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SUMS OF SEVENTH POWERS IN THE RING
OF POLYNOMIALS OVER THE FINITE FIELD
WITH FOUR ELEMENTS

MIREILLE CAR

ABSTRACT. We study representations of polynomials P € F4[T] as sums P = X 17 +... X7

1. INTRODUCTION

Let F' be a finite field of characteristic p with ¢ = p™ elements. Analogues of the Waring’s problem
for the polynomial ring F'[T] were investigated, ( [19], [12], [16], [6], [17], [8], [5], [13], [14], [10],
[9], [2], [3] [4]). Let k& > 1 be an integer. Roughly speaking, Waring’s problem over F[T] consists
in representing a polynomial M € F[T] as a sum

(1.1) M=M{+...+MF

with M,...,M, € F[T]. Some obstructions to that may occur ([15]), and lead to consider
Waring’s problem over the subring S(F[T], k) formed by the polynomials of F[T] which are sums
of k-th powers. Some cancellations may occur in representations (1.1), so that it is possible to
have a representation (1.1) with deg M small and deg(MF) large. Without degree conditions in
(1.1), the problem of representing M as sum (1.1) is close to the so called easy Waring’s problem
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for Z. In order to have a problem close to the non-easy Waring’s problem, the degree conditions
(1.2) kdeg M; < deg M + k

are required. Representations (1.1) satisfying degree conditions (1.2) are called strict representa-
tions, see [6, Definition 1.8] in opposition to representations without degree conditions. For the
strict Waring’s problem, analogue of the classical Waring numbers gy(k) and Gn(k) have been
defined as follows. Let g(p™, k) denote the least integer s (if it exists) such that every polynomial
M € S(F[T], k) may be written as a sum (1.1) satisfying the degree conditions (1.2); otherwise we
put g(p™, k) = oco.

Similarly, G(p™, k) denotes the least integer fulfilling the above condition for each polynomial
M € S(F[T], k) of sufficiently large degree. This notation is possible since these numbers depend
only on p™ and k. The set S(F[T], k) and the parameters G(p™, k), g(p™, k) are not sufficient
to describle all possible cases, see [1, Proposition 4.4], so that in [2] and [3] we introduced new
parameters defined as follows.

Let S*(F[T], k) denote the set of polynomials in F[T] which are strict sums of k-th powers.
Let g*(p™, k) denote the least integer s (if it exists) such that every polynomial M € S*(F[T], k)
may be written as a strict sum

M =M +...+ M}

Similarly, G*(p™, k) denotes the least integer s fulfilling the same condition for each polynomial
M e S*(F[T)],k) of sufficiently large degree. Gallardo’s method for cubes ([8] and [5]) was
generalized in [1] and [11] where bounds for g(p™, k) and G(p™, k) were established when p™ and
k satisty some conditions. A bound for g(p™, k) was established in [1] in the case when F' = S(F, k)
if one of the two following conditions is satisfied:

i) p>k

i) p™ > k = hp” — 1 for some integers v > 0 and 0 < h < p.
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The smallest exponent k satisfying condition ii) is &k = 3. It gave a matter for many articles,
see [8], [5], [9], [10]. In the case of even characteristic, the second smallest exponent k satisfying
condition ii) is k = 7. The case k = 7,q = 2™ with m > 3 is covered by [1, Theorems 1.2 and 1.3]
or by [11, Theorem 1.4]. For almost all ¢ = 2™, the upper bounds obtained in these articles for
the numbers G(2™,7) are comparable with the bound Gy(7) < 33 known for the corresponding
Waring’s number for the integers ([18]). The case of the numbers g(2™,7) is different. In the
case when m ¢ {1,2,3} [1, Theorem 1.3] as well as [11, Theorem 1.4] gives g(2™,7) < 2394(2™,7)
when for the integers, it is known that gn(7) = 143 ([7]). In [4] we obtained better bounds for the
numbers g(2™,7) in the case when m ¢ {1,2,3}, the method yielding also to better bounds for
some numbers G(2™, 7). The aim of this paper is the study of one of the remaining cases, namely,
the case ¢ = 4. The case ¢ = 8 will be the subject of a separate paper. When a finite field with
8 elements is not a 7-Waring field, every field with 4" elements is a 7-Waring field, so that, from
[15], S(F4[T1,7) = F4[T]. We will see further that T is not a strict sum of seventh powers in the
ring F4 [T, see Proposition 3.5 below, so that S(F4[T],7) # S*(F4[T], 7).

The main results proved in this work are summarized in the following theorems.

Theorem 1.1. We have
S*(F4T1,7) = AU AU A3 U A,
where

7
(i) Aj is the set of polynomials A = 3 a,T™ € F4[T] such that a1 = a4, a2 = as, a3 = ag;
n=0
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14
(ii) A is the set of polynomials A = > a,T™ € F4[T] with 7 < deg A < 14 such that

n=0

aj +aq + aio + a1z = 0,
as + as +ag + a1 = 0,
as + ag + ag + a2 = 0;

21
(i1i) As is the set of polynomials A = 5 a,T™ € Fy|T] with 14 < deg A < 21 such that
n=0

asz + ag + ag + a2 + a15 + a1 = 0;
(iv) Aoo = {A €TF4[T] | deg A > 21}.
See Proposition 6.6 below.

Theorem 1.2. Every polynomial P € F4[T| with degree > 435 is a strict sum of 33 seventh
powers, so that
G(4,7) =G*(4,7) < 33,

and we have
9(4,7) = oo,

9" (4,7) < 43.
This theorem is given by Corollaries 3.6, 6.4 and by Theorem 6.7

Proving that polynomials of small degree are sums or strict sums of seventh powers requires
some results on the solvability of systems of algebraic equations over the finite field F4. This is
done in Section 2. A characterization of polynomials of degree < 21 that are strict sums of seventh
powers is given in Section 3. In Section 4, using the general descent process described in [1], we
obtain a first upper bound for G(4, 7). In Section 5 we describe other descent processes. They are
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used in Section 6 to get a better upper bound for G(4, 7) as well as a bound for g(4, 7). We denote
by F the field F4 and by « a root of the equation a? = o+ 1 .

2. EQUATIONS

Proposition 2.1. For every (a,b) € F?, the system

(A(a,5)) { 1 + T2 a,

U1T1 + UsTy = b,

has solutions (uy,ug,x1,w2) € F* satisfying the condition x1x2uius # 0.
Proof. Suppose a = b. Choose z1 € F —{0,a}. Then, (1,1,z1,a+ 1) is a solution of (A(a,b)).
Suppose a # b. There is us € F — Fy such that aus + b # 0. Then, (1,u2, augtb o 4 M) is a

1+us ? 1+uso
solution of (A(a,b)). Moreover, since a # b, we have ““2:[2” # a, so that

1+
aus + b aus + b
X X 0
21 T, (a—i— 1—i—’u2)7é

Proposition 2.2. For (a,b,c) € F3, let (Bs(a,b,c)) denote the system of equations

ry + ... + x5 = a,
Y1+ ...+ ys=b,
T1Y1 + ... + TYs = ¢

(I) For every (a,b,c) € F*xFxF, the system (Ba(a, b, c)) admits solutions (x1, 2, y1,y2) € F*
satisfying the condition x1xs # 0.

(II) For every (a,b,c) € F3, the system (Bz(a,b,c)) admits solutions (x1,xa,T3,Y1,Y2,y3) € FO
satisfying the condition x1xsx3y1Y2ys # 0.
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(III) For every (a,b,c) € F* x F x F, the system (Bs(a,b,c)) admits solutions (z1,x2, 3, y1,
Yo, y3) € FO satisfying the conditions

{m1x2m3y1y2y3 # 0,
-’F%yl # $§y2~

Proof. (I) Suppose a # 0. Let 1 € F — {0,a} and let o = a + x;. Then, x5 # 0 and 3 # ;.

The matrix
1 1
r1 X2

is invertible. Thus, for each (b,c) € F?2, there exists (y1,y2) € F? such that

y1 +y2 =0b,
T1Y1 + Tay2 = C.

(IT) Let E(a, b, c) denote the set of (x1, 22,23, y1, Y2, y3) € F° solutions of (Bs(a, b, c)) satisfying
212223Y1Y2y3 7 0, and satisfying

{x1x2m3y1y2y3 # 0,
37%3/1 # x§y27

respectively. For (z1,22,%3,y1,Y2,y3) € F°, the three following statements are equivalent:

(i) (w1,%2,23,91,Y2,93) € E(a,b,c),
(11) (yh Y2,Y3,T1, T2, 1:3) S E(b7 a, C),
(iii) (z1y1,T2y2, 3Y3, (¥1)?%, (v2)%, (y3)?) € E(c,b?,a). Thus, it suffices to deal with the cases
(a,b,¢) = (0,0,0), (a,b,¢) = (a,0,0) with a # 0, (a,b,¢) = (a,b,0) with ab # 0, and
(a, b, ¢) with abe # 0. Firstly, we observe that if x € F — Fy, then (1,z,z+ 1,1, 2,2+ 1) €
E(0,0,0). Now, we consider the systems with a # 0. Up to the automorphism z — az,
and the Fy-automorphism o — « + 1, it suffices to consider the cases (a,b,c¢) = (1,0,0),



(a,b,¢) = (1,1,0), (a,b,c) = (1,1,1), (a,b,c) = (1,1, ). Observe that
(1,1,1,1,0, .+ 1) € E(1,0,0),

(a+1,aa+1,1,1,0,c0) € E(1,1,0),

(1,a,0,1,1,1) € E(1,1,1),

(L,a+lLa+1l,a+1l,a+1,1) € E(1,1, ).

Proposition 2.3. For every (a,b,c) € F3, the system
1 + X9 = a,
(C(a,b,c)) Y1 +y2 = b,
T1Y123 + T3YT + Tayezs + 23y3 = ¢
admits solutions (x1,x2,Y1,Ys2, 21, 22) € o satisfying the condition x1x2y1ys # 0.

Proof. Let ©; € F be such that 1 # 0,a, let y; € F be such that y; # 0,b and let z; € F.
Let 29 = a+x; and yo = b+ y1. Then, z120y1y2 # 0. Let 2o € F be defined by the relation
13y5z0 = & + 23yi 21 + T1y1 + Tay2. Then, (21,22, y1,Y2, 21, 22) is a solution of (C(a,b,c)). O

Lemma 2.4. For every (a,b,c) € F* x F x F, the system of equations

21+ aze + (a4 1)z3 = b,
az1 + 2§ + (a+ 1Vazs + 22 + aazs + 22 = ¢,

(81 (a’ b, C))

admits solutions (21, z2, 23) € F3.

Proof. Let v = v(a,b,c) denote the number of (21,22, 23) € F? solutions of (Si(a,b,c)). For
t e F let
¥() = (1)



where tr: F — s is the absolute trace map. Then W is a non-trivial character, so that by

orthogonality,
1
V= Z ZZ\IJ(t(b+zl + oz + (a + 1)23))
(zl,zz,Z3)EF3 teF
1
X1 Z U(u(c+ az; + 22 4 (o + 1)azg + 22 + aazs + 22)).
uck

Thus,

16v =Y W(bt+cu) (Z\D((t+au)z+u22)>

(t,u)eF2 z€F
X (Z U((at + ala+ 1)u)z + uz2)>
z€F

X <Z U(((a+ 1)t + cau)z + uz2)> .

z€F

From [2, Proposition 2.3], for (v,w) € F?, we have
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where E is the subset of F2 formed by the pairs (¢, u) satisfying the three conditions

u = (t+au)?,

(at + a(a+ 1)u)?,

((a + 1)t + cau)?.

Obviously, (0,0) € E. Conversely, let (¢,u) € E. Then the first and second conditions give that

t + au = ot + a(a + 1)u while the first and last conditions give that t + au = (a + 1)t + aau, so
that (a+ 1)au = ¢ = cau with a # 0. Thus, t = v = 0, so that E = {(0,0)} and v = 4. O

u
u

Proposition 2.5. Let b = (a,b,c,d) € F*. Then the system of equations

N

Mo
<
Il
&

s
Il
iy

e

UiYi = bv

)
=
Ml

DB
Ui 27Yi = €,

~.
iy

|l

(u2z; +uiz2)y; = d

-

<
Il

iy

admits solutions (uy,us,us, Y1,Y2,Ys, 21, 22, 23) € F9 such that U UU3Y1Y2Y3 7 0.
Proof. (I) Suppose that there exists (y1,v2,¥3,u) € F* satisfying the conditions:

Y1 +y2 +ys = a,
Y1+ Y2 +uys = b,
Y1y2y3u # 0,
Y1 # Y2,




and denote (H) this hypothesis. Then the matrix
(yl y2)
vi v
is invertible. Let 23 € F. There is (21,22) € F? such that

Y171+ yaza = c+d+ (uz3 + u23 + uz3)ys,
Yiz1 + Y320 = ¢ + uzsyi.

Then, we have

22y + 25y2 + u23ys = c,
(21 + 201 + (22 + 23)y2 + (u23 + uzd)ys = d,

so that (1,1,u,y1, Y2, Ys, 21, 22, 23) is a solution of (D(b)) such that uyy2ys # 0.

@o Pl (IT) We prove that if one of the three following conditions:
Full S (i) a=b,
= () a ¢ {0,b,(a+1)b),
Close (iii) a = (a+1)b # 0, (so that a # b,)

is satisfied, then hypothesis (H) is satisfied, so that the conclusion of the proposition holds.

Quit




(i) Suppose a = b. If a = 0, then (1,a,a + 1) is a solution of (e1). If a # 0, then (a,y,y) with
y ¢ {0,a} is a solution of (e;). Thus, in the two cases, (e;) admits solutions (yi,ya,y3) € F? such
that y1y2ys # 0 and y; # yo. Hypothesis (H) is satisfied with v = 1.

(ii) Suppose a ¢ {0,b, (o + 1)b}. Then a + a(a + b) # 0. Let u = o, y3 = a(a + b). Choose
y1 € F—{0,a+ala+b)} and yo = y1 +a+ a(a+b). Then, y; # y2 and y1yoys # 0, so that (H)
is satisfied.

(iii) Suppose a = (a+1)b # 0. Let u = (a+1), y3 = b. Choose y; € F—{0, ab} and y2 = y1 +ab.

Then, y1 # y2, y1yeys #0and y1 +y2 +ys = (a+ 1)b=a, y1 +y2 +uyz = ab+ (a +1)b=1b, so
that (H) is satisfied.

(III) We examine the remaining case, that is the case a = 0, b # 0. Lemma 2.4 gives the
existence of (21,22, 23) € F, a solution of (S1(b,c?/b,d/b)) such that

6222 + (a+ 1)b222 + ab?22 = ¢
b2 + b2 + (o + 1)b%22 + bz3 + ab®z3 + b23 = d.

Let
up = b,us = (a+ 1)b,ug = ab,y1 = 1,y2 = a,y3 = a + 1.
Then, (u1, ug, us, Y1, Y2, Y3, 21, 22, 23) is asolution of (D(b)) such that uyusuzy1y2ys # 0. O

Lemma 2.6. Let (a,b) € F2. Then the system of equations

U] + ug + usz = a,
(S2(a, b)) {.’L‘l + 2y +x3 =0,

admits solutions (uy,ua,us, v1,T2,73) € FC satisfying the conditions

(21) U1U2U3 7é 0,



1 1 1
(2.2) det Uy Us U3 £ 0.
U,l.’E% UQQE% U3.’E§.

Proof. If (uy,us,us, x1,7,73) € FO is a solution of (S2(0,1)) satisfying conditions (2.1) and
(2.2), then for b € F,b # 0, (u1,ug,us,bx1, bra, brs) is a solution of (S3(0,b)) satisfying condi-
tions (2.1) and (2.2). If (u1,usg,us3,z1,72,73) € FC® is a solution of (S3(1,0)) satisfying condi-
tions (2.1) and (2.2), then for a € F,a # 0, (au1, aus, aus, 1,2, 23) is a solution of (Sz(a,0))
satisfying conditions (2.1) and (2.2). If (uy,uz,us, z1, 79, 23) € FO is solution of (Sa2(1,1)) sat-
isfying conditions (2.1) and (2.2), then for a,b € F,ab # 0, (au1,aus,aus,bzy,brs,bxs) is a
solution of (Sz(a,b)) satisfying conditions (2.1) and (2.2). It is sufficient to examine the cases
(a,b) = (0,0), (a,b) = (0,1), (a,b) = (1,0), (a,b) = (1,1). Observe that

(1,a, 02, a,1,a2) is a solution of (S2(0,0)) satisfying conditions (2.1) and (2.2);

(1,a,a2,0,0,1) is a solution of (S5(0,1)) satisfying conditions (2.1) and (2.2);

(1,0, 0, 1, v, ?) is a solution of (S2(1,0)) satisfying conditions (2.1) and (2.2);

(1,®,0,0,0,1) is a solution of (S2(1,1)) satisfying conditions (2.1) and (2.2). O

Lemma 2.7. Let (u1,us, us, 1,72, 23) € FS be such that

(21) U1U2U3 75 0,
1 1 1
(2.2) det Uy U u3 #0.

ulcc% ’U,QI% U3$§.




Then, for every (c,d) € F?, there exists (y1,y2,y3) € F° such that

Y1 +Y2+ys = ¢

83 C, d {
(S3(c, d)) udy? + urzdy; + ...+ udy +uzriys = d.

Proof. Let N denote the number of (y1,y2,y3) € F3 solutions of (S3(c,d)). With the notations
used in the proof of Lemma 2.4, we have

N= Y i uetn iyt w)

(y1,92,y3)EF3  teF

1
X 7 D uld + ufyf +u3ys +uiyd)).

ueF
Thus,
3
16N = Y W(ct+du) [[Oilt,w),
(t,u)EF? i=1
where

O;(t,u) = Z U(ty + u(u?y? + uzly)).
yeF
From [2, Proposition 2.3], ©;(t,u) € {0,4} and ©,(t,u) = 4 if and only if vu? = (t + uu;z?)%.
Thus,
N=4 > Wct+du),
(t,u)eEE




where F is the set of pairs (t,u) € F? such that

t+ uulx% = u2u1,
t+ uuzxg = u2uz,

t + uusz? = vlus.
3

Observe that (0,0) € E. Moreover, if (t,0) € E, then t = 0. Suppose that (t,u) € E with u # 0.
Then,

2
t = u(urz} + vuy) = u(ugrs + uug) = u(uzrs + uus),
so that
2 _ 2

ULT] + uUl = Ux;3 + U,

ule + uup = u;;:c% —+ uus.
Thus,

ur2? + uerd = ulug + ug),

w172 + uzz? = u(ug + uz),
so that

(u12? + uoad) (ur + ug) + (wr2f + uzd)(ur + ua),

in contradiction with condition (2.2). O



Proposition 2.8. Let b = (b1, by, ...,b7) € F7. Then the system of equations

(3
> u; = by,
=1

3
> x; = b,
i§1
> (yi + uja?) = bs,
=1
3
(b)) > (2 + usx?) = by,
=1

3
> (Wy? + wiz?y;) = bs,
|

3
S (w22 + wiziy? + uta?) = be,

=
A 3, 2 3

(uizi +wy; +ugziy; + usxy) = by
=

2.

\

admits solutions (u1,Us, us, T1, To, T3, Y1, Y2, Y3, 21, 22, 23) € F12 with uyusug # 0.




Proof. Lemma 2.6 gives the existence of (ui,ug,us, 1,72, 73) € F% a solution of Sy(by,b)
satisfying (2.1) and (2.2). Lemma 2.7 gives the existence of (y1,y2,y3) € F, a solution of Sz(bs +

3
> uZz?,bs). Condition (2.2) insures the existence of (21, 29,23) € F such that
i=1

3
21tz t 23 = b+ > ud,
i=1
2 AP 2,3 2,2
urz1 + ugze +ugzz = bz + Y (uixy +uiyy 4wy,
i=1

3
w1321 + UsT3 22 + uzzizz = bg + Y (umiy? + ulx?).
i=1

Lemma 2.9. Let (a,b,c) € F* x F? be such that ab+ c # 0. Then the system

u—+v=a,

(84(a7 b, C)) T+y= b’
ur + vy = ¢

admits a solution (u,x,v,y) € F* such that uv # 0 and u?x + v?y # 0.

Proof. Let u € F —{0,a} and v = u + a. Then wv(u + v) # 0, so that with x = (bu+ ¢+ ab)/a
and y = (bu + ¢)/a, (u,z,v,y) is a solution of (Si(a,b,c)). Suppose that u?z + v?y = 0. Then,
u?b 4+ uab + ac = 0. If b = 0, then ¢ = 0, in contradiction with ab + ¢ # 0. Thus b # 0, so that
u? +au+ % =0 and 5 € {0,1}. Thus, ¢ = 0. We have u?z 4+ v?y = 0 and uz + vy = 0. Since
b # 0, we have (z,y) # (0,0). If x = 0, then vy = 0, so that y = 0, a contradiction. Similarly,



y = 0 is impossible. Thus, xy # 0. Therefore u = u?xr/ur = v?>y/vy = v in contradiction with
u+ v # 0. Hence, (u,z,v,y) is a solution of (S,(a,b,c)) such that uv # 0 and u?z +v?y #0. O

Proposition 2.10. Let b = (by, by, ..., bs) € F8. Then the system of equations

(3
Z v; = by,
=1
3
Z u; = ba,
'L'§1
> (@i +vfuf) = bs,

.
iy

wll

(ys + Uiuf) = by,

—
Bl
=3
SN—
SN—
<
w ll
Ly

(vfxf A vzufxz + u; + Zi) = bs,

<.
iy

o |l

2 D 1 20 —
(viwiy; + viux; +vius) = bg,

<.
—

o |l

3 3, .22 2 2 _
(vaug + vy + viy; + viugz + viux;) = by,

<.
—

o |l

2 2 2,0\
Go back (Vi usys + viugy; + vizgyi) = bg
L=
Full Screen admits solutions
F15
Close (v1, V2,03, U1, U2, U3, T1, T2, T3, Y1, Y2, Y3, 21, 22, 23) €

satisfying the condition vivovs # 0.
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Proof. Let v1 =1, v2 € F —{0,1,b; + 1} and let vz be defined by
V1 + vg + v3 = by.
Then we have
v1vvg £ 0, vy # vs.

Let u; € F — {0, (v1v2)?}, uz = 0 and let uy be defined by
U1 + ug + uz = ba.

Then we have

(1) viud # vaus.

(I) Suppose that viu; + vaus = 0. Let y1 € F, y2 € F — {ugy1/u1} and let y3 be defined by

3
y1+y2+ys= b4+zviu?-

=1
Then we have
Go back v1v2(u1y2 + u2y1) # 0,
Full Screen so that
1 1 1
Close det ViUl  UV2U2  U3U3 7é 0.

U1Y1 V2Y2 U3Y3
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(IT) Suppose that viju; + voug # 0. Let y; € F. Since uy # (v1v2)?, we have 1 + vivguy # 0. Let
y2 € F be such that

3

(1 + vyvou)ys + (1 + vivous)ys # va(viuy + vous)(by + Zviu?),
=1

and let y3 be defined by

3
vi+y2+ys=bat Y viui.

i=1
Then we have
vlvg(ulyz aF U2y1) aF ’U3y3(111U1 T U2U2) 75 0,

so that

1 1 1
det ViUl VU V3Uus 750

U1Y1 V2Yy2 U3Ys3

In both cases we get the existence of (y1,y2,y3) € F? satisfying




from which we deduce the existence of (1, z9,73) € F? such that

3
T+ 32+ 23 = b+ Y viud,
=1

2,2 2,2 2,2
VIUTT] + V3UST2 + VZUZT3

3
(b1 +bo +b6)? > viuty;,
=1

3
2,2 2,2 2.9, _ 32 2,9 | 2.2
ViYIT1 + V3YsTe + v3ysTs = by D (viugy; + v uiys).
=1

1 1
det( 08wl ) # 0.

Then there exists (21, 23) € F? such that

3
z1+23 = by +bs + Z (Wiz? +vaulz),

i=1

3
viuizr +vzuizs = by + 3 (viud + v +ofy; + viuiws).

=

Let zo = 0. Then, (v1,v2,vs, U1, U2, Ug, T1, T2, T3, Y1, Y2, Y3, 21, 22, 23) is a solution of (F (b)) satis-

fying v1vqvs # 0.

O



Proposition 2.11. Let b = (b, ba,...,bg) € F°. Then the system of equations

8
Z Uy = b17
=1
8
> = by,
=1
8 2.9
Zl(yi +uizy) = bs,
8
3 (2i + wizd) = by,
=1
8
(G(b)) (uiy? +wixly;) = bs,
=1
8
(wiz2z; + wizsy? + ulz?) = bg,
=1
8
> (2] +wiyf + ulziys + wizd) = by,
=i
8
(Wlyizi + wiz?z; + uy;22) = bs,
=i
8
(W2ziz; + wimiz? + uiyrz;) = by
\ =1

admits solutions (U1, ..., Ug, T1,..., T8 YL, -+, Ys, Z1, -, 28) € F32 such that uy ...ug # 0.




Proof. Proposition 2.1 insures the existence of a solution (71,2, u,us) of (A(b2,b2)) such that
uyugx e # 0. Thus, we have

T1 + 22 = bo,

Il
o>
(=]

ulm%zl + ulmly% + u%m% + uyv%zz + ungyg + u%x%

Let y; = yo = 21 = 22 = 0. Proposition 2.5 insures the existence of a solution (us, w4, s, Y3, Y4, Ys, 23, 24, 25
F9 of (D((bs + bg, bZ,b2,bs))) such that uzususysysys # 0. Let x5 = x4 = x5 = 0. Then, we have

5
> = by,

-
%

iy

Men

o
Il
—

(u?y? + uizly;) = bs,

e

o
Il
—

2 2 4 2.2)
(wiziz1 + uirsy; + uizi) = b,

Men

<
iy

ol

2 2 2y _
(usyszs + wis z; + usyiz;) = bs,

o
Il
—

2 2 2
(uiz;z; + uiziz; + uysz;) = bo.

e

-
o
Il
—




Let

5
Br=b1+ > ui
=i
5
Bs = by + Z(zz - uzxf’),
=1

5
Br=br+ > (ul2] + uitf + ulziy; +uizd).

i=1
From Proposition 2.2, (B3(B1, s, /3?)) admits a solution (ug,ur,us, 26,27, 2s) € FS such that
ugurugzezrzs 7= 0. Let 2 = a7 = s = ys = y7 = ys = 0. Then, (uy,...,us,T1,...,Ts,
Yly---sYsy 21, -+ -, 28) 18 a solution of (G(b)) such that wu; ...ug # 0. ]

3. STRICT SUMS OF DEGREE LESS THAN 21 IN F'[T]

The aim of this section is the proof of the three following theorems.

Theorem 3.1. Let A € F[T| with degree <7, say

7
A= Z aiTi.
i=0
Then, A is a strict sum of seventh powers if and only if its coefficients a; satisfy the conditions

ay = Ggq,
(31) as = as,
a3 = ag.



Moreover, if A is a strict sum of seventh powers, then A is a strict sum of 5 seventh powers.

Theorem 3.2. Let A € F[T] with degree < 14, say

14
A= Z aiTl.
i=0
Then, A is a strict sum of seventh powers if and only if its coefficients a; satisfy the conditions

a1 + aq + ayp + a3 = 0,
(3.2) az +as +as + ann =0,
az + ag + ag + aiz = 0.

Moreover, if A is a strict sum of seventh powers, then A is a sum of 11 seventh powers.

Theorem 3.3. Let A € F[T)] be such that 15 < deg A < 21, say

21
A= Z aiTi.
i=0

Then, A is a strict sum of seventh powers if and only if its coefficients ay,...,as1 satisfy the
condition
(33) az + ag + ag + a1z + a5 + a1 = 0.

Moreover, if A satisfies condition (3.3), then A is a strict sum of 19 seventh powers.

Theorem 3.1 is a consequence of the two following propositions.



Proposition 3.4. For (a,b,c) € F?,
T+ (aT?> + T 4 ¢)(T*+T) +a
(3.4) = ((a+b+e)(T+1)" + ((e®a+ab+c)(T + )"
+ ((ea + a?b + ¢)(T + a?))".
Proof. A verification. O
Proposition 3.5.

(i) Let A € F[T] be such that deg A < 6. If A is a strict sum of seventh powers, then its
coefficients satisfy (3.1).
(i) Let

7
A= Z aiTi
=0

in the polynomial ring F[T| be such that conditions (3.1) are satisfied. Then, A is a strict
sum of 5 seventh powers.

Proof. Let A = ag+ a1T + ...+ agT® € F[T]. Suppose that A is a strict sum of s seventh
powers. Then,

A= Z (T + ;)"

i=1

with z;,y; € F for i =1,...,s. Thus,
ai = ay,as = as,asz = ag.
Now let (a,b,c) € F? and let A = a;T7 + (T* + T)(aT? + bT + ¢) + ag. From (3.4),
A+ (a7 +)T" +ap+a= X7 +XJ+ X7,



where X1, Xo, X3 € F[T] have degree < 1, so that
A= ((a7 +)T)" + (ap +a)” + X7 + X7 + XJ.

Corollary 3.6. We have S*(F,7) # S(F,7), so that g(4,7) = oco.

Proof. Conditions (3.1) are not satisfied by 7', so that S*(F[T],7) # F[T]. On the other hand,
from Paley’s theorem, [15], [6, Theorem 1.7], S(F[T],7) = F[T]. O

Theorem 3.2 is a consequence of the following proposition.

Proposition 3.7. Let A € F[T) with degree < 14, say A = ag + a1T + ... + a;, T,
(i) If A is a sum

S
A=
i=1
with X; € F[T) of degree < 2, then the cofficients aq,...,a13 satisfy (3.2).
(ii) If (ay,...,a13) € F13 satisfies (3.2), then A is a sum
A=X{+...+X]
of 11 seventh powers of polynomials X; with deg X; < 2.

Proof. (i) Suppose that A is a sum

A=Y (@T*+uT+2)

7=l



with z;,y;,2; € F for i =1,...,s. Then,

S S
ai +ag + ayp + a3 = Zyi(zi)g + Z ((@:)*(2)? + 2i(y:)* 2 + 9i(2)°)
i=1 =1

S S
+ Z ((e)*(2:)® + i(we)?2 + () (a)) + Z(wi)%ﬁ =0.
i=1 i=1
The proof of the other identities is similar.
(ii) Conversely, suppose that (ai,...,a13) € F13 satisfies (3.2). Proposition 2.3 insures the
existence of (x1,Z2,y1,¥2, 21, 22) € F° solution of (C(a11,a13,a9)) such that z129y192 # 0. For
such a solution, we have

2 2
as = Yy =y 2y,
= =
2 2
alr = sz = szy?)
i;l =1
ag = Y (z2y? + ziy22).
=
Let
2 2
a=ag+ Y (w2} + xyizi + 7iy3),
=1
2
b= aig+ Y (232 + 23y7),
=1

2
c=alg+ > (wiz + xlyi2? + 2dy?).

i=1



Proposition 2.2 gives the existence of a solution (3,24, Ts, 23, 24, 25) € F of (Bs(a, b, ¢)) such that
T3x4x5232425 # 0. For such a solution, we have

5 5
a= Yz =3 723,
i=3 i=3
5 5
b= Y z=Y z3z,
i=3 i=3

5
=Y 3z
i=3

Let
5
Te =01+ Y T,  Ys=Ys=ys =Y =2 =0
=1
Thus, we have
6
aiz = Y (a2 + ziy?),
i=1
6
aro = Y (€327 + ziylz + xyi),
i=1
6

ag = Y (w2} + 2lyizi + ziy),

=1




as well as

6
— 3
a13 = Z Z;Yi,
i=1

6
ann = ) Tiyy,
i§1
ag = 21(90?.%2 + ziyiz2).
=
Let
6
(1) B = A+Z(l‘iT2 +yiT+zi)7.
=1

Then deg B < 7. If

7
B=) bT’,
=0
then,

6
by+byi=as+ar+ Y (x727 + ziyiz),

=1
6
_ 3 2
Go back bs + b2 = as + a2 + Z(.’L’ZZZ + 3 yizi),
=1
Full S 6
ull Screen 5 )
be + b3 = ag + a3 = Z(.’E,L 2 + %Y 2; )
=1

Close

Quit




Condition (3.2) insures that

6
bs + by = a3+ a0 + Z(-’Iifzf + xzyfzz) =0,

i=1
6
bs +by = a1 +as + Y _ (w2 + @fyiz) =0,
=1
6
b + b3 = a1z + ag = Z(acf’z, +aiyiz]) =0,
=1

so that (3.1) is satisfied by (by...,bs). Proposition 3.5 gives the existence of polynomials
X1,...,X5 € F[T] of degree < 1 such that

We conclude with (1). O
Theorem 3.3 is a consequence of the following proposition.

Proposition 3.8. Let
21

Go back A= Z a,iTi
i=0

Full Screen

be a polynomial in F[T] with deg A < 21. Then, A may be written as a sum

Close A= i(Xz)7

Quit




Go back

Full Screen

Close

Quit

with X; € F[T) of degree < 3 if and only if its coefficients satisfy the condition
(3.3) a3 + ag + ag + a2 + a5 + aig = 0.

Moreover, if A satisfies condition (3.3), then A is a sum of 19 seventh powers of polynomials
X, € F[T] of degree < 3.

21
Proof. (I) Let A= 3" a;T* € F[T]. Suppose that A is a sum

=0
A= Z(U'LTS F .’EiTz = le = 25)7
(=il
with w;, x;,y;,2; € F for i =1,...,s. Then we have
az +ag + ag + a1z + ais + a1z = 0.
(IT) Let (ag,a1,...,a,a2) € F?? satisfying (3.3). We construct a representation of A as a

sum of seventh powers of polynomials of degree < 3 in two steps.
(i) First step — From Proposition 2.11, there exists

(U,l,...,Ug,xl,...,Ig,yl,...,yg,zl,...,Zg) EF32
solution of (G(b)) with

b = (a21, a0, a1g, a1s, a17 + azo, 16, a15, a1 + a4 + a10 + a13 + ai + aig,

as + as + as + a1 + a7 + ag),



uy . ..ug # 0. Therefore, we have

so that

;

e

8
> u; = as,
=1
8

3, _
> uix; = aso,
=1

8
> (wdys + ulz?) = aqo,

<
—

|

(udz; + ux?) = as,

o
I
-

el

2 9 2,0\ _
(wiy; + wixiys) = air + ago,

o
Il
-

M

2 2 2.2\
(wixiz + wizy; +uixs) = ase,

<
Il
—

2.2 3 2 3\ _
(ui 2 + iy + uiwsy; + uixy) = ags,

-

o
Il
—

Mo

2 2 2\ _
(uyizi + wiri z; + uiyizy) = a1 + ag + a0 + a13 + a1 + a19,

-
Il
—

2 2 2
(uizszs + s z; + wiy;z;) = ag + as + ag + a11 + ar7 + ago,

e

-
Il
—

8
ayy = Z(U?% + iyl + usady).

i=1



(ii) Second step — Let

8
(*) B=A-+ Z(u,T3 + :IJiTz + yiT = Zi)7.
=1

Then deg B < 14. If

14
B=> bT',
=0

then
8
b1z +big + bs + b1 = a13 + a0 +as +ag + Z(szzyzz +udyizi + wiyiz? +ulys),
=1
8
biz + by + bg + b3 = a12 + ag + ag + az + Z(uf:czyz +ufz +ufz 4+ wigl),
i=1
8
b1 +bg +bs + b = a1 +ag+as +az + Z(ufl’zzz + w2l + Wy + w2,
1=1
+ ufyp)
Go back
Full Screen ‘We have
8
Close a9 + a1 + a1z + a0 + a4 +a; = Z(Ugyizi + uﬂ:gz‘ + uiyiziz)’
i=1

Quit




and

8
aig + aig = Z(Ufyz + w} zi + wiziy}),

i=1

so that
8
a3 +ap +aq4+a; = Z(ugyizi +wiyiz; + wikiy; + uly:).

i=1

Thus,

b13 + b1g + by + b1 = 0.
Similarly, we prove that

b12 + bg + bg + bs = by1 + bg + b5 + by = 0.
Proposition 3.7 gives the existence of polynomials X1, ..., X113 € F[T] such that

11
B = ZXZ, deg X; < 2.
=1

We conclude with (). O

Remarks. Proposition 3.7 proves that T is not a sum of seventh powers of polynomials of degree
< 2. From Proposition 3.8 we deduce that every P € F[T] of degree < 2 may be written as a
sum of 19 seventh powers of polynomials of degree < 3, so that T is a sum of 19 seventh powers.
This gives another proof of the equality S(F[T],k) = F[T]. The following proposition gives a
representation of 7" as a sum of 12 seventh powers of polynomials of degree < 3.



Proposition 3.9. We have
T=(T*+T?*+1)"+ (T3 +T*+aT)" + (T* + T + (a + 1)T)”
+(@T®*4+aT? +aT+a+1)"+ ((a+1)T3 + (a + 1)T?
+(@+)T+a) +(T*+T+ 1)+ (T*+T)" + (T? + a)°
+(T*+a+1)"+(T+a) +(T+a+1)"+(T+1)".

Proof. An easy verification. O

4. THE FIRST DESCENT

The process described in [1] or in [11] works when a representation of 7' as sum of k-th powers is
known. In the case when k = 7 and g = 4, this process leads to the following.

Theorem 4.1.

(i) Every polynomial P € F[T] with degree divisible by 7 and > 18599 is a strict sum of 32
seventh powers.
(i) Ewery polynomial P € F[T] with degree > 18593 is a strict sum of 33 seventh powers.

Proof. Let P € F[T] with 7(n — 1) < deg P < 7n. Let
0 ifdegP = Tn,
e(P) =
1 ifdegP < Tn

and let
H = e(P)T™ + P.



Then, deg H = 7n. From [1, Lemma 5.2], there is a sequence Hy, Hy,...,H;,..., of polynomi-

als of F[T] of degree Tng, ™ny,...,Tn;, and a sequence Xo, X1, ...,X; of polynomials of degree
ng, N1, - ..,Nn;i, such that H = Hy and such that for each index i,

(4.1) H; = X] + Hi 11,

(42) 6n; < Tnipp < 6n; + 7.

Moreover, for each index i, there is a polynomial ¥; € F[T] of degree n; such that
(4.3) deg(H; +Y;") < 6n;.

We use (4.1) or (4.3) as long as the sequence (n;) is decreasing. Let r, if it exists, be the least
index such that 3(6n, — 1) < n. We use identity (1) r times, then we use identity (4.3) once. We
get

H=X{+ - +X_,+Y[+R,
with 3deg R < n. From Proposition 3.9, there exist Ry, ... Rjs € F[T] of degree < 3deg R such
that

R=R]+...+ R,

so that
(4.4) H=Xl+---+X +Y"+RI+...+R],
with deg X; = n; < ng = n,degY, =n, <ng =n,degR; < 3degR < n. Thus, (4.4) is a strict
sum of r + 13 seventh powers. From (4.2) we get that for ¢ > 1,

1—1
Tin; < 6'n + Z 7i6id
=0



Therefore, for any integer » > 1, we have

6\" 6\"
=1L = = = .
6n,- 1_6(7) n+ 35 36(7)

For r > 19, we have (%)T < 1—18. Suppose r = 19. If n > 2657, then
19 19
6 6 n
e —36(=-) <-.
6(7> n + 35 — 36 (7> =

5. OTHERS DESCENTS

The second descent process is based on very simple identities.
Proposition 5.1. The following identity holds in the ring F[X,Y],

(5.1) XY+ XY =X"+ (X +Y) + (X +aY)" + (X + (a + 1)Y)".
Proof. A simple verification.

Proposition 5.2. For a non-negative integer i and X € F[T], let

(5.2) Li(X) = X*T% 4 XT%.

Then, the map L; is Fo-linear and we have

(5.3) LX) =X"+(X+TH" + (X +aT)" + (X + (a + 1)T".
(5.4) T'Li(X) = Liy1(TX).

Proof. Immediate.




Corollary 5.3. Let n be a non-negative integer and let a € F. Then, we have

(5.5) aT*™ = Lo(aT™) + aT™,

(5.6) aT*" 3 = Ly (aT™) + aT™ 5.
If n > 0, then

(5.7) aT*"*? = Ly(aT™ ') + aT™ 1.
If n > 1, then

(5.8) aT*™ ! = L3(aT™2) + aT™ 116,

Proof. (5.5) and (5.6) are immediate. We get (5.7) and (5.8) noting that aT*"+? = qT4(n—1+6
and that aT4"+! = @T4("=2)+9, O

Roughly speaking, the second descent process uses the following idea. Let X = anyTV +
N1 TNt + ...+ 21T + z¢ be a polynomial of F[T]. Making use of (5.5)(5.8), we replace a
monomial 2, T% by the sum of an appropriate L;(T7) and a monomial of lower degree. We begin
with 2yTY and we follow decreasing degrees as long as the process gives monomials of lower
degree. For more details see [4, Proposition 5.4]. Mixing this process with the first descent process

mnuu leads to the following proposition.

Proposition 5.4. Let H € F[T] with degree Tn > 112. Then, there exist Xg, X1, X2, X3, Yo, Y1,
Y5,Y3,Z € F[T| with deg X; < n, degY; < n and deg Z < 21 such that

(5.9) H =X+ X+ X+ X3+ Lo(Yo) + L1 (Y1) + La(Y2) + L3(Y3) + Z.

Proof. See [4, Proposition 5.5]. O
We continue with other descent processes.




Proposition 5.5. Let n > 3 be an integer and let A € F[T] of degree < Tn. Then there exist
Xi,...,X4 € F[T)] of degree < n such that

3
deg (A—i—ZXZ) <7(n-1),

i=1

so that there exist X1,...,Xs € F[T] of degree < n such that

4
deg <A—|—ZXZ) =T7(n—1).

=1

Proof. Let

21
A= Z aiTi
i=0

be a polynomial of degree < 21. Proposition 2.8 gives the existence of

16
(U17u2au37$17$271537ylyyzay372172272’3) eFr )

a solution of (€(as1, azo, a19, a1s, a17 + as, aie, a1s)) such that wjusus # 0.




Therefore, we have

e

,,
Il
i

U; = 21,

e
£
STeo
2

I

(=)
N}
=

=
3
,Zl(u?yi + u?z?) = arg,
1=
3
3 (uz +wizd) = ags,

@
Il
i

3 2.2 2,0\ _
(uSz; + uiy? +wixdy;) = arr,

NgES

s
Il
i

2 2 2,2\ _
(’U/iﬂ]i Z5 ar UiT;Y; aF u; (L'i) = Q16,

e

s
Il
e

2.2 2
(uZz? + usy? + ulziy; + wixd) = ass.

e

s
Il
i

\

Let

3
B= (A + D (T + 5% + 4T + zi)7> :
=1
so that
deg B < 14.

This gives the first part of the proposition in the case when n = 3. We get the second part of the
proposition in the case n = 3 taking

X, — 0 if degB =14,

YT T? if degB < 14.




Let n > 3 be an integer and let A € F[T] of degree < 7n. By euclidean division, there is a pair
(Q, R) € F[T] such that, respectively,

A=T""3Q+ R,  degQ <21, degR<7(n-3).
There exist Xi,...,X3 € F[T] and X3,..., X, € F[T], of degree < 3 such that

3
deg <Q+2Xi7) < 14,

i=1

and

4
deg <Q+ZXZ> = 14,

=1

respectively. Therefore,

deg (T7("‘3)(Q +D X7 )) <7(n-1),

=1

and
4
deg (T7(”‘3)(Q +> X7 )) =7(n—1),
i=1
respectively, so that,

3
deg (R +T709Q + ZXZ) <7(n-1),

i=1



and

4
deg <R + T3 + ZXZ) =7(n—1),

=1
respectively.
6. END OF THE PROOF

Proposition 6.1. Let

28
A= Z aiTi
=0

be a polynomial in F[T] with deg A < 28. Then A is a sum

3 19
(6.1) A="X7+> Y],
=1 =1

where X1,...,X3,Y1,...,Y19 are polynomials of F[T| such that deg X; < 4 and deg¥; < 3.
Proof. Set

(6.2) 0 = Qg7 + G24 + a18 + a15 + a12 + ag + ag + as.

Proposition 2.10 gives the existence of

15
(vl,...,v3,u1,...,U3,x1,...,x3,y1,...,yg,zl,...,23) e F 5



a solution of (F(ass,asr, g6, s, @24, @23, a22,0) such that vy ...vs # 0. For such a solution, we

7

have
( 3
A28 = Z Vi,
i§1 3
agr = Yu; = Y viu,,
i=1 i=1 ,
age = y_ (zi +vfui) = Y (vz; + viuf),
i=1 i=1
3 3
azs = 3 (yi + i) = 3 (vfys + vid),
(63) zgl =1
age = Y (Vi +viufw; + u; + 2;)
i=1
3
= Y (vx? + vz + vdu; + viz),
i=1
3
azs = Y (viugy; + vusag +viug),
i=1
3
age = Yy, ('Uzu? + ’Uz'fb’? F 'ufyf + viu?zi 4F vfuixi),
i=1
and
3
(6.4) o= (VVuiy; + viwy; + viziy:).

1
Fori=1,2,3, let
X; =0T + wT? + 2,7 + 4, T + 2




and let s
B=A+> X].

=1

Identities (6.3) show that deg B < 21. Set

21
B=>) bT"
=1

From (6.2), (6.3) and (6.4),
big + bis + bia + by + b + b3 =0,
so that from Theorem 3.3, there exist polynomials Y3, ..., Y19 € F[T] with degree < 3 such that

19
B=>Y/.
p=1l
m

Corollary 6.2. Let A € F[T] be such that 21 < deg A < 28. Then A is a strict sum of 22
seventh powers.

Theorem 6.3.

(i) Every polynomial P € F[T] whose degree > 441 is divisible by 7 is a strict sum of 32 seventh
powers.
(i) Ewvery polynomial P € F[T| with degree > 435 is a strict sum of 33 seventh powers.
(#ii) Every polynomial P € F[T| such that deg P > 112 and deg P is divisible by 7 is a strict
sum of 42 seventh powers.
(i) Every polynomial P € F[T| with degree > 106 is a strict sum of 43 seventh powers.



Proof. As for the proof of Theorem 4.1, it is sufficient to prove (i) and (iil). Let H € F[T] of
degree 7n with n > 16. From (5.9) and (5.3), we get that there exists Z € F[T] with deg Z < 21
such that H + Z is sum of 20 seventh powers of polynomials of degree < n. From Proposition 3.9,
there exist 71, ..., Z15 with deg Z; < 63 such that

12
z=Y 2.
i=1
If n > 63, then H is a strict sum of 32 seventh powers. This proves (i).
From Proposition 6.1, there exist Vi, ..., Vs € F[T] with degV; < 4 < n such that

22
7=377
i=1
so that H is a strict sum of 42 seventh powers. This proves (iii). O

Corollary 6.4. We have
G(4,7) = G*(4,7) < 33.

We end the study of the set S*(F,T) dealing with polynomials P such that 29 < deg P < 105.

Proposition 6.5. Let A € F[T].

(i) If 29 < deg A < 35, then A is a strict sum of 25 seventh powers.
(ii) If deg A = 42, then A is a strict sum of 26 seventh powers.
(1i1) If 35 < deg A < 42, then A is a strict sum of 27 seventh powers.
(iv) If deg A = Tn with 7 < n < 14, then A is a strict sum of n + 20 seventh powers.
(v) If Tn — 7 < deg A < Tn with 7 < n < 14, then A is a strict sum of n + 21 seventh powers.
(vi) If deg A = Tn with 14 < n < 21, then A is a strict sum of n+ 19 seventh powers.



(vit) If Tn — 7 < deg A < Tn with 14 < n < 21, then A is a strict sum of n + 20 seventh powers.
(viti) If deg A = Tn with 21 < n < 28, then A is a strict sum of n + 18 seventh powers.
(iz) If Tn — 7 < deg A < Tn with 21 < n < 28, then A is a strict sum of n + 19 seventh powers.

Proof. As observed before, it suffices to prove (i), (ii), (iv), (vi) and (viii).

1. Suppose that 29 < deg A < 35. From Proposition 5.5, there exist X3, Xo, X3€ F[T] of degree

3

< 5 such that deg(A+ Y. X7) < 28. From Proposition 6.1, there exist Y1, ..., Yas € F[T] of degree
i=1

< 4 such that

3 22
A+ X7 =>"Y].
i=1 j=1

2. Suppose that deg A = 42. From [1, Lemma 5.2-(i)], there is a polynomial X € F[T] of degree
6 such that deg(A+ X7) < 35. From above, there exist Y7,. .., Ya5 € F[T] of degree < 5 such that

25
7T _ 7
A+XT=3"v]
j=1

3. We prove (iv), (vi) and (viil) by induction. Suppose that for n > 7, every polynomial of
degree 7k with k < n is a strict sum of s(k) seventh powers. Let A € F[T] of degree 7n. From |1,
Lemma 5.2-(ii)], there is a polynomial X € F[T)] of degree n such that deg(A + X7) = 7m(n) with
m(n) defined by the condition 6n < 7m(n) < 6n + 7. We have

n—1 if 7<n<13,
mn)=¢ n—2 if 14<n<20
n—3 it 21 <n<27.



The induction hypothesis gives that A + X7 is a strict sum of s(m(n)) seventh powers, so that A
is a strict sum of s(m(n)) + 1 seventh powers. We have s(6) = 26. Thus,

n + 20 if 7<n<13,
s(n)=4¢ n+19 if 14 <n <20,
n+ 18 if 21 <n<2T.

Proposition 6.6. We have
S*(F[T),7) = AU AU A3 U Ay,
where

7
(i) A is the set of polynomials A = > a,T™ € F[T] such that a1 = a4, a2 = as,a3 = ag,

n=0

14
(ii) As is the set of polynomials A= > a,T™ € F[T]| with 7 < deg A < 14 such that

n=0

ay + ag + ayp + a3 = 0,
az + a5 + ag + ay; = 0,
az + ag +ag + ap = 0,

21
(iii) As is the set of polynomials A= 3% a,T™ € F[T] with 14 < deg A < 21 such that
n=0

az + ag + ag + a12 + a5 + a1z = 0,
(iv) Ao = {A € F[T] | deg A > 21}.
Proof. With Theorems 3.1, 3.2, 3.3, Corollary 6.2 and Theorem 6.3. O




Theorem 6.7. We have

9" (4,7) < 43.

Proof. From Theorems 3.1, 3.2, 3.3, every polynomial A € S*(F[T],7) of degree < 21 is a
strict sum of 19 seventh powers. From Corollary 6.2 and Proposition 6.5, every polynomial A €
S*(F[T],7) such that 21 < deg A < 175 is a strict sum of 43 seventh powers. From Theorem 6.3,
every polynomial A € S*(F[T],7) such that deg A > 106 is a strict sum of 43 seventh powers. [
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