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ON BIEMBEDDING AN IDEMPOTENT LATIN SQUARE
WITH ITS TRANSPOSE

D. M. DONOVAN, T. S. GRIGGS and C. PSOMAS

Abstract. Let L be an idempotent Latin square of side n, thought of as a set of ordered triples (i, j, k)

where L(i, j) = k. Let I be the set of triples (i, i, i). We consider the problem of biembedding the
triples of L \ I with the triples of L′ \ I, where L′ is the transpose of L, in an orientable surface. We
construct such embeddings for all doubly even values of n.

1. Introduction

A triangular embedding of a complete regular tripartite graph Kn,n,n in a surface is face two-
colourable if and only if the surface is orientable [4]. In this case, the faces of each colour class can
be regarded as the triples of a transversal design TD(3, n), of order n and block size 3. Such a design
comprises a triple (V,G,B), where V is a 3n-element set (the points), G is a partition of V into three
parts (the groups) each of cardinality n, and B is a collection of 3-element subsets (the blocks) of
V such that each 2-element subset of V is either contained in exactly one block of B, or in exactly
one group of G, but not both. Two TD(3, n)s, (V, {G1, G2, G3},B) and (V ′, {G′1, G′2, G′3},B′) are
said to be isomorphic if, for some permutation π of {1, 2, 3}, there exist bijections αi : Gi → G′π(i),
i = 1, 2, 3, that map blocks of B to blocks of B′. A Latin square of side n determines a TD(3, n)
by assigning the row labels, the column labels, and the entries as the three groups of the design.
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Two Latin squares are said to be in the same main class if the corresponding transversal designs
are isomorphic. A question that naturally arises is: which pairs of (main classes of) Latin squares
may be biembedded?

This question seems to be difficult. On the existence side, recursive constructions are given in [1,
5, 7]. Of particular interest are biembeddings of Latin squares which are the Cayley tables of groups
and other algebraic structures. An infinite class of biembeddings of Latin squares representing the
Cayley tables of cyclic groups of order n is known for all n ≥ 2. This is the family of regular
biembeddings constructed using a voltage graph based on a dipole with n parallel edges embedded
in a sphere [10], or alternatively directly from the Latin squares defined by Cn(i, j) = i + j
(mod n), and C ′n(i, j) = i + j − 1 (mod n) [4]. A regular biembedding of a Latin square of side
n has the greatest possible symmetry, with full automorphism group of order 12n2, the maximum
possible value. Recently, two other families of biembeddings of the Latin squares representing the
Cayley tables of cyclic groups, also with a high degree of symmetry, have been constructed [1, 2].
Enumeration results for biembeddings of Latin squares of side 3 to 7 are given in [4] and for groups
of order 8 in [6]. In [8], it was shown that with the single exception of the group C2

2 , the Cayley
table of each Abelian group appears in some biembedding.

In this paper, we consider a slightly different but related aspect of biembeddings of Latin squares.
Let L be a Latin square of side n, which we will think of as a set of ordered triples (i, j, k) where
entry k occurs in row i, column j of L, k = L(i, j). Let L′ be the transpose of L, i.e. (i, j, k) ∈ L′
if and only if (j, i, k) ∈ L. Clearly no biembedding of L with L′ exists because triples (i, i, k) occur
in both squares. However, suppose that L is idempotent, i.e. (i, i, i) ∈ L for all i. Denote the set
of idempotent triples by I. Then it may be possible to biembed the triples L \ I with the triples
L′ \ I and it is this question which is the focus of what follows.

So, given an idempotent Latin square L of side n, we denote the set of row labels by R =
{0r, 1r, . . . , (n − 1)r}, the set of column labels by C = {0c, 1c, . . . , (n − 1)c}, the set of entries by
E = {0e, 1e, . . . , (n−1)e}, and the set of idempotent triples by I = {{ir, ic, ie} : i = 0, 1, . . . , n−1}.
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Now consider the sets of triples L \ I (the black triples) and L′ \ I (the white triples) and glue
them together along common sides, {ir, jc}, i 6= j, {jc, ke}, j 6= k, {ke, ir}, k 6= i. The resulting
topological space is not necessarily a surface but is certainly a pseudosurface which we will call the
transpose pseudosurface of L \ I and denote by S(L \ I). Within this framework, the main interest
is when S(L \ I) is a surface, in which case we say that the idempotent Latin square L biembeds
with its transpose and write (L \ I) ./ (L′ \ I).

From a graph theoretic viewpoint, a biembedding of an idempotent Latin square with its trans-
pose, as described above, gives a face two-colourable triangular embedding of a complete regular
tripartite graph Kn,n,n with the removal of a triangle factor. For the same reason as applies with-
out the removal of a triangular factor, the surface is orientable. In such a biembedding, the number
of vertices, V = 3n, the number of edges, E = 3(n2 − n), and the number of faces, F = 2(n2 − n).
Therefore, using Euler’s formula, V + F − E = 4n− n2 which is even if and only if n is even. In
the next section, we construct biembeddings of idempotent Latin squares with their transpose for
all doubly even values of n. We leave the problem for singly even values for future investigation.
In section 3, we consider the situation when the transpose L′ is mutually orthogonal to L, i.e. the
Latin square L is a self-orthogonal Latin square (SOLS). Biembeddings of a self-orthogonal Latin
square L with its transpose are constructed for all n = 2m,m ≥ 2.

We represent the biembeddings by means of rotation schemes. The rotation about a point ir is
defined to be the set of cycles
(j1
ck

1
e j

2
ck

2
e . . . j

a1−1
c ka1−1

e )(ja1
c k

a1
e . . . ja2−1

c ka2−1
e ) . . . (jam−1

c k
am−1
e . . . jam−1

c kam−1
e )

where ks = L(i, js) = L′(i, js+1), s ∈ {1, 2, . . . , n − 1} \ {a1 − 1, a2 − 1, . . . , am − 1} and kat−1 =
L(i, jat−1) = L′(i, jat−1), 1 ≤ t ≤ m, 1 ≤ m ≤ n − 1 with a0 = 1 and am = n. The cycles are
the order of vertices adjacent to ir as determined by the biembedding. The rotation about a point
jc or ke is defined analogously. The two Latin squares L and L′ are biembedded in a surface if
and only if the rotation about each point is a single cycle. The biembedding is in an orientable
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surface because the rotations about points jc and ke can be ordered so that whenever the cycle
about a vertex ir contains the sequence . . . jcke . . . then the cycle about jc contains the sequence
. . . keir . . . and the cycle about ke contains the sequence . . . irjc . . . .

To conclude the introduction, below is an example which illustrates some of the ideas presented
in this section.

Example 1.1. There are two idempotent Latin squares of side 4 each of which is the transpose
of the other.

0 1 2 3
0 0 2 3 1
1 3 1 0 2
2 1 3 2 0
3 2 0 1 3

0 1 2 3
0 0 3 1 2
1 2 1 3 0
2 3 0 2 1
3 1 2 0 3

These biembed in the torus as shown.
The rotation scheme is

0r : (1c2e3c1e2c3e) 0c : (1e2r3e1r2e3r) 0e : (1r2c3r1c2r3c)
1r : (2c0e3c2e0c3e) 1c : (2e0r3e2r0e3r) 1e : (2r0c3r2c0r3c)
2r : (3c0e1c3e0c1e) 2c : (3e0r1e3r0e1r) 2e : (3r0c1r3c0r1c)
3r : (0c2e1c0e2c1e) 3c : (0e2r1e0r2e1r) 3e : (0r2c1r0c2r1c)
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0r 1c 2r 1e 0r

2c 3e 0c
2c

3r 1r
3r

2e 0e 3c
2e

0r 1c 2r 1e 0r

u u u u u

u u u u

u u u

u u u u

u u u u u

The rotation scheme is

0r : (1c2e3c1e2c3e) 0c : (1e2r3e1r2e3r) 0e : (1r2c3r1c2r3c)
1r : (2c0e3c2e0c3e) 1c : (2e0r3e2r0e3r) 1e : (2r0c3r2c0r3c)
2r : (3c0e1c3e0c1e) 2c : (3e0r1e3r0e1r) 2e : (3r0c1r3c0r1c)
3r : (0c2e1c0e2c1e) 3c : (0e2r1e0r2e1r) 3e : (0r2c1r0c2r1c)

2 Idempotent Latin squares of doubly

even order

In order to construct a Latin square of doubly even order which biem-
beds with its transpose, we use the concept of a near-Hamiltonian
factorization of a complete directed graph together with known tri-
angulations of complete (undirected) graphs in orientable surfaces.
Although the main results are when the side of the Latin square
n = 4m, m ≥ 1, some of the theory is more general and so to
begin, we do not place this restriction on n. Let Kn (resp. K∗

n)

5
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2. Idempotent Latin squares of doubly
even order

In order to construct a Latin square of doubly even order which biembeds with its transpose, we use
the concept of a near-Hamiltonian factorization of a complete directed graph together with known
triangulations of complete (undirected) graphs in orientable surfaces. Although the main results
are when the side of the Latin square n = 4m, m ≥ 1, some of the theory is more general and so to
begin, we do not place this restriction on n. Let Kn (resp. K∗n) be the complete undirected (resp.
directed) graph on a set of n vertices, {0, 1, . . . , n − 1}. A near-Hamiltonian circuit of K∗n is an
ordered (n−1)-cycle (x1, x2, . . . , xn−1) where xi 6= xj if i 6= j. A near-Hamiltonian factorization F
of K∗n is a partition of the directed edges of K∗n into near-Hamiltonian circuits. A straightforward
counting argument shows that F contains n near-Hamiltonian circuits and that each vertex i,
0 ≤ i ≤ n− 1, is absent from precisely one circuit.

Given a near-Hamiltonian factorization F of K∗n, an idempotent Latin square LF of side n can
be constructed as follows,

1. LF (i, i) = i, 0 ≤ i ≤ n− 1,
2. LF (i, j) = k, 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1, i 6= j, where the directed edge (i, j) occurs in

the (n− 1)-cycle which does not contain k.
We then have the following result.

Lemma 2.1. Let F be a near-Hamiltonian factorization of the complete directed graph K∗n, and
let LF be the Latin square constructed from F as above. Let S(LF ) be the transpose pseudosurface
of LF . Then the rotation about every entry point ke, 0 ≤ k ≤ n − 1, is a single cycle of length
2n− 2 if n is even and two cycles each of length n− 1 if n is odd.

Proof. Consider the near-Hamiltonian circuit not containing k. Suppose that it is (x1, x2, . . . , xn−1).
Then entry k occurs in the following (row, column) pairs of LF : (x1, x2), (x2, x3), . . . , (xn−1, x1), (k, k)
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and in the following (row, column) pairs of L′F : (x2, x1), (x3, x2), . . . , (x1, xn−1), (k, k). The rotation
scheme about ke is then
((x1)r(x2)c(x3)r(x4)c . . . (xn−2)c(xn−1)r(x1)c(x2)r . . . (xn−2)r(xn−1)c)

if n is even, and
((x1)r(x2)c(x3)r(x4)c . . . (xn−2)r(xn−1)c)((x1)c(x2)r(x3)c(x4)r . . . (xn−2)c(xn−1)r)
if n is odd. �

A source of near-Hamiltonian factorizations of complete directed graphs K∗n is provided by
triangulations of the complete graph Kn in an orientable surface. It is well-known that these exist
precisely when n ≡ 0, 3, 4, 7 (mod 12) [9]. Given such a triangulation on vertex set {0, 1, . . . , n−1},
first choose an arbitrary but fixed orientation. A near-Hamiltonian circuit avoiding a point is
obtained by the rotation about that point in the selected orientation, and the set of all such near-
Hamiltonian circuits forms a near-Hamiltonian factorization. Using this construction, we then
have the following result.

Lemma 2.2. Let n ≡ 0, 3, 4, 7 (mod 12), and T be a triangulation of the complete graph Kn in
an orientable surface. Let F (T ) be the near-Hamiltonian factorization of K∗n constructed as above.
Let LF (T ) be the Latin square constructed from F (T ) and S(LF (T )) the transpose pseudosurface
of LF (T ). Then the rotation about every row point ir, 0 ≤ i ≤ n − 1, and every column point jc,
0 ≤ j ≤ n− 1, is a single cycle of length 2n− 2 if n is even, and two cycles each of length n− 1 if
n is odd.

Proof. The Latin square L constructed from the triangulation T has the property that if
L(i, j) = k then L(j, k) = i and L(k, i) = j. It follows that the rotation about a row point ir
(resp. column point jc) can be obtained from the rotation about ie (resp. je) by applying the
permutations (e r c) (resp. (e c r)) to the suffixes. �

The following theorem is now an immediate consequence of Lemmas 2.1 and 2.2.
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Theorem 2.1. Let n ≡ 0, 4 (mod 12). Then there exists an idempotent Latin square L of side
n which biembeds with its transpose, i.e. (L \ I) ./ (L′ \ I).

In the cases where n ≡ 3, 7 (mod 12), the transpose pseudosurface S(LF (T )) constructed as in
Lemma 2.2, although not a surface, does exhibit some regularity in that every point is a pinch
point and the rotation about each point consists of two cycles each of length n − 1. Moreover,
if we separate each pinch point, the pseudosurface fractures into two orientable surfaces having
isomorphic triangulations. Let Ci,α,β , 0 ≤ i ≤ n − 1, α, β ∈ {r, c, e}, α 6= β, represent the cycle
((xi,1)α(xi,2)β . . . (xi,n−2)α(xi,n−1)β). Then the rotation about a point (xi)e is Ci,r,cCi,c,r, about
a point (xi)r is Ci,c,eCi,e,c, and about a point (xi)c is Ci,e,rCi,r,e. Now separate each entry point
(xi)e into two points (xi)0

e and (xi)1
e so that the rotation about (xi)0

e is Ci,r,c and about (xi)1
e is

Ci,c,r. The row and column points may then also be separated and labelled appropriately so that
the rotation about (xi)0

e is C0
i,r,c, (xi)0

r is C0
i,c,e, and (xi)0

c is C0
i,e,r and about (xi)1

e is C1
i,c,r, (xi)1

r

is C1
i,e,c, and (xi)1

c is C1
i,r,e.

It remains to deal with the case n ≡ 8 (mod 12). We use a triangulation of the complete graph
Kn−1 in an orientable surface to first construct a near-Hamiltonian factorization F of K∗n−1 and
then augment this to obtain a near-Hamiltonian factorization F̄ of K∗n.

Construction of F̄
Let n ≡ 8 (mod 12). Then there exists a triangulation T of the complete graph Kn−1 in an
orientable surface, having a cyclic automorphism [9, 11, 12]. Without loss of generality assume
that the vertex set of Kn−1 is N = {0, 1, 2, . . . , n − 2} and the cyclic automorphism is generated
by the mapping i 7→ i+ 1 (mod n− 1). Let F (T ) = {C0, C1, . . . , Cn−2} be the near-Hamiltonian
factorization of K∗n−1 constructed from T as above, where Ci = ((x1 + i) (x2 + i) . . . (xn−2 + i)),
0 ≤ i ≤ n−2, is the near-Hamiltonian circuit which avoids the vertex i. Now choose l, 1 ≤ l ≤ n−2,
relatively prime to n−1, (in fact we can choose l = 1). Then, because T has a cyclic automorphism,
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there exists j, 1 ≤ j ≤ n− 2, such that xj+1 − xj = l, where if j = n− 2, xj+1 = x1. Introduce a
new vertex ∞ and let C̄i = ((x1 + i) (x2 + i) . . . (xj + i)∞ (xj+1 + i) . . . (xn−2 + i)). Further let
C̄∞ = (0 l 2l . . . (n − 2)l), arithmetic modulo n − 1. Let F̄ (T ) = {C̄0, C̄1, . . . , C̄n−2, C̄∞}. Then
F̄ (T ) is a near-Hamiltonian factorization of K∗n on vertex set N ∪ {∞}. We can now prove the
following theorem.

Theorem 2.2. Let n ≡ 8 (mod 12). Then there exists an idempotent Latin square L of side n
which biembeds with its transpose, i.e. (L \ I) ./ (L′ \ I).

Proof. Let F̄ (T ) be a near-Hamiltonian factorization of the complete directed graph K∗n ob-
tained by the triangulation T of the complete graph Kn−1 having a cyclic automorphism, as
above. Let LF̄ (T ) be the Latin square constructed from F̄ (T ) and S(LF̄ (T )) the transpose pseu-
dosurface. We need to prove that the rotations about row points, column points and entry points
are all single cycles.
Entry points. This follows immediately from Lemma 2.1.
Row points. Let xp = l and xq = n− 1− l. The rotation about the point 0r is
(∞c(xp+1)e . . . (xn−2)e(x1)c . . . (xp)c∞e(xq)c . . . (xn−2)c(x1)e . . . (xq−1)e).

The rotation about the point ir, i 6= 0, is obtained by adding i, modulo n− 1. The rotation about
the point ∞r is
(0c(xq−1)e(n− 1− l)c(xq−1 − l)e(n− 1− 2l)c(xq−1 − 2l)e . . . lc(xq−1 + l)e).

Column points. With the same definition of p and q as for the row points, the rotation about the
point 0c is
(∞e(xq)r . . . (xn−2)r(x1)e . . . (xq−1)e∞r(xp+1)e . . . (xn−2)e(x1)r . . . (xp)r).

Again the rotation about the point ic, i 6= 0, is obtained by adding i, modulo n− 1. The rotation
about the point ∞c is
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((xp+1)e0r(xp+1 − l)e(n− 1− l)r(xp+1 − 2l)e(n− 1− 2l)r . . . (xp+1 + l)elr). �

Example 2.1. Consider the triangulation of the complete graph K7 on vertex set {0, 1, 2, 3,
4, 5, 6} in a torus, where the triangles are given by the sets {i, 1 + i, 3 + i} and {i, 3 + i, 2 + i},
0 ≤ i ≤ 6. The rotation Ci about a point i is (1 + i 3 + i 2 + i 6 + i 4 + i 5 + i). Choose l = 2.
Then the rotation C̄i is (1 + i∞ 3 + i 2 + i 6 + i 4 + i 5 + i) and C̄∞ = (0 2 4 6 1 3 5). The Latin
square of order 8 formed from this near-Hamiltonian factorization is

0 1 2 3 4 5 6 ∞
0 0 3 ∞ 2 5 1 4 6
1 5 1 4 ∞ 3 6 2 0
2 3 6 2 5 ∞ 4 0 1
3 1 4 0 3 6 ∞ 5 2
4 6 2 5 1 4 0 ∞ 3
5 ∞ 0 3 6 2 5 1 4
6 2 ∞ 1 4 0 3 6 5
∞ 4 5 6 0 1 2 3 ∞

The rotations about the various points are as follows.
ie : ((1 + i)r∞c(3 + i)r(2 + i)c(6 + i)r(4 + i)c(5 + i)r(1 + i)c∞r(3 + i)c(2 + i)r(6 + i)c(4 + i)r(5 + i)c)

∞e : (0r2c4r6c1r3c5r0c2r4c6r1c3r5c)

ir : ((1 + i)c(3 + i)e(2 + i)c∞e(5 + i)c(1 + i)e(3 + i)c(2 + i)e(6 + i)c(4 + i)e∞c(6 + i)e(4 + i)c(5 + i)e)

∞r : (0c4e5c2e3c0e1c5e6c3e4c1e2c6e)

ic : ((1 + i)e(3 + i)r(2 + i)e(6 + i)r(4 + i)e∞r(6 + i)e(4 + i)r(5 + i)e(1 + i)r(3 + i)e(2 + i)r∞e(5 + i)r)

∞c : (0e1r5e6r3e4r1e2r6e0r4e5r2e3r)
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3. Self-orthogonal Latin squares

In this section, we present a finite field construction to biembed a self-orthogonal Latin square
(SOLS) with its transpose in an orientable surface. First recall the definitions. Let L, M be
Latin squares of side n. Then L and M are said to be orthogonal if L(i1, j1) = L(i2, j2) and
M(i1, j1) = M(i2, j2) implies i1 = i2 and j1 = j2. If M = L′, the transpose of L, then L is said to
be a self-orthogonal Latin square. In a SOLS, the main diagonal is a transversal and without loss
of generality, by renaming the entries, it can be assumed that L is idempotent.

The construction is not new, see for example Construction 5.44 in [3], and applies for any finite
field except those of order 2 or 3. We present it in this more general form but by the calculation
using Euler’s formula given in the introduction, a biembedding can exist only for even values.

Let ω /∈ {0,−1, 1} be a generator of the cyclic multiplicative group of GF(pm). Define L(i, j) =
(i+ ωj)/(1 + ω). Then it is easily verified that L is a self-orthogonal Latin square with the rows,
columns, and entries indexed by the elements of the Galois field, which in what follows it will be
convenient to represent by 0, 1, ω, . . . , ωn−2. Further let ζ(k) = ωk/(1 + ω), 0 ≤ k ≤ n− 2.

We now restrict our attention to Galois fields GF(2m), m ≥ 2. By considering the rotations
about each of the row, column and entry points we show that (L \ I) ./ (L′ \ I).

(1) Row 0 of L and column 0 of L′ are as follows.

0 1 ω ω2 . . . ωn−3 ωn−2

0 0 ζ(1) ζ(2) ζ(3) . . . ζ(n−2) ζ(0)

Row 0 of L′ and column 0 of L are as follows.
0 1 ω ω2 . . . ωn−3 ωn−2

0 0 ζ(0) ζ(1) ζ(2) . . . ζ(n−3) ζ(n−2)

Clearly the rotation about the points 0r and 0c are single cycles.
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(2) Row ωk of L and column ωk of L′, 0 ≤ k ≤ n− 2, are as follows.

0 ω0 = 1 ω ω2

ωk ζ(k) ζ(k) + ζ(1) ζ(k) + ζ(2) ζ(k) + ζ(3)

. . . ωk−1 ωk ωk+1

ωk . . . ζ(k) + ζ(k) = 0 ζ(k) + ζ(k+1) = ωk ζ(k) + ζ(k+2)

. . . ωn−3 ωn−2

ωk . . . ζ(k) + ζ(n−2) ζ(k) + ζ(0)

Row ωk of L′ and column ωk of L, 0 ≤ k ≤ n− 2, are as follows.

0 ω0 = 1 ω ω2

ωk ζ(k+1) ζ(k+1) + ζ(0) ζ(k+1) + ζ(1) ζ(k+1) + ζ(2)

. . . ωk−1 ωk ωk+1

ωk . . . ζ(k+1) + ζ(k−1) ζ(k+1) + ζ(k) = ωk ζ(k+1) + ζ(k+1) = 0

. . . ωn−3 ωn−2

ωk . . . ζ(k+1) + ζ(n−3) ζ(k+1) + ζ(n−2)

For each k, 0 ≤ k ≤ n − 2, define q0 = q0(k) by the equation ζ(k) = ζ(k+1) + ζ(q0), i.e. ωq0 =
ωk(1−ω). Further, for 1 ≤ i ≤ n−2, define qi = qi(k) by the equations ζ(qi) = ζ(q0)(1+ω+· · ·+ωi),
i.e. ωqi = ωk(1 − ωi+1). Note that for 0 ≤ i ≤ n − 2, the values ωqi are distinct, as are the val-
ues ζ(qi). Moreover ωqn−2 = 0. The rotation about a row point ωkr is a single cycle as follows.
(0c (ζ(k+1) + ζ(q0))e ωq0c (ζ(k+1) + ζ(q1))e ωq1c (ζ(k+1) + ζ(q2))e . . . ω

qn−3
c (ζ(k+1) + ζ(qn−2))e)
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The rotation about a column point ωkc is similar and is also a single cycle.

(3) In L, entry 0 occurs in cells (i,− i
ω ), and in L′ in cells (− i

ω , i), 1 = ω0 ≤ i ≤ ωn−2. The
rotation about the point 0e is therefore,
(1r(− 1

ω
)c(

1
ω2 )r(− 1

ω3 )c . . . ( 1
ωn−2 )r(− 1

ωn−1 )c(
1
ω
)r(− 1

ω2 )c . . . ( 1
ωn−3 )r(− 1

ωn−2 )c)

i.e. (1r( 1
ω )c( 1

ω2 )r( 1
ω3 )c . . . ( 1

ωn−2 )r1c( 1
ω )r( 1

ω2 )c . . . ( 1
ωn−3 )r( 1

ωn−2 )c)

which is a single cycle.

(4) In L, entry ωk, 0 ≤ k ≤ n − 2, occurs in cells (0, ωk + ωk−1) and (ωi, ωk + ωk−1 − ωi−1),
0 ≤ i ≤ n− 2. Similarly in L′, entry ωk occurs in cells (0, ωk + ωk+1) and (ωk + ωk−1 − ωi−1, ωi),
0 ≤ i ≤ n− 2.

The rotation about the point ωke , where k is even is
(0r (ωk + ωk−1)c (ωk − ωk−2)r (ωk + ωk−3)c (ωk − ωk−4)r (ωk + ωk−5)c . . .
(ωk − ω2)r (ωk + ω)c (ωk − 1)r (ωk + ωn−2)c (ωk − ωn−3)r . . .
(ωk − ωk+1 = ωk + ωk+1)r 0c (ωk + ωk−1 = ωk − ωk−1)r(ωk + ωk−2)c . . .
(ωk − ω)r (ωk + 1)c (ωk − ωn−2)r (ωk + ωn−3)c . . . (ωk + ωk+1)c)

and where k is odd is
(0r (ωk + ωk−1)c (ωk − ωk−2)r (ωk + ωk−3)c (ωk − ωk−4)r (ωk + ωk−5)c . . .
(ωk − ω)r (ωk + 1)c (ωk − ωn−2)r (ωk + ωn−3)c (ωk − ωn−4)r . . .
(ωk − ωk+1 = ωk + ωk+1)r 0c (ωk + ωk−1 = ωk − ωk−1)r(ωk + ωk+1)c . . .
(ωk − ω2)r (ωk + ω)c (ωk − 1)r (ωk + ωn−2)c . . . (ωk + ωk−1)c)

in either case, a single cycle.
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It is worth remarking that for a Galois field GF(pm) where p is an odd prime and m ≥ 1,
except for (p,m) = (3, 1), the rotation about all row points and all column points is also a single
cycle. The proof is precisely as given above for GF(2m), m ≥ 2, except for the observations that
ζ(k) + ζ(k) = ζ(k+1) + ζ(k+1) = 0 which in fact play no part in the proof. However the proof that
the rotation about all entry points is a single cycle, does rely on the field having characteristic 2.
Otherwise, we find that the rotation about all entry points is two cycles each of length pm − 1.
Thus in these cases, although the transpose pseudosurface S(L \ I) is not a surface, it does exhibit
some regularity.

Example pr1.1 provides an example of a self-orthogonal Latin square which can be biembedded
with its transpose. A further example is given below.

Example 3.1. Let F = GF(23) with irreducible polynomial x3 = x+ 1. Choose ω = x. Then
(x, x2, x3, x4, x5, x6, x7) = (x, x2, x+ 1, x2 + x, x2 + x+ 1, x2 + 1, 1). The Latin square L, obtained
from the construction described in this section is

0 1 x x2 x+ 1 x2 + x x2 + x+ 1 x2 + 1
0 0 x2 + x+ 1 x2 + 1 1 x x2 x+ 1 x2 + x

1 x2 + x 1 x+ 1 x2 + x+ 1 x2 x x2 + 1 0
x x2 + x+ 1 0 x x2 + x x2 + 1 x+ 1 x2 1
x2 x2 + 1 x 0 x2 x2 + x+ 1 1 x2 + x x+ 1
x+ 1 1 x2 + x x2 0 x+ 1 x2 + 1 x x2 + x+ 1
x2 + x x x2 + 1 x2 + x+ 1 x+ 1 0 x2 + x 1 x2

x2 + x+ 1 x2 x+ 1 1 x2 + 1 x2 + x 0 x2 + x+ 1 x

x2 + 1 x+ 1 x2 x2 + x x 1 x2 + x+ 1 0 x2 + 1

The rotation scheme is
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0r : (1c(x2 + x)e(x2 + 1)c(x+ 1)e(x2 + x+ 1)cx2
e(x

2 + x)cxe(x+ 1)c1ex2
c(x

2 + 1)exc(x2 + x+ 1)e)
1r : (0c(x2 + x+ 1)ex2

cxe(x
2 + x)c(x2 + 1)e(x2 + x+ 1)c(x+ 1)exc0e(x2 + 1)cx2

e(x+ 1)c(x2 + x)e)
xr : ((x+ 1)cx2

e(x
2 + x+ 1)c1e(x2 + 1)c(x2 + x)ex2

c0e1c(x+ 1)e(x2 + x)c(x2 + x+ 1)e0c(x2 + 1)e)
x2
r : ((x2 + 1)cxe1c(x2 + x+ 1)e(x+ 1)c0exc(x2 + x)e(x2 + x+ 1)c(x2 + 1)e0c1e(x2 + x)c(x+ 1)e)

(x+ 1)r : (xc(x2 + 1)e(x2 + x)c0ex2
c(x

2 + x+ 1)e(x2 + 1)c1e0cxe(x2 + x+ 1)c(x2 + x)e1cx2
e)

(x2 + x)r : ((x2 + x+ 1)c0e(x+ 1)c(x2 + 1)e1cxe0cx2
e(x

2 + 1)c(x2 + x+ 1)exc(x+ 1)ex2
c1e)

(x2 + x+ 1)r : ((x2 + x)c1excx2
e0c(x+ 1)e1c(x2 + 1)ex2

c(x
2 + x)e(x+ 1)cxe(x2 + 1)c0e)

(x2 + 1)r : (x2
c(x+ 1)e0c(x2 + x)exc1e(x+ 1)c(x2 + x+ 1)e(x2 + x)cx2

e1c0e(x
2 + x+ 1)cxe)

0c : (1r(x2 + x+ 1)exr(x2 + 1)ex2
r1e(x+ 1)rxe(x2 + x)rx2

e(x
2 + x+ 1)r(x+ 1)e(x2 + 1)r(x2 + x)e)

1c : (0r(x2 + x)e(x+ 1)rx2
e(x

2 + 1)r0exr(x+ 1)e(x2 + x+ 1)r(x2 + 1)e(x2 + x)rxex2
r(x

2 + x+ 1)e)
xc : ((x+ 1)r(x2 + 1)e0r(x2 + x+ 1)e(x2 + x)r(x+ 1)e1r0ex2

r(x
2 + x)e(x2 + 1)r1e(x2 + x+ 1)rx2

e)
x2
c : ((x2 + 1)r(x+ 1)e(x2 + x)r1e0r(x2 + 1)e(x2 + x+ 1)r(x2 + x)exr0e(x+ 1)r(x2 + x+ 1)e1rxe)

(x+ 1)c : (xrx2
e1r(x

2 + x)e(x2 + x+ 1)rxe0r1e(x2 + 1)r(x2 + x+ 1)ex2
r0e(x

2 + x)r(x2 + 1)e)
(x2 + x)c : ((x2 + x+ 1)r1ex2

r(x+ 1)exr(x2 + x+ 1)e(x2 + 1)rx2
e0rxe1r(x

2 + 1)e(x+ 1)r0e)
(x2 + x+ 1)c : ((x2 + x)r0e(x2 + 1)rxe(x+ 1)r(x2 + x)ex2

r(x
2 + 1)e1r(x+ 1)e0rx2

exr1e)
(x2 + 1)c : ((x2

rxe(x
2 + x+ 1)r0e1rx2

e(x
2 + x)r(x2 + x+ 1)e(x+ 1)r1exr(x2 + x)e0r(x+ 1)e)

0e : (1rxcx2
r(x+ 1)c(x2 + x)r(x2 + x+ 1)c(x2 + 1)r1cxrx2

c(x+ 1)r(x2 + x)c(x2 + x+ 1)r(x2 + 1)c)
1e : (0r(x+ 1)c(x2 + 1)rxc(x2 + x+ 1)r(x2 + x)cx2

r0c(x+ 1)r(x2 + 1)cxr(x2 + x+ 1)c(x2 + x)rx2
c)

xe : ((x+ 1)r0c(x2 + x)r1cx2
r(x

2 + 1)c(x2 + x+ 1)r(x+ 1)c0r(x2 + x)c1rx2
c(x

2 + 1)r(x2 + x+ 1)c)
x2
e : ((x2 + 1)r(x2 + x)c0r(x2 + x+ 1)cxr(x+ 1)c1r(x2 + 1)c(x2 + x)r0c(x2 + x+ 1)rxc(x+ 1)r1c)

(x+ 1)e : (xr1c(x2 + x+ 1)r0c(x2 + 1)rx2
c(x

2 + x)rxc1r(x2 + x+ 1)c0r(x2 + 1)cx2
r(x

2 + x)c)
(x2 + x)e : ((x2 + x+ 1)rx2

cxr(x
2 + 1)c0r1c(x+ 1)r(x2 + x+ 1)cx2

rxc(x
2 + 1)r0c1r(x+ 1)c)

(x2 + x+ 1)e : ((x2 + x)r(x2 + 1)c(x+ 1)rx2
c1r0cxr(x

2 + x)c(x2 + 1)r(x+ 1)cx2
r1c0rxc)

(x2 + 1)e : (x2
r(x

2 + x+ 1)c1r(x2 + x)c(x+ 1)rxc0rx2
c(x

2 + x+ 1)r1c(x2 + x)r(x+ 1)cxr0c)
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