i=1

vi = b1,

3∑
i=1

ui = b2,

3∑
i=1

(xi + v2
i u

2
i ) = b3,

3∑
i=1

(yi + viu
3
i ) = b4,

3∑
i=1

(v2
i x

2
i + viu

2
ixi + ui + zi) = b5,

3∑
i=1

(viu2
i yi + viuix

2
i + v2

i u
2
i ) = b6,

3∑
i=1

(viu3
i + vix

3
i + v2

i y
2
i + viu

2
i zi + v2

i uixi) = b7,

3∑
i=1

(v2
i uiyi + viuiy

2
i + vix

2
i yi) = b8

(F(b))

admits solutions

(v1, v2, v3, u1, u2, u3, x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ F 15

satisfying the condition v1v2v3 6= 0.
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Proof. Let v1 = 1, v2 ∈ F − {0, 1, b1 + 1} and let v3 be defined by

v1 + v2 + v3 = b1.

Then we have

v1v2v3 6= 0, v1 6= v2.

Let u1 ∈ F − {0, (v1v2)2}, u3 = 0 and let u2 be defined by

u1 + u2 + u3 = b2.

Then we have

v1u
2
1 6= v3u

2
3.(†)

(I) Suppose that v1u1 + v2u2 = 0. Let y1 ∈ F , y2 ∈ F − {u2y1/u1} and let y3 be defined by

y1 + y2 + y3 = b4 +
3∑
i=1

viu
3
i .

Then we have

v1v2(u1y2 + u2y1) 6= 0,

so that

det

 1 1 1
v1u1 v2u2 v3u3

v1y1 v2y2 v3y3

 6= 0.
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(II) Suppose that v1u1 + v2u2 6= 0. Let y1 ∈ F . Since u1 6= (v1v2)2, we have 1 + v1v2u1 6= 0. Let
y2 ∈ F be such that

(1 + v1v2u1)y2 + (1 + v1v2u2)y1 6= v3(v1u1 + v2u2)(b4 +
3∑
i=1

viu
3
i ),

and let y3 be defined by

y1 + y2 + y3 = b4 +
3∑
i=1

viu
3
i .

Then we have

v1v2(u1y2 + u2y1) + v3y3(v1u1 + v2u2) 6= 0,

so that

det

 1 1 1
v1u1 v2u2 v3u3

v1y1 v2y2 v3y3

 6= 0.

In both cases we get the existence of (y1, y2, y3) ∈ F 3 satisfying

det

 1 1 1
v2
1u

2
1 v2

2u
2
2 v2

3u
2
3

v2
1y

2
1 v2

2y
2
2 v2

3y
2
3

 6= 0
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from which we deduce the existence of (x1, x2, x3) ∈ F 3 such that

x1 + x2 + x3 = b3 +
3∑
i=1

v2
i u

2
i ,

v2
1u

2
1x1 + v2

2u
2
2x2 + v2

3u
2
3x3 = (b1 + b2 + b6)2

3∑
i=1

viu
2
i yi,

v2
1y

2
1x1 + v2

2y
2
2x2 + v2

3y
2
3x3 = b28

3∑
i=1

(viu2
i y

2
i + v2

i u
2
i yi).

From (†),

det
(

1 1
v1u

2
1 v2u

2
2

)
6= 0.

Then there exists (z1, z3) ∈ F 2 such that

z1 + z3 = b2 + b5 +
3∑
i=1

(v2
i x

2
i + viu

2
ixi),

v1u
2
1z1 + v3u

2
3z3 = b7 +

3∑
i=1

(viu3
i + vix

3
i + v2

i y
2
i + v2

i uixi).

Let z2 = 0. Then, (v1, v2, v3, u1, u2, u3, x1, x2, x3, y1, y2, y3, z1, z2, z3) is a solution of (F(b)) satis-
fying v1v2v3 6= 0. �
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Proposition 2.11. Let b = (b1, b2, . . . , b9) ∈ F 9. Then the system of equations



8∑
i=1

ui = b1,

8∑
i=1

xi = b2,

8∑
i=1

(yi + u2
ix

2
i ) = b3,

8∑
i=1

(zi + uix
3
i ) = b4,

8∑
i=1

(u2
i y

2
i + uix

2
i yi) = b5,

8∑
i=1

(uix2
i zi + uixiy

2
i + u2

ix
2
i ) = b6,

8∑
i=1

(u2
i z

2
i + uiy

3
i + u2

ixiyi + uix
3
i ) = b7,

8∑
i=1

(u2
i yizi + uix

2
i zi + uiyiz

2
i ) = b8,

8∑
i=1

(u2
ixizi + uixiz

2
i + uiy

2
i zi) = b9

(G(b))

admits solutions (u1, . . . , u8, x1, . . . , x8, y1, . . . , y8, z1, . . . , z8) ∈ F 32 such that u1 . . . u8 6= 0.
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Proof. Proposition 2.1 insures the existence of a solution (x1, x2, u1, u2) of (A(b2, b26)) such that
u1u2x1x2 6= 0. Thus, we have

x1 + x2 = b2,

u1x
2
1z1 + u1x1y

2
1 + u2

1x
2
1 + u2x

2
2z2 + u2x2y

2
2 + u2

2x
2
2 = b6.

Let y1 = y2 = z1 = z2 = 0. Proposition 2.5 insures the existence of a solution (u3, u4, u5, y3, y4, y5, z3, z4, z5) ∈
F 9 of (D((b3 + b6, b

2
5, b

2
9, b8))) such that u3u4u5y3y4y5 6= 0. Let x3 = x4 = x5 = 0. Then, we have



5∑
i=1

xi = b2,

5∑
i=1

(yi + u2
ix

2
i ) = b3,

5∑
i=1

(u2
i y

2
i + uix

2
i yi) = b5,

5∑
i=1

(uix2
i z1 + uixiy

2
i + u2

ix
2
i ) = b6,

5∑
i=1

(u2
i yizi + uix

2
i zi + uiyiz

2
i ) = b8,

5∑
i=1

(u2
ixizi + uixiz

2
i + uiy

2
i zi) = b9.
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Let

β1 = b1 +
5∑
i=1

ui,

β4 = b4 +
5∑
i=1

(zi + uix
3
i ),

β7 = b7 +
5∑
i=1

(u2
i z

2
i + uiy

3
i + u2

ixiyi + uix
3
i ).

From Proposition 2.2, (B3(β1, β4, β
2
7)) admits a solution (u6, u7, u8, z6, z7, z8) ∈ F 6 such that

u6u7u8z6z7z8 6= 0. Let x6 = x7 = x8 = y6 = y7 = y8 = 0. Then, (u1, . . . , u8, x1, . . . , x8,
y1, . . . , y8, z1, . . . , z8) is a solution of (G(b)) such that u1 . . . u8 6= 0. �

3. Strict sums of degree less than 21 in F [T ]

The aim of this section is the proof of the three following theorems.

Theorem 3.1. Let A ∈ F [T ] with degree ≤ 7, say

A =
7∑
i=0

aiT
i.

Then, A is a strict sum of seventh powers if and only if its coefficients ai satisfy the conditions a1 = a4,
a2 = a5,
a3 = a6.

(3.1)
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Moreover, if A is a strict sum of seventh powers, then A is a strict sum of 5 seventh powers.

Theorem 3.2. Let A ∈ F [T ] with degree ≤ 14, say

A =
14∑
i=0

aiT
i.

Then, A is a strict sum of seventh powers if and only if its coefficients ai satisfy the conditions a1 + a4 + a10 + a13 = 0,
a2 + a5 + a8 + a11 = 0,
a3 + a6 + a9 + a12 = 0.

(3.2)

Moreover, if A is a strict sum of seventh powers, then A is a sum of 11 seventh powers.

Theorem 3.3. Let A ∈ F [T ] be such that 15 ≤ degA ≤ 21, say

A =
21∑
i=0

aiT
i.

Then, A is a strict sum of seventh powers if and only if its coefficients a1, . . . , a21 satisfy the
condition

a3 + a6 + a9 + a12 + a15 + a18 = 0.(3.3)

Moreover, if A satisfies condition (3.3), then A is a strict sum of 19 seventh powers.

Theorem 3.1 is a consequence of the two following propositions.
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Proposition 3.4. For (a, b, c) ∈ F 3,

cT 7 + (aT 2 + bT + c)(T 4 + T ) + a

= ((a+ b+ c)(T + 1))7 + ((α2a+ αb+ c)(T + α))7

+ ((αa+ α2b+ c)(T + α2))7.

(3.4)

Proof. A verification. �

Proposition 3.5.
(i) Let A ∈ F [T ] be such that degA ≤ 6. If A is a strict sum of seventh powers, then its

coefficients satisfy (3.1).
(ii) Let

A =
7∑
i=0

aiT
i

in the polynomial ring F [T ] be such that conditions (3.1) are satisfied. Then, A is a strict
sum of 5 seventh powers.

Proof. Let A = a0 + a1T + . . . + a6T
6 ∈ F [T ]. Suppose that A is a strict sum of s seventh

powers. Then,

A =
s∑
i=1

(xiT + yi)
7

with xi, yi ∈ F for i = 1, . . . , s. Thus,

a1 = a4, a2 = a5, a3 = a6.

Now let (a, b, c) ∈ F 3 and let A = a7T
7 + (T 4 + T )(aT 2 + bT + c) + a0. From (3.4),

A+ (a7 + c)T 7 + a0 + a = X7
1 +X7

2 +X7
3 ,
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where X1, X2, X3 ∈ F [T ] have degree ≤ 1, so that

A = ((a7 + c)T )7 + (a0 + a)7 +X7
1 +X7

2 +X7
3 .

�

Corollary 3.6. We have S×(F, 7) 6= S(F, 7), so that g(4, 7) =∞.

Proof. Conditions (3.1) are not satisfied by T , so that S×(F [T ], 7) 6= F [T ]. On the other hand,
from Paley’s theorem, [15], [6, Theorem 1.7], S(F [T ], 7) = F [T ]. �

Theorem 3.2 is a consequence of the following proposition.

Proposition 3.7. Let A ∈ F [T ] with degree ≤ 14, say A = a0 + a1T + . . .+ a14T
14.

(i) If A is a sum

A =
s∑
i=1

(Xi)7

with Xi ∈ F [T ] of degree ≤ 2, then the cofficients a1, . . . , a13 satisfy (3.2).
(ii) If (a1, . . . , a13) ∈ F 13 satisfies (3.2), then A is a sum

A = X7
1 + . . .+X7

11

of 11 seventh powers of polynomials Xi with degXi ≤ 2.

Proof. (i) Suppose that A is a sum

A =
s∑
i=1

(
xiT

2 + yiT + zi
)7
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with xi, yi, zi ∈ F for i = 1, . . . , s. Then,

a1 + a4 + a10 + a13 =
s∑
i=1

yi(zi)3 +
s∑
i=1

(
(xi)2(zi)2 + xi(yi)2zi + yi(zi)3

)
+

s∑
i=1

(
(xi)2(zi)2 + xi(yi)2zi + (xi)3(yi)

)
+

s∑
i=1

(xi)3yi = 0.

The proof of the other identities is similar.
(ii) Conversely, suppose that (a1, . . . , a13) ∈ F 13 satisfies (3.2). Proposition 2.3 insures the

existence of (x1, x2, y1, y2, z1, z2) ∈ F 6 solution of (C(a11, a13, a9)) such that x1x2y1y2 6= 0. For
such a solution, we have 

a13 =
2∑
i=1

yi =
2∑
i=1

x3
i yi,

a11 =
2∑
i=1

xi =
2∑
i=1

xiy
3
i ,

a9 =
2∑
i=1

(x2
i y

2
i + xiyiz

2
i ).

Let 

a = a8 +
2∑
i=1

(xiz3
i + x2

i yizi + xiy
3
i ),

b = a12 +
2∑
i=1

(x3
i zi + x2

i y
2
i ),

c = a2
10 +

2∑
i=1

(xizi + x2
i yiz

2
i + x3

i y
2
i ).
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Proposition 2.2 gives the existence of a solution (x3, x4, x5, z3, z4, z5) ∈ F 6 of (B3(a, b, c)) such that
x3x4x5z3z4z5 6= 0. For such a solution, we have

a =
5∑
i=3

xi =
5∑
i=3

xiz
3
i ,

b =
5∑
i=3

zi =
5∑
i=3

x3
i zi,

c2 =
5∑
i=3

xizi.

Let

x6 = a14 +
5∑
i=1

xi, y3 = y4 = y5 = y6 = z6 = 0.

Thus, we have 

a12 =
6∑
i=1

(x3
i zi + x2

i y
2
i ),

a10 =
6∑
i=1

(x2
i z

2
i + xiy

2
i zi + x3

i yi),

a8 =
6∑
i=1

(xiz3
i + x2

i yizi + xiy
3
i ),



JJ J I II

Go back

Full Screen

Close

Quit

as well as 

a13 =
6∑
i=1

x3
i yi,

a11 =
6∑
i=1

xiy
3
i ,

a9 =
6∑
i=1

(x2
i y

2
i + xiyiz

2
i ).

Let

B = A+
6∑
i=1

(xiT 2 + yiT + zi)7.(‡)

Then degB ≤ 7. If

B =
7∑
i=0

biT
i,

then,

b4 + b1 = a4 + a1 +
6∑
i=1

(x2
i z

2
i + xiy

2
i zi),

b5 + b2 = a5 + a2 +
6∑
i=1

(xiz3
i + x2

i yizi),

b6 + b3 = a6 + a3 =
6∑
i=1

(x3
i zi + xiyiz

2
i ).
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Condition (3.2) insures that

b4 + b1 = a13 + a10 +
6∑
i=1

(x2
i z

2
i + xiy

2
i zi) = 0,

b5 + b2 = a11 + a8 +
6∑
i=1

(xiz3
i + x2

i yizi) = 0,

b6 + b3 = a12 + a9 =
6∑
i=1

(x3
i zi + xiyiz

2
i ) = 0,

so that (3.1) is satisfied by (b1 . . . , b6). Proposition 3.5 gives the existence of polynomials
X1, . . . , X5 ∈ F [T ] of degree ≤ 1 such that

B =
5∑
i=0

X7
i .

We conclude with (‡). �

Theorem 3.3 is a consequence of the following proposition.

Proposition 3.8. Let

A =
21∑
i=0

aiT
i

be a polynomial in F [T ] with degA ≤ 21. Then, A may be written as a sum

A =
s∑
i

(Xi)7
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with Xi ∈ F [T ] of degree ≤ 3 if and only if its coefficients satisfy the condition

a3 + a6 + a9 + a12 + a15 + a18 = 0.(3.3)

Moreover, if A satisfies condition (3.3), then A is a sum of 19 seventh powers of polynomials
Xi ∈ F [T ] of degree ≤ 3.

Proof. (I) Let A =
21∑
i=0

aiT
i ∈ F [T ]. Suppose that A is a sum

A =
s∑
i=1

(uiT 3 + xiT
2 + yiT + zi)7

with ui, xi, yi, zi ∈ F for i = 1, . . . , s. Then we have

a3 + a6 + a9 + a12 + a15 + a18 = 0.

(II) Let (a0, a1, . . . , a20, a21) ∈ F 22 satisfying (3.3). We construct a representation of A as a
sum of seventh powers of polynomials of degree ≤ 3 in two steps.
(i) First step – From Proposition 2.11, there exists

(u1, . . . , u8, x1, . . . , x8, y1, . . . , y8, z1, . . . , z8) ∈ F 32

solution of (G(b)) with

b = (a21, a20, a19, a18, a17 + a20, a16, a15, a1 + a4 + a10 + a13 + a16 + a19,

a2 + a5 + a8 + a11 + a17 + a20),
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u1 . . . u8 6= 0. Therefore, we have

8∑
i=1

ui = a21,

8∑
i=1

u3
ixi = a20,

8∑
i=1

(u3
i yi + u2

ix
2
i ) = a19,

8∑
i=1

(u3
i zi + uix

3
i ) = a18,

8∑
i=1

(u2
i y

2
i + uix

2
i yi) = a17 + a20,

8∑
i=1

(uix2
i zi + uixiy

2
i + u2

ix
2
i ) = a16,

8∑
i=1

(u2
i z

2
i + uiy

3
i + u2

ixiyi + uix
3
i ) = a15,

8∑
i=1

(u2
i yizi + uix

2
i zi + uiyiz

2
i ) = a1 + a4 + a10 + a13 + a16 + a19,

8∑
i=1

(u2
ixizi + uixiz

2
i + uiy

2
i zi) = a2 + a5 + a8 + a11 + a17 + a20,

so that

a17 =
8∑
i=1

(u3
ixi + u2

i y
2
i + uix

2
i yi).
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(ii) Second step – Let

B = A+
8∑
i=1

(uiT 3 + xiT
2 + yiT + zi)7.(?)

Then degB ≤ 14. If

B =
14∑
i=0

biT
i,

then

b13 + b10 + b4 + b1 = a13 + a10 + a4 + a1 +
8∑
i=1

(uixiy2
i + u2

i yizi + uiyiz
2
i + u3

i yi),

b12 + b9 + b6 + b3 = a12 + a9 + a6 + a3 +
8∑
i=1

(u2
ixiyi + u3

i zi + u2
i z

2
i + uiy

3
i ),

b11 + b8 + b5 + b2 = a11 + a8 + a5 + a2 +
8∑
i=1

(u2
ixizi + uixiz

2
i + uix

2
i yi + uiy

2
i zi,

+ u2
i y

2
i )

We have

a19 + a16 + a13 + a10 + a4 + a1 =
8∑
i=1

(u2
i yizi + uix

2
i zi + uiyiz

2
i ),
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and

a19 + a16 =
8∑
i=1

(u3
i yi + uix

2
i zi + uixiy

2
i ),

so that

a13 + a10 + a4 + a1 =
8∑
i=1

(u2
i yizi + uiyiz

2
i + uixiy

2
i + u3

i yi).

Thus,

b13 + b10 + b4 + b1 = 0.

Similarly, we prove that

b12 + b9 + b6 + b3 = b11 + b8 + b5 + b2 = 0.

Proposition 3.7 gives the existence of polynomials X1, . . . , X11 ∈ F [T ] such that

B =
11∑
i=1

X7
i , degXi ≤ 2.

We conclude with (?). �

Remarks. Proposition 3.7 proves that T is not a sum of seventh powers of polynomials of degree
≤ 2. From Proposition 3.8 we deduce that every P ∈ F [T ] of degree ≤ 2 may be written as a
sum of 19 seventh powers of polynomials of degree ≤ 3, so that T is a sum of 19 seventh powers.
This gives another proof of the equality S(F [T ], k) = F [T ]. The following proposition gives a
representation of T as a sum of 12 seventh powers of polynomials of degree ≤ 3.
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Proposition 3.9. We have

T = (T 3 + T 2 + 1)7 + (T 3 + T 2 + αT )7 + (T 3 + T 2 + (α+ 1)T )7

+ (αT 3 + αT 2 + αT + α+ 1)7 + ((α+ 1)T 3 + (α+ 1)T 2

+ (α+ 1)T + α)7 + (T 2 + T + 1)7 + (T 2 + T )7 + (T 2 + α)7

+ (T 2 + α+ 1)7 + (T + α)7 + (T + α+ 1)7 + (T + 1)7.

Proof. An easy verification. �

4. The first descent

The process described in [1] or in [11] works when a representation of T as sum of k-th powers is
known. In the case when k = 7 and q = 4, this process leads to the following.

Theorem 4.1.

(i) Every polynomial P ∈ F [T ] with degree divisible by 7 and ≥ 18599 is a strict sum of 32
seventh powers.

(ii) Every polynomial P ∈ F [T ] with degree ≥ 18593 is a strict sum of 33 seventh powers.

Proof. Let P ∈ F [T ] with 7(n− 1) < degP ≤ 7n. Let

ε(P ) =

{
0 if degP = 7n,

1 if degP < 7n

and let

H = ε(P )T 7n + P.



JJ J I II

Go back

Full Screen

Close

Quit

Then, degH = 7n. From [1, Lemma 5.2], there is a sequence H0, H1, . . . ,Hi, . . . , of polynomi-
als of F [T ] of degree 7n0, 7n1, . . . , 7ni, and a sequence X0, X1, . . . , Xi of polynomials of degree
n0, n1, . . . , ni, such that H = H0 and such that for each index i,

Hi = X7
i +Hi+1,(4.1)

6ni ≤ 7ni+1 < 6ni + 7.(4.2)

Moreover, for each index i, there is a polynomial Yi ∈ F [T ] of degree ni such that

deg(Hi + Y 7
i ) < 6ni.(4.3)

We use (4.1) or (4.3) as long as the sequence (ni) is decreasing. Let r, if it exists, be the least
index such that 3(6nr − 1) ≤ n. We use identity (1) r times, then we use identity (4.3) once. We
get

H = X7
0 + · · ·+X7

r−1 + Y 7
r +R,

with 3 degR ≤ n. From Proposition 3.9, there exist R1, . . . R12 ∈ F [T ] of degree ≤ 3 degR such
that

R = R7
1 + . . .+R7

12,

so that

H = X7
0 + · · ·+X7

r−1 + Y 7
r +R7

1 + . . .+R7
12(4.4)

with degXi = ni ≤ n0 = n, deg Yr = nr ≤ n0 = n, degRj ≤ 3 degR ≤ n. Thus, (4.4) is a strict
sum of r + 13 seventh powers. From (4.2) we get that for i ≥ 1,

7ini ≤ 6in+
i−1∑
j=0

7j6i−j .
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Therefore, for any integer r ≥ 1, we have

6nr − 1 ≤ 6
(

6
7

)r
n+ 35− 36

(
6
7

)r
.

For r ≥ 19, we have
(

6
7

)r
< 1

18 . Suppose r = 19. If n ≥ 2657, then

6
(

6
7

)19

n+ 35− 36
(

6
7

)19

≤ n

3
.

�

5. Others descents

The second descent process is based on very simple identities.

Proposition 5.1. The following identity holds in the ring F [X,Y ],

X4Y 3 +XY 6 = X7 + (X + Y )7 + (X + αY )7 + (X + (α+ 1)Y )7.(5.1)

Proof. A simple verification. �

Proposition 5.2. For a non-negative integer i and X ∈ F [T ], let

Li(X) = X4T 3i +XT 6i.(5.2)

Then, the map Li is F2-linear and we have

Li(X) = X7 + (X + T i)7 + (X + αT i)7 + (X + (α+ 1)T i)7.(5.3)

T 7Li(X) = Li+1(TX).(5.4)

Proof. Immediate. �
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Corollary 5.3. Let n be a non-negative integer and let a ∈ F . Then, we have

aT 4n = L0(aTn) + aTn,(5.5)

aT 4n+3 = L1(aTn) + aTn+6.(5.6)

If n > 0, then

aT 4n+2 = L2(aTn−1) + aTn+11.(5.7)

If n > 1, then

aT 4n+1 = L3(aTn−2) + aTn+16.(5.8)

Proof. (5.5) and (5.6) are immediate. We get (5.7) and (5.8) noting that aT 4n+2 = aT 4(n−1)+6

and that aT 4n+1 = aT 4(n−2)+9. �

Roughly speaking, the second descent process uses the following idea. Let X = xNT
N +

xN−1T
N−1 + . . . + x1T + x0 be a polynomial of F [T ]. Making use of (5.5)–(5.8), we replace a

monomial xkT k by the sum of an appropriate Li(T j) and a monomial of lower degree. We begin
with xNT

N and we follow decreasing degrees as long as the process gives monomials of lower
degree. For more details see [4, Proposition 5.4]. Mixing this process with the first descent process
leads to the following proposition.

Proposition 5.4. Let H ∈ F [T ] with degree 7n ≥ 112. Then, there exist X0, X1, X2, X3, Y0, Y1,
Y2, Y3, Z ∈ F [T ] with degXi ≤ n, deg Yj ≤ n and degZ ≤ 21 such that

H = X7
0 +X7

1 +X7
2 +X7

3 + L0(Y0) + L1(Y1) + L2(Y2) + L3(Y3) + Z.(5.9)

Proof. See [4, Proposition 5.5]. �

We continue with other descent processes.
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Proposition 5.5. Let n ≥ 3 be an integer and let A ∈ F [T ] of degree ≤ 7n. Then there exist
X1, . . . , X4 ∈ F [T ] of degree ≤ n such that

deg

(
A+

3∑
i=1

X7
i

)
≤ 7(n− 1),

so that there exist X1, . . . , X5 ∈ F [T ] of degree ≤ n such that

deg

(
A+

4∑
i=1

X7
i

)
= 7(n− 1).

Proof. Let

A =
21∑
i=0

aiT
i

be a polynomial of degree ≤ 21. Proposition 2.8 gives the existence of

(u1, u2, u3, x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ F 16,

a solution of (E(a21, a20, a19, a18, a17 + a20, a16, a15)) such that u1u2u3 6= 0.
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Therefore, we have 

3∑
i=1

ui = a21,

3∑
i=1

u3
ixi = a20,

3∑
i=1

(u3
i yi + u2

ix
2
i ) = a19,

3∑
i=1

(u3
i zi + uix

3
i ) = a18,

3∑
i=1

(u3
ixi + u2

i y
2
i + uix

2
i yi) = a17,

3∑
i=1

(uix2
i zi + uixiy

2
i + u2

ix
2
i ) = a16,

3∑
i=1

(u2
i z

2
i + uiy

3
i + u2

ixiyi + uix
3
i ) = a15.

Let

B =

(
A+

3∑
i=1

(uiT 3 + xiT
2 + yiT + zi)7

)
,

so that
degB ≤ 14.

This gives the first part of the proposition in the case when n = 3. We get the second part of the
proposition in the case n = 3 taking

X4 =
{

0 if degB = 14,
T 2 if degB < 14.



JJ J I II

Go back

Full Screen

Close

Quit

Let n ≥ 3 be an integer and let A ∈ F [T ] of degree ≤ 7n. By euclidean division, there is a pair
(Q,R) ∈ F [T ] such that, respectively,

A = T 7(n−3)Q+R, degQ ≤ 21, degR < 7(n− 3).

There exist X1, . . . , X3 ∈ F [T ] and X1, . . . , X4 ∈ F [T ], of degree ≤ 3 such that

deg

(
Q+

3∑
i=1

X7
i

)
≤ 14,

and

deg

(
Q+

4∑
i=1

X7
i

)
= 14,

respectively. Therefore,

deg

(
T 7(n−3)(Q+

3∑
i=1

X7
i )

)
≤ 7(n− 1),

and

deg

(
T 7(n−3)(Q+

4∑
i=1

X7
i )

)
= 7(n− 1),

respectively, so that,

deg

(
R+ T 7(n−3)Q+

3∑
i=1

X7
i

)
≤ 7(n− 1),
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and

deg

(
R+ T 7(n−3)Q+

4∑
i=1

X7
i

)
= 7(n− 1),

respectively. �

6. End of the proof

Proposition 6.1. Let

A =
28∑
i=0

aiT
i

be a polynomial in F [T ] with degA ≤ 28. Then A is a sum

A =
3∑
i=1

X7
i +

19∑
i=1

Y 7
i ,(6.1)

where X1, . . . , X3, Y1, . . . , Y19 are polynomials of F [T ] such that degXi ≤ 4 and deg Yi ≤ 3.

Proof. Set

σ = a27 + a24 + a18 + a15 + a12 + a9 + a6 + a3.(6.2)

Proposition 2.10 gives the existence of

(v1, . . . , v3, u1, . . . , u3, x1, . . . , x3, y1, . . . , y3, z1, . . . , z3) ∈ F 15,
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a solution of (F(a28, a27, a26, a25, a24, a23, a22, σ) such that v1 . . . v4 6= 0. For such a solution, we
have 

a28 =
3∑
i=1

vi,

a27 =
3∑
i=1

ui =
3∑
i=1

v3
i ui,

a26 =
3∑
i=1

(xi + v2
i u

2
i ) =

3∑
i=1

(v3
i xi + v2

i u
2
i ),

a25 =
3∑
i=1

(yi + viu
3
i ) =

3∑
i=1

(v3
i yi + viu

3
i ),

a24 =
3∑
i=1

(v2
i x

2
i + viu

2
ixi + ui + zi)

=
3∑
i=1

(v2
i x

2
i + viu

2
ixi + v3

i ui + v3
i zi),

a23 =
3∑
i=1

(viu2
i yi + viuix

2
i + v2

i u
2
i ),

a22 =
3∑
i=1

(viu3
i + vix

3
i + v2

i y
2
i + viu

2
i zi + v2

i uixi),

(6.3)

and

σ =
3∑
i=1

(v2
i uiyi + viuiy

2
i + vix

2
i yi).(6.4)

For i = 1, 2, 3, let
Xi = viT

4 + uiT
3 + xiT

2 + yiT + zi
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and let

B = A+
3∑
i=1

X7
i .

Identities (6.3) show that degB ≤ 21. Set

B =
21∑
i=1

biT
i.

From (6.2), (6.3) and (6.4),
b18 + b15 + b12 + b9 + b6 + b3 = 0,

so that from Theorem 3.3, there exist polynomials Y1, . . . , Y19 ∈ F [T ] with degree ≤ 3 such that

B =
19∑
i=1

Y 7
i .

�

Corollary 6.2. Let A ∈ F [T ] be such that 21 < degA ≤ 28. Then A is a strict sum of 22
seventh powers.

Theorem 6.3.
(i) Every polynomial P ∈ F [T ] whose degree ≥ 441 is divisible by 7 is a strict sum of 32 seventh

powers.
(ii) Every polynomial P ∈ F [T ] with degree ≥ 435 is a strict sum of 33 seventh powers.

(iii) Every polynomial P ∈ F [T ] such that degP ≥ 112 and degP is divisible by 7 is a strict
sum of 42 seventh powers.

(iv) Every polynomial P ∈ F [T ] with degree ≥ 106 is a strict sum of 43 seventh powers.
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Proof. As for the proof of Theorem 4.1, it is sufficient to prove (i) and (iii). Let H ∈ F [T ] of
degree 7n with n ≥ 16. From (5.9) and (5.3), we get that there exists Z ∈ F [T ] with degZ ≤ 21
such that H +Z is sum of 20 seventh powers of polynomials of degree ≤ n. From Proposition 3.9,
there exist Z1, . . . , Z12 with degZi ≤ 63 such that

Z =
12∑
i=1

Z7
i .

If n ≥ 63, then H is a strict sum of 32 seventh powers. This proves (i).

From Proposition 6.1, there exist V1, . . . , V22 ∈ F [T ] with deg Vi ≤ 4 < n such that

Z =
22∑
i=1

V 7
i ,

so that H is a strict sum of 42 seventh powers. This proves (iii). �

Corollary 6.4. We have
G(4, 7) = G×(4, 7) ≤ 33.

We end the study of the set S×(F, T ) dealing with polynomials P such that 29 ≤ degP ≤ 105.

Proposition 6.5. Let A ∈ F [T ].
(i) If 29 ≤ degA ≤ 35, then A is a strict sum of 25 seventh powers.

(ii) If degA = 42, then A is a strict sum of 26 seventh powers.
(iii) If 35 < degA < 42, then A is a strict sum of 27 seventh powers.
(iv) If degA = 7n with 7 ≤ n < 14, then A is a strict sum of n+ 20 seventh powers.
(v) If 7n− 7 < degA < 7n with 7 ≤ n < 14, then A is a strict sum of n+ 21 seventh powers.

(vi) If degA = 7n with 14 ≤ n < 21, then A is a strict sum of n+ 19 seventh powers.
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(vii) If 7n− 7 < degA < 7n with 14 ≤ n < 21, then A is a strict sum of n+ 20 seventh powers.
(viii) If degA = 7n with 21 ≤ n < 28, then A is a strict sum of n+ 18 seventh powers.

(ix) If 7n− 7 < degA < 7n with 21 ≤ n < 28, then A is a strict sum of n+ 19 seventh powers.

Proof. As observed before, it suffices to prove (i), (ii), (iv), (vi) and (viii).

1. Suppose that 29 ≤ degA ≤ 35. From Proposition 5.5, there exist X1, X2, X3∈ F [T ] of degree

≤ 5 such that deg(A+
3∑
i=1

X7
i ) ≤ 28. From Proposition 6.1, there exist Y1, . . . , Y22 ∈ F [T ] of degree

≤ 4 such that

A+
3∑
i=1

X7
i =

22∑
j=1

Y 7
j .

2. Suppose that degA = 42. From [1, Lemma 5.2-(i)], there is a polynomial X ∈ F [T ] of degree
6 such that deg(A+X7) ≤ 35. From above, there exist Y1, . . . , Y25 ∈ F [T ] of degree ≤ 5 such that

A+X7 =
25∑
j=1

Y 7
j .

3. We prove (iv), (vi) and (viii) by induction. Suppose that for n ≥ 7, every polynomial of
degree 7k with k < n is a strict sum of s(k) seventh powers. Let A ∈ F [T ] of degree 7n. From [1,
Lemma 5.2-(ii)], there is a polynomial X ∈ F [T ] of degree n such that deg(A+X7) = 7m(n) with
m(n) defined by the condition 6n ≤ 7m(n) < 6n+ 7. We have

m(n) =

 n− 1 if 7 ≤ n ≤ 13,
n− 2 if 14 ≤ n ≤ 20
n− 3 if 21 ≤ n ≤ 27.
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The induction hypothesis gives that A+X7 is a strict sum of s(m(n)) seventh powers, so that A
is a strict sum of s(m(n)) + 1 seventh powers. We have s(6) = 26. Thus,

s(n) =

 n+ 20 if 7 ≤ n ≤ 13,
n+ 19 if 14 ≤ n ≤ 20,
n+ 18 if 21 ≤ n ≤ 27.

�

Proposition 6.6. We have

S×(F [T ], 7) = A1 ∪ A2 ∪ A3 ∪ A∞,

where

(i) A1 is the set of polynomials A =
7∑

n=0
anT

n ∈ F [T ] such that a1 = a4, a2 = a5, a3 = a6,

(ii) A2 is the set of polynomials A =
14∑
n=0

anT
n ∈ F [T ] with 7 < degA ≤ 14 such that a1 + a4 + a10 + a13 = 0,

a2 + a5 + a8 + a11 = 0,
a3 + a6 + a9 + a12 = 0,

(iii) A3 is the set of polynomials A =
21∑
n=0

anT
n ∈ F [T ] with 14 < degA ≤ 21 such that

a3 + a6 + a9 + a12 + a15 + a18 = 0,

(iv) A∞ = {A ∈ F [T ] | degA > 21}.

Proof. With Theorems 3.1, 3.2, 3.3, Corollary 6.2 and Theorem 6.3. �
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Theorem 6.7. We have
g×(4, 7) ≤ 43.

Proof. From Theorems 3.1, 3.2, 3.3, every polynomial A ∈ S×(F [T ], 7) of degree ≤ 21 is a
strict sum of 19 seventh powers. From Corollary 6.2 and Proposition 6.5, every polynomial A ∈
S×(F [T ], 7) such that 21 < degA ≤ 175 is a strict sum of 43 seventh powers. From Theorem 6.3,
every polynomial A ∈ S×(F [T ], 7) such that degA ≥ 106 is a strict sum of 43 seventh powers. �
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