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FREE ENERGIES AS INVARIANTS OF TEICHMÜLLER LIKE STRUCTURES

A. MESÓN and F. VERICAT

Abstract. A Teichmüller like structure on the space of d-degree holomorphic maps on the circle S1,
marked by conjugations to the map z 7→ zd, can be defined. Here we introduce a definition of free

energy associated with this kind of dynamics as an invariant of equivalence classes in the Teichmüller
space. This quantity encodes a length spectrum of rotation cycles in S1.

1. Introduction

The free energy is a map defined as average limit of a partition function for configurations of a
system. In lattice Statistical Mechanics, the partition function is usually defined from admissible
sequences of spins, whereas in the area of Dynamical Systems we may have an analogous function
taken as configuration orbits of the dynamics. So, free energy plays a relevant role whatever of
these or even other, areas considered.

Free energy rigidity properties for finite range potentials were established in [8] whereas in [4]
we analyzed the rigidity problem but including long range potential. In both works a statistical
mechanics point of view is taken.

A geometric free energy was introduced by Pollicott and Weiss [9]. The partition function there
is defined from the sum over closed geodesics in hyperbolic manifolds. Here we shall consider a
free energy which may be seen as a sort of a mix between dynamical and geometric free energies.
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Let Bd be the space of proper holomorphic maps f : H2 → H2 which can be expressed as
Blaschke products

f(z) = z

d∏
j=2

(
z − ci
1− ciz

)
, ci ∈ H2(1.1)

and where H2 is a hyperbolic disc model. These applications have the property that f |S1 preserves
the Lebesgue measure and |f ′| > 1 on the circle S1. We also call these restrictions Blaschke
products.

A covering of a circle map f is a map f̃ : R→ R such that π ◦ f̃ = f ◦π where π : R→ S1 is the
map π(t) = exp(2πit). Let Covd(R) be the space of d-degree coverings, i.e., f̃(t+ 1) = f̃(t) + d for
any real t. Let Cd(R) be the subspace of Covd(R) which consists of analytic homeomorphisms f̃ ,
covering of expanding Blaschke products. We shall call Cd(S1) to the space of expanding Blaschke
products whose coverings are in Cd(R).

Any f ∈ Cd(S1) is conjugated to the map pd(z) = zd by the marking map φf : S1 → S1 [6].
The marking map satisfies

φ̃f (t) = lim
n→∞

1
dn
f̃n(t),

which limit does exist [6]. The Teichmüller space τ(Cd(S1)) is formed by the equivalence classes
[(f, φf )] for the relation (f, φf ) ∼ (g, φg) if φ : = φf ◦ φ−1

g is a diffeomorphism which conjugates f
and g.

For these spaces, the mapping class group Md for this Teichmüller structure is isomorphic to
Zd−1 which in turn is isomorphic to the automorphism group of pd.
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An n-periodic point C of pd(z) = zd will be called n-cycle and its period will be denoted by
|C|. Following [7] the length of an n-cycle C with respect to f ∈ Cd(S1) is defined as

L(C, f) := log |(fn)′(z)| ,with z ∈ C(1.2)

This gives the following length spectra

SNf = {L(C, f) : |C| = n} non-marked spectrum

and

SMf = {(L(C, f), |C|) : |C| = n} marked spectrum.

The cycles, as studied by McMullen in [7], have geometric and topological behaviors comparable
to closed geodesics in hyperbolic surfaces. The degree of a cycle C is the least s > 0 such that
pd |C can be extended to an s-degree topological covering map on the circle. The cycles whose
degree is 1 are called simple cycles, equivalently simple cycles are those that pd |C preserves its
cyclic ordering. Precisely, these kind of points present similar facts to closed simple geodesics.
For instance, if a cycle C verifies L(C, f) < log 2, then it is a simple cycle. The counterpart for
geodesics in hyperbolic surfaces of this result is that any closed geodesic in a genus g-surface with
length less than log(3 + 2

√
2) is simple [7].

In this article we shall consider a free energy encoding marked length spectra of cycles. In [9] a
free energy encoding marked length spectra of closed geodesics was introduced, thus our objective
is to analyze facts of the free energy of herein comparing with the partition function for length
of geodesics [9]. We will specially pointed out the invariance for the Teichmüller structures above
mentioned.

A “dual free energy” will be defined with partition function summing over periodic sequences in
a “dual symbolic space”. An orientation-preserving map f : S1 → S1 of degree d ≥ 2 with f(1) = 1
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admits a Markov partition and consequently a symbolic space Σ. Its dual space is defined as

Σ∗ = {ω∗ = . . . kn . . . k1k0 : ω = k0k1 . . . kn . . . ∈ Σ} .

Let Hn = k0k1 . . . kn−1 be the truncation of a sequence in Σ to its first n symbols and H∗n =
kn−1 . . . k1k0 be the dual sequence, i.e., ω∗ = . . . kn−1 . . . k1k0 ∈ Σ∗.

In [1] Jiang introduced a dual derivative

D∗(f) : Σ∗ → R

on the dual space (the definition will be displayed in the next section). The dynamics on Σ∗ are
given by dual Bernoulli shift defined by

σ∗(ω∗ = . . . kn . . . k1k0) = . . . kn . . . k1.

The cycles in this context will be periodic sequences. This symbolic space and this derivative can
be obtained for a larger class of holomorphic d-degree maps, namely on the class uniformly sym-
metric maps [1]. A circle homeomorphism f with lifting f̃ : R→ R is called uniformly symmetric
if

1
1 + ε(t)

≤

∣∣∣∣∣ f̃−n(x+ t)− f̃−n(x)

f̃−n(x)− f̃−n(x− t)

∣∣∣∣∣ ≤ 1 + ε(t)(1.3)

for some bounded function ε(t) and for any t > 0, x ∈ R. Uniformly symmetric maps may not be
differentiable. If US(S1) denotes the set of uniformly symmetric homeomorphisms on the circle,
then the Teichmüller space τ(US(S1)) with base point pd is given by equivalence classes [(f, φf )],
but now with the relation (f, φf ) ∼ (g, φg) if φ := φf ◦ φ−1

g is symmetric.
For f ∈ Cd(S1) and so f̃ ∈ Cd(R), the potential Ψ(ω∗) = − logD∗(f)(ω∗) has a unique Gibbs

state. For the broader class US, there is not an exponential convergence ofD∗(f)(H∗n) toD∗(f)(ω∗)
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like in the case f ∈ Cd(S1) and the thermodynamic formalism is not enough to ensure Gibbs
inequalities.

The dual length of f with respect to an n−cycle ω∗ is defined as

L∗(f, ω∗) = Sn(D∗(f))(ω∗) :=
n−1∑
i=0

D∗(f)((σ∗)i(ω∗)) (statistical sum).(1.4)

A dual free energy will be defined encoding the spectrum formed by the length L∗.
This article is in the line of a previous one [5] in which we obtained relationships between

Teichmüller structures and thermodynamics objects for conformal iterated schemes of d-proper
holomorphic maps.

2. Free energies

Let f ∈ Cd(S1) the set of n-cycles with respect to f be denoted by Cn,f . We consider the partition
function

Zn,f (q) :=
∑
|C|=n

exp(−qL(C, f)),(2.1)

where q is interpreted as the inverse of the temperature and the free energy

Tf (q) = lim
n→∞

1
n

logZn,f (q).(2.2)

Definition. Two maps ϕ,ψ : X → R are cohomologous with respect to a dynamical map
f : X → X if there exits a function h : X → X such that ϕ = ψ + h− h ◦ f .
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Thus, two cohomologous functions have the same statistical sum when evaluated in periodic
points by a direct calculation.

Lemma 1. If (f, φf ), (g, φg) belong to the same class in τ(Cd) then Tf = Tg.

Proof. Since (f, φf ) ∼ (g, φg), we have f(φ(z)) = φ(g(z)) where φ = φf◦φ−1
g . Then f ′(φ(z))φ′(z)

= φ′(g(z))g′(z). Let ϕf = log |f ′| and ϕg = log |g′|, soϕf = ϕg + log |φ′| − log |φ′ ◦ f |, so that
ϕf and ϕg are cohomologous with h = log |φ′|. Hence for any cycle L(C, f) = L(C, g), C and
Tf = Tg. �

By the Livsic theorem, the iplication L(C, f) = L(C, g)⇒ SMf = SMg is valid.
Next we shall consider a Poincaré series in the sense of [9], but with the length spectrum of

cycles instead of geodesics.
Let

P (q, r) =
∑

C∈Cn,f

exp [−qL(C, f)− r |C|] ,(2.3)

or

P (q, r) =
∞∑
n=1

1
n

 ∑
C∈Cn,f

exp [−qL(C, f)− r |C|]

 .(2.4)

This series converges if

L := lim
n→∞

 ∑
C∈Cn,f

exp(−qL(C, f))

 1
n

(exp(−rn))
1
n < 1,
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thus

lim
n→∞

1
n

logZn,f (q)− r = logL < 0.

The region of convergence of the series is Ω = {(q, r) : Tf (q) < r}.

The potential ϕf = log |f ′| has a unique Gibbs state µf [10], now a Gibbs state can be associated
with to any pair (f, φf ) and since cohomologous maps have the same Gibbs state [2], pairs in the
same equivalence class of τ(Cd(S1)) share its Gibbs state.

Next we display a result similar to one in [9] for geodesics.

Theorem 1. Let µq be the Gibbs state for the potential −q log |f ′|, f ∈ Cd(S1), with a covering
f̃ ∈ Cd(R), the behaviors of the Gibbs states for “zero temperature” are

lim
q→+∞

∫
log |f ′|dµq = inf

{
L(C, f)
|C|

: C is a cycle
}

and

lim
q→−∞

∫
log |f ′|dµq = sup

{
L(C, f)
|C|

: C is a cycle
}
.

Proof. By the variational principle, we have hµq (f)− q
∫

log |f ′|dµq ≥ hµ(f)− q
∫

log |f ′|dµ for
any measure µ where hµ(f) is the measure-theoretic entropy. Thus for q > 0,

hµq (f)
q

−
∫

log |f ′|dµq ≥
hµ(f)
q

+
∫

log |f ′|dµ
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and so ∫
log |f ′|dµq ≤

hµq (f)− hµ(f)
q

+
∫

log |f ′|dµ

≤ 2h
q

+
∫

log |f ′|dµ (h = topological entropy).

Then
∫

log |f ′|dµq ≤
2h
q

+ inf
µ

{∫
log |f ′|dµ

}
. By the ergodic theorem,

1
|C|

L(C, f) tends to∫
log |f ′|dµ as |C| → ∞, µ− a.e. for any ergodic measure µ. Now we have

lim
q→+∞

∫
log |f ′|dµq = inf

µ

{∫
log |f ′|dµ

}
= inf

{
L(C, f)
|C|

: C is a cycle
}
.

The demonstration for the other limit is totally similar. �

Then for any cycle C, we have

A1 := inf
{
L(C, f)
|C|

: C is a cycle
}
≤ L(C, f)

|C|

≤ A2 := sup
{
L(C, f)
|C|

: C is a cycle
}
,

similar to a known result by Milnor for closed geodesics.
The value

∫
log |f ′|dµq is precisely T ′f (q) [2], so that for high and low temperatures, the free

energy behaves as lim
q→+∞

T ′f (q) = inf
{
L(C, f)
|C|

: C is a cycle
}

and

lim
q→−∞

Tf (q) = sup
{
L(C, f)
|C|

: C is a cycle
}

.
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By the Anosov closing lemma, for any t ∈ [A1, A2] and for any ε > 0, there is a cycle C such
that ∣∣∣∣L(C, f)

|C|
− t
∣∣∣∣ < ε.

Next we shall introduce a dual free energy. We begin by presenting the definition of the dual
derivative according to [1]. Let f : S1 → S1 be an orientation-preserving of degree d ≥ 2 with
a fixed point in z = 1. There is a Markov partition J = {J0, J1, . . . , Jd−1} for (S1, f) where
intervals are obtained by the intersection of f−1(1) with the circle. Let I = {I0, I1, . . . , Id−1} be
the partition of I = [0, 1] obtained by lifting any Ji to Ii by the cover map π(x) = exp(2πix). The
name of length n of a point z ∈ S1 is the string Hn = k0k1 . . . kn−1 such that f `(z) ∈ Jk`

. let J n
be the partition by sets JHn

formed by points with the same name with respect to J and f . The
number of intervals of J n is (d− 1)n and J n is also a Markov partition and by In, the lift of J n
is denoted to I. The strings which give the names of infinite length corresponding to points in S1

or in [0, 1] originate a symbolic space with alphabet Ω = {0, 1 . . . , d− 1},

Σ = {ω = k0k1 . . . kn−1 . . . : ki ∈ Ω} .

Its dual space is defined as

Σ∗ = {ω∗ = . . . kn−1 . . . k1k0 : ki ∈ Ω}

and the dual shift on Σ∗ is

σ∗(ω∗ = . . . kn−1 . . . k1k0) = . . . kn−1 . . . k1.

Let Hn = k0k1 . . . kn−1 be the truncation of a sequence in Σ to its first n symbols and H∗n =
kn−1 . . . k1k0 be the dual sequence, i.e., ω∗ = . . . kn−1 . . . k1k0 ∈ Σ∗. Let us call K∗n−1 to the last
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n− 1 symbols of σ∗(ω∗), i.e., K∗n = kn−1 . . . k1, which is the dual of the string Kn−1 = k1 . . . kn−1.
The cylinder containing the string H∗n = kn−1 . . . k1k0 is

C(H∗n) =
{
ω∗ = . . . knkn−1 . . . k1k0 : ki ∈ Ω

}
.

Now we define

D∗(f)(H∗n) :=
`(IKn−1)
`(Hn)

,(2.5)

where ` denotes the length of the interval. Finally the dual derivative of f is

D∗(f) : Σ∗ → R
D∗(f)(ω∗) = lim

n→∞
D∗(f)(H∗n)(2.6)

where this convergence is exponential.
There is an unique Gibbs state µ∗ associated with the potential

ω∗ 7−→ − logD∗(f)(ω∗).

This measure is defined on the cylinders. Since the exponential convergence for any natural n,
there are constants C > 0 and 0 < r < 1 such that∣∣∣∣ µ∗(C(H∗n))

µ∗(C(K∗n−1))
−D∗(f)(ω∗)

∣∣∣∣ ≤ Crn.
From this, Gibbs inequalities are obtained.

The Teichmüller structures on the spaces of circle maps defined earlier are described by the dual
derivative, this means [1]

τ(Cd(S1)) =
{
D∗(f) : f ∈ Cd(S1)

}
τ(US(S1)) =

{
D∗(f) : f ∈ US(S1)

}
.
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Next we introduce the dual free energy. Let C∗n be the set of sequences in Σ∗ with period n. In this
symbolic context the sequences will be called cycles, the period of a sequence ω∗ will be denoted
by |ω∗|. The length of ω∗ ∈ C∗n with respect to f is defined as L∗( ω∗, f) := Sn(ψ)(ω∗). The
partition function is

Z∗n,f (q) :=
∑
ω∗∈C∗n

exp(−qL∗( ω∗, f))(2.7)

and the dual free energy

T ∗f (q) = lim
n→∞

1
n

logZ∗n,f (q).(2.8)

The dual length spectra are

S∗Nf = {L∗(ω∗, f) : ω∗ ∈ C∗n} and S∗Mf = {(L∗(ω∗, f), ω∗) : ω∗ ∈ C∗n} .
Now we can present a similar dual result.

Theorem 2. Let µ∗q be the Gibbs state for the potential

−qψ = −q logD∗(f)(ω∗), f ∈ Cd(S1),

with a covering f̃ ∈ Cd(R). Then we have the following behaviors

lim
q→+∞

∫
ψdµ∗q = inf

{
L∗( ω∗, f)
|ω∗|

: ω∗ periodic sequence
}

and

lim
q→−∞

∫
ψdµ∗q = sup

{
L∗( ω∗, f)
|ω∗|

: ω∗ periodic sequence
}
.
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Proof. By the variational principle, we have for any f− invariant measure µ,

hµq (σ∗)− q
∫

logD∗(f)dµ∗q ≥ hµ(σ∗)− q
∫

logD∗(f)dµ.

If q > 0, then
hµq

(σ∗)
q

−
∫

logD∗(f)dµ∗q ≥
hµ(σ∗)
q

+
∫

logD∗(f)dµ,

which leads to∫
logD∗(f)dµ∗q ≤

hµq
(σ∗)− hµ(σ∗)

q
+
∫

logD∗(f)dµ ≤ 2h
q

+
∫

logD∗(f)dµ.

So that ∫
logD∗(f)dµ∗q ≤

2h
q

+ inf
µ

{∫
logD∗(f)dµ

}
.

By the ergodic theorem,
1
|ω∗|

L∗( ω∗, f) =
1
|ω∗|

Sn(ψ)(ω∗) converges to
∫

logD∗(f)dµ, for

|ω∗| → ∞, µ− a.e. for any ergodic measure µ. Further we obtain

lim
q→+∞

∫
log |f ′|dµ∗q = inf

µ

{∫
logD∗(f)dµ

}
= inf

{
L∗( ω∗, f)
|ω∗|

: ω∗ periodic sequence
}

In analogous way the equality for the other limit is demonstrated. �

For uniformly symmetric maps Jiang developed a theory for obtaining a “type Gibbs measure”
associated with the potential ω∗ → − logD∗(f)(ω∗), f ∈ US, which involves quasiconformal
mappings. The convergence is not in general exponential as in the setting of the above theorem.
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Since this fact, results used in Theorem 2 do not have be guaranteed. We are deeply grateful to
the referee for pointing out about this issue.

We shall consider now a special circle map introduced by Los whose construction follows the
ideas of Bowen and Series to define boundary hyperbolic maps associated with an action of a
Fuchsian group Γ on the hyperbolic disc. The new in the construction of Los is that he does not
consider geometric conditions on the fundamental region for the action of Γ on H2, but keeps the
restrictions on the presentation of the group. Besides, the constructions for defining the map are
more combinatorial than geometric. The objective of introducing such a map was to compute the
volume entropy, i.e., the growing rate of the ball in the word metric for a presentation of the group.
The main result in [3] is that the volume entropy for a presentation of Γ equals the topological
entropy of the Bowen-Series like map defined in that article. This leads to a method for minimizing
the volume entropy among the geometric presentations of the group. Herein we shall introduce a
combinatorial free energy which will be compared with free energy associated the Los map. Next
we give a brief background, for more details the article by Los is available in the web . . . .

Let Γ be a hyperbolic co-compact surface group with a finite presentation P given by a symmetric
set of generators S =

{
s±1
1 , . . . , s±1

m

}
and relators R = {r1, . . . , rk}. The length of γ ∈ Γ ≡ P =

〈S,R〉 denoted by |γ| is the minimal number of elements of S needed to express γ. The word metric
is defined as dS(γ1, γ2) =

∣∣γ1γ
−1
2

∣∣ and the ball Bn,S is {γ : dS(γ, id) = n}. Recall the Cayley graph
G(Γ,P) for a group Γ with presentation P which is the graph with vertices from the elements of
Γ and there is an edge between γ1 and γ2. If γ1γ

−1
2 = id, relators represent a closed path in the

Cayley graph. The two-complex G(2) is the two-dimensional complex whose 1-skeleton is G and
where the two-cells are attached to a closed path in G. A presentation P is called geometric if the
complex G(2) is planar.
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The presentation P = 〈S,R〉 uniquely defines a partition {Isi
}si∈S of S1 and the Los map

associated with a geometric presentation P is defined as

fP : S1 → S1, fP(z) = s−1
i z for z ∈ Isi(2.9)

By TP(q), let us denote the free energy for the map fP .
A refinement of the partition {Isi

} leads to a Markov partition in such a way that fP becomes a
Markov and strictly expanding map. There are subdivisions Lsi

, Rsi
of Isi

such that the partition
by subdivision points

S :=
⋃
si∈S

(Lsi
∪Rsi

∪ ∂Isi
)

is uniquely determined by P and fP is S−invariant. The map fP satisfies the Markov con-
dition with respect to S, i.e., fP is an homeomorphism in each interval of the partition and
maps extremes to extremes. Thus S determines a Markov partition for fP . Thus the orbits{
fnP(z) : n ∈ N, z ∈ S1

}
can be coded by a given symbolic Markov space Σ with an alphabet

constituted by generators of Γ, the coding is given as

χ : S1 − ∪∂Isi
→ Σ, χ(z) = si0si1 . . . , with f jP(z) ∈ Isij

.

Since `(
∞⋂
n=0

f−jP (Isi
))→ 0 as n→∞, the coding map χ is injective [3].

Now any point z assigns a sequence ω = si0si1 . . ., sij ∈ S. The restriction of the coding
sequence to the n-first symbols is called the n-prefix. Let Dn,S be the number of n-prefix for a
geometric presentation P, then for n enough large, Dn,S ≈ cardBn,S and restriction on sequences
in χ(S1 − ∪∂Isi

) are equal for all n [3].
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For ω ∈ χ(S1 − ∪∂Isi
), let ψ(ω) = log |f ′(χ−1(ω))| and the partition function

Zn,comb(q) :=
∑

ω∈Bn,S∩χ(S1−∪∂Isi
)

exp(−qSn(ψ)(ω)).

The combinatorial free energy for a geometric presentation P is

Tcomb,P(q) = lim
n→∞

1
n

logZn,comb(q)

with Tcomb(0) = volume entropy of Γ ≡ P = 〈S,R〉.
To compare the combinatorial free energy with TP(q) firstly, we get cardBn,S = cardDn,S =

‖An‖, where A is the transition matrix for the Markov partition [11] which in turn is equal to the
number of cycles of length n [10].

We are grateful to the referee for the helpful comments.
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e-mail : vericat@iflysib.unlp.edu.ar


