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Abstract. In this paper, B. Y. Chen inequality for semi-slant submani-
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1 Introduction

Given a Riemannian manifold M, for each point p ∈ M, put

(inf K)(p) = {inf K(π) : plane section π ⊂ TpM} ,

where K(π) denotes the sectional curvature of M associated with π. Let

δM (p) = τ(p)− inf K(p),

being τ the scalar curvature of M . Then, δM is a well-defined Riemannian invariant,
which was recently introduced by Chen ([14], [13]).

For submanifolds M in a real space form R̃m(c) of constant sectional curvature c,
Chen gave the following basic inequality involving the instrinsic invariant δM and the
squared mean curvature of immersion,

δM (p) ≤ n2(n− 2)
2(n− 1)

‖H‖2 +
(n + 1)(n− 2)

2
c,

where n denotes the dimension of M and H is the mean curvature vector.
Several authors have studied the above inequalities on different mathematical

structures (see, [8], [11], [14], [12], [15], [18]- [20], [24], [27]).
A slant submanifold is defined as a submanifold N of an almost Hermitian manifold

(M, J) with constant Wirtinger angle (= Kahler angle). The Wirtinger angle θ(X)
of a tangent vector X to N at a point p ∈ N is the angle between JX and the
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tangent space of N at p. Special cases are complex submanifolds (θ = 0) and totally
real submanifolds (θ =

π

2
) by Chen in [16]. Several authors have studied on slant

submanifold (see, for instances, [4], [5], [9], [8], [11], [16], [23]).
In 1994, Papaghiuc defines a class of submanifolds, called the semi-slant submani-

folds, of a Kahlerian manifold to be a submanifold whose tangent bundle is the direct
sum of a complex distribution and a slant distribution with the slant angle θ = 0.
The author obtains the necessary and sufficient conditions for the complex and slant
distributions to be integrable. He also obtains a necessary and sufficient condition for
a semi-slant submanifold to be the Riemannian product of a complex submanifold
and a slant submanifold [25].

The notion of a semi-slant submanifold of a Sasakian manifold was introduced by
Cabrerizo et. al in [16]. The authors define and study both bi-slant and semi-slant
submanifolds of an almost contact metric manifold and, in particular, of a Sasakian
manifold. They prove a characterization theorem for semi-slant submanifolds and we
obtain integrability conditions for the distributions which are involved in the defini-
tion of such submanifolds. We also study an interesting particular class of semi-slant
submanifolds.

In [11], Cioroboiu established Chen inequalities for semi-slant submanifolds in
Sasakian space forms by using subspace orthogonal to the Reeb vector field ξ.

In [8], the authors established a version of Chen inequality for submanifold of
an S−space form tangent to the structure vector field of the ambient space and
applications to the case of slant immersions are obtained.

In this paper B. Y. Chen’s sharp estimation for the sectional curvature of a sub-
manifold in Riemannian space forms in terms of the scalar curvature is extended to
semi-slant submanifolds in T−space forms. The paper is organized as follows. In sec-
tion 2, we give a brief account of T−manifolds and their submanifolds, for later use.
In section 3, B. Y. Chen inequality for semi-slant submanifolds in T−space forms are
established by using subspaces orthogonal to the structure vector fields.

2 Preliminaries

Let (M̃, g) be a Riemannian manifold with dim(M̃) = 2m+ s and denote by TM̃ the
Lie algebra of vector field in M̃ . Then M̃ is said to be an S−Manifold if there exist
on M̃ an f−structure φ [26] of rank 2m and s global vector fields ξ1, ..., ξs(structure
vector fields) such that [2]

(i) If η1, ..., ηs are dual 1−forms of ξ1, ..., ξs, then:

(2.1) φξi = 0, ηi ◦ φ = 0, φ2 = −I +
s∑

i=1

ηi ⊗ ξi,

(2.2) g̃(φX, φY ) = g̃(X,Y )−
s∑

i=1

ηi(X)ηi(Y ),

(2.3) g̃(X, ξi) = ηi(X),
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for any X, Y ∈ TM̃ , i = 1, ..., s.
(ii) The f−structure φ is normal, that is

[φ, φ] + 2
s∑

i=1

ξi ⊗ dηi = 0

where [φ, φ] is the Nijenhuis tensor of φ.
(iii) η1 ∧ ... ∧ ηs ∧ (dηi)s 6= 0 and for each i, dηi = 0.
In a T−manifold M̃ , besides the relations (2.1) and (2.2) the following also hold:

(∇Xφ) Y = 0(2.4)
∇Xξi = 0(2.5)

for any vector fields X,Y ∈ TM̃ .
Let D̃ denote the distribution determined by −φ2 and D̃⊥ the complementary

distribution. D̃⊥ is determined by φ2 + I and spanned by ξ1, ..., ξn. If X ∈ D̃, then
ηi(X) = 0 for any i and if X ∈ D̃⊥, then φX = 0.

A plane section Π in TpM̃ of an T−manifold M̃ is called a φ−section if Π ⊥ D̃⊥

and φ(Π) = Π. M̃ is of constant φ−sectional curvature [2] if at each point p ∈ M̃,

the sectional curvature K̃(Π) does depend on the choice of the φ−section Π of
TpM̃ . If K̃(Π) is constant for all non-null vectors in Π, we call M̃ to be of con-
stant φ−sectional curvature at point p. The function of c defined by c(p) = K̃(Π) is
called the φ−sectional curvature of M̃ . A T−manifold M̃ with constant φ−sectional
curvature c is said to be a T−space form and is denoted by M̃(c).

The curvature tensor R̃ of a T− space form M̃(c) is given in [22],

g̃(R̃(X,Y )Z, W ) =
c

4
{g̃(X,Z)g̃(Y,W )− g̃(Y,Z)g̃(X,W )

−g̃(X, Z)
∑

ui(Y )ui(W )− g̃(Y,W )
∑

ui(Z)ui(X)

+g̃(X, W )
∑

ui(Y )ui(Z) + g̃(Y,Z)
∑

ui(X)ui(W )(2.6)

+
(∑

ui(Z)ui(X)
)(∑

ui(Y )ui(W )
)
−

(∑
ui(W )ui(X)

)

+
(∑

ui(Y )ui(Z)
)

+ g̃(W,φX)g̃(Y, φZ) + g̃(Y, φW )g̃(X, φZ)

−2g̃(X, φY )g̃(W,φZ)}

When s = 0, an T−manifold M̃ becomes a keahler manifold. When s = 1, an
T−manifold M̃ becomes a cosymplectic manifold [22].

The Equation of Gauss for submanifold M of M̃ is given by

R̃(X,Y, Z,W ) = R(X, Y, Z, W ) + g(h(X,W ), h(Y, Z))(2.7)
−g(h(X, Z), h(Y,W )),

for any vectors X,Y, Z and W tangent to M, where we denote as usual R(X,Y, Z,W ) =
g(R(X,Y )Z, W ).
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From now on, we suppose that the structure vector fields are tangent to M and
we denote by n + s the dimension of M. We consider n ≥ 2. Hence, if we denote
by L = D1 ⊕D2 the orthogonal distribution to D̃⊥ in TM. We can write orthogonal
direct decomposition TM = L⊕ D̃⊥.

For an orthonormal basis {e1, ..., en, en+1, ..., en+s} of TpM , the scalar curvature
τ at p is defined by

(2.8) τ =
∑

i<j

K(ei ∧ ej),

where K(ei ∧ ej) denotes the sectional curvature of M associated with the plane
section spanned by ei, ej . In particular, if we put en+α = ξα, for α = 1, 2, ..., s, then
(2.8) implies:

(2.9) 2τ =
∑

i 6=j

K(ei ∧ ej) + 2
n∑

i=

s∑
α=1

K(ei ∧ ξα).

We denote by H the mean curvature vector, that is

H(p) =
1

n + s

n+s∑

i=1

h(ei, ei).

Also, we set
hr

ij = g(h(ei, ej), er)

and

‖h‖2 =
n+s∑

i,j=1

g(h(ei, ej), h(ei, ej)).

For any X ∈ TM , we put φX = PX +FX, where PX and FX are the tangential
and normal component of φX, respectively. We denote

‖P‖2 =
n+s∑

i,j=1

g2(Pei, ej).

It is well-known that

(2.10) g(PX, Y ) = −g(X,PY ),

for any X ∈ TM .
Now, we give the relevant definitions from [11].

Definition 2.1. A differentiable distribution D on M is called a slant distribution
if for each x ∈ M and each nonzero vector x ∈ Dx, the angle θD(X) between φX and
the vector subspace Dx is constant, which is independent of the choice of x ∈ M and
x ∈ Dx. In this case, the constant angle θD is called the slant angle of the distribution
D.
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Definition 2.2. A submanifold M tangent to structure vector fields is said to be
a bislant submanifold of M̃ if there exist two orthogonal distributions D1 and D2 on
M such that

(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2 ⊕ D̃⊥

(ii) for any i = 1, 2 Di is slant distribution with slant angle θi.

Definition 2.3. A submanifold M tangent to structure vector fields is said to be
a semi-slant submanifold of M̃ if there exist two orthogonal distributions D1 and D2

on M such that
(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2 ⊕ D̃⊥

(ii) the distribution D1 is an invariant distribution, that is, φ(D1) = D1

(iii) the distribution D2 is slant with angle θ 6= 0.

Definition 2.4. A submanifold M is said to be a slant if for any p ∈ M and any
X ∈ TpM , linearly independent on structure vector fields, the angle between φX and
TpM is a constant θ ∈ [0, π/2], called the slant angle of M in M̃ .

Invariant and anti-invariant immersions are slant immersions with slant angles
θ = 0 and θ = π/2, respectively. A slant immersion which is neither invariant nor
anti-invariant is called a proper slant immersion [4].

In [3], the invariant distribution of a semi-slant submanifold is a slant distribution
with zero angle. Thus, it is obvious that, in fact, semi-slant submanifolds are particular
cases of bislant submanifolds. Moreover, it is clear that if θ = π/2, then the semi-slant
submanifold is a semi-invariant submanifold.

(a) If D2 = 0, then M is an invariant submanifold.
(b) If D1 = 0 and θ = π/2, then M is an anti-invariant submanifold.
(c) If D1 = 0 and θ 6= π/2, then M is a proper slant submanifold with slant angle

θ. A semi-slant submanifold is said to be proper if both D1 and D2 are nontrivial and
θ 6= π/2.

3 B.Y. Chen’s inequality

First, we repeat an algebraic lemma from [14] without proofs.

Lemma 3.1. [14] Let a1, ..., ak, c be k + 1(k ≥ 2) real numbers such that

(
k∑

i=1

ai

)2

= (k − 1)

(
k∑

i=1

a2
i + c

)
.

Then, 2a1a2 ≥ c, with the equality holding if and only if a1 + a2 = a3 = ... = ak.

Now, we can prove the following version for the semi-slant submanifolds of
T−manifolds of Theorem 3 of [12].

Theorem 3.1. Let ϕ : Mn+s → M̃2m+s(c) be an isometric immersion from a
Riemannian (n + s)−dimensional manifold in to an T−space form M̃2m+s(c), such
that the structure vector fields are tangent to M . Then,

(i) For any plane section π invariant by P and tangent to D1
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τ −K(π) ≤ (n + s)2(n + s− 2)
2(n + s− 1)

‖H‖2(3.1)

+
c

4

(
n(n− 1)

2
+

3
2

(
(d1 + 1) + d2 cos2 θ +

s(1− s)
2

))

(ii) For any plane section π invariant by P and tangent to D2

τ −K(π) ≤ (n + s)2(n + s− 2)
2(n + s− 1)

‖H‖2(3.2)

+
c

4

(
n(n− 1)

2
+

3
2

(
d1 + (d2 + 1) cos2 θ +

s(1− s)
2

))

The equality case of inequalities (3.1) and (3.2) holds at a point p ∈ M if and only if
there exists an orthonormal basis {e1, ..., en, en+1 = ξ1, ..., en+s = ξs} of TpM and an
orthonormal basis {en+s+1, ..., e2m+s} of T⊥p M such that the shape operators of M in
M̃(c) at p have the following forms:

An+s+1 =




a 0 0 . . . 0
0 −a 0 . . . 0
0 0 On+s−2


 ,

Ar =




hr
11 hr

12 0 . . 0
hr

21 −hr
21 0 . . 0

0 0 On+s−2


 , r = n + s + 2, ..., 2m + r.

Proof. Let p ∈ M, {e1, ..., en, en+1 = ξ1, ..., en+s = ξs} an orthonormal basis of TpM ,
and {en+s+1, ..., e2m+s} an orthonormal basis of T⊥p M. Let M be a proper semi-slant
submanifold of M̃(c) and dim M = n + s = 2d1 + 2d2 + s. We consider an adapted
semi-slant orthonormal frames

e1, e2 = φe1, ..., e2d1−1, e2d1 = φe2d1−1, e2d1+1,

e2d1+2 =
1

cos θ
Pe2d1+1, ..., e2d1+2d2−1, e2d1+2d2(3.3)

=
1

cos θ
Pe2d1+2d2−1

e2d1+2d2+1 = ξ1, ..., e2d1+2d2+s = ξs

one can obtain easily,

(3.4) g2(φei, ei+1) =
{

1, for i ∈ {1, 2, ..., 2d1 − 1}
cos2 θ for i ∈ {2d1 + 1, ..., 2d1 + 2d2 − 1} .

Then

(3.5)
n+s∑

i,j=1

g2(ej , φei) = 2
(
d1 + d2 cos2 θ

)
.

From (2.6), (2.9) and (3.5) we obtain
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2τ = (n + s)2 ‖H‖2 − ‖h‖2(3.6)

+
c

4
(
n(n− 1) + 3

(
d1 + d2 cos2 θ + s(1− s)

))
.

Put

ε = 2τ − (n + s)2(n + s− 2)
2(n + s− 1)

‖H‖2(3.7)

− c

4
(
n(n− 1) + 3

(
d1 + d2 cos2 θ + s(1− s)

))
.

Hence, (3.6) and (3.7) imply:

(3.8) (n + s)2 ‖H‖2 = (n + s− 1)
(
ε + ‖h‖2

)

Let p ∈ M , π ⊂ TpM, dim π = 2, and π orthogonal to D̃⊥ and invariant by P.
We consider two cases.
Case I. The plane section π is tangent to D1. We may assume that π =sp{e1, e2}

and en+s+1 =
H

‖H‖ . Then, relation (3.8) becomes

(3.9)

(
n+s∑

i=1

hn+s+1
ii

)2

= (n + s− 1)




n+s∑

i,j=1

2m+s∑
r=n+s+1

(hr
ij)

2 + ε


 .

Using Lemma 3.1, we derive from (3.9)

(3.10) 2hn+s+1
11 hn+s+1

22 ≥
∑

i 6=j

(hn+s+1
ij )2 +

n+s∑

i,j=1

2m+s∑
r=n+s+2

(hr
ij)

2 + ε

From (2.6) and (3.4), we obtain
(3.11)

K(π) = hn+s+1
11 hn+s+1

22 − (
hn+s+1

12

)2
+

2m+s∑
r=n+s+2

(
hn+s+1

11 hn+s+1
22 − (

hn+s+1
12

)2
)

+ c}

Now, from (3.10) and (3.11) it follows that

K(π) ≥
2m+s∑

r=n+s+1

∑
j>2

[(
hr

1j

)2 +
(
hr

2j

)2
]

+
1
2

∑

i 6=j>2

(
hn+s+1

ij

)2

+
1
2

2m+s∑
r=n+s+1

∑

i,j>2

(hr
ij)

2 +
1
2

2m+s∑
r=n+s+1

(
h2

11 + hr
22

)2

+
ε

2
+

4c

4
≥ ε

2
+ c

or, equivalently,

ε = τ − (n + s)2(n + s− 2)
2(n + s− 1)

‖H‖2

− c

8
(
n(n− 1) + 3

(
d1 + d2 cos2 θ + s(1− s)

))
.
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K(π) ≥ ε

2
+

4c

4
(3.12)

= τ − (n + s)2(n + s− 2)
2(n + s− 1)

‖H‖2

− c

4

(
n(n− 1)

2
+

3
2

(
d1 + d2 cos2 θ +

s(1− s)
2

)
+ 4

)
.

Case II. If the plane section π is tangent to D2, similar to the proof of Case I,
one can obtain (3.2)

The case of equality at appoint p ∈ M holds if and only if it achieves the equalities
in inequalities (3.10), (3.11) and (3.12). So, we have

hn+s+1
ij = 0, i 6= j > 2;

hr
ij = 0, i 6= j > 2, r = n + s + 2, ..., 2m + r; i, j = 3, ..., n + s;

hr
11 + hr

22 = 0, r = n + s + 2, ..., 2m + r

hn+s+1
1j = hn+s+1

2j = 0, j > 2;

hn+s+1
11 + hn+s+1

22 = hn+s+1
33 = ... = hn+s+1

n+s.n+s.

Moreover we may choose e1, e2 such that hn+s+1
12 = 0 and we denote a = hr

11, b = hr
22

and µ = hn+s+1
33 = ... = hn+s+1

n+s.n+s. Also, from Lemma 3.1 and (2.10), one can see that
hn+s+1

11 + hn+s+1
22 = hn+s+1

33 = ... = hn+s+1
n+s.n+s = 0. Hence, the shape operator take the

desired forms. The converse follows from direct calculation.

We can define

(inf LK)(p) = {inf K(π) : plane section π ⊂ Lp} .

Then inf LK is a well-defined function on M. Let δL
M denote the difference between

the scalar curvature and inf LK that is

δL
M (p) = τ(p)− inf LK(p).

It is clear that δL
M ≤ δM . Then, if c = 0, from (3.1) and (3.2) we get directly following

result:

Corollary 3.1. Let ϕ : Mn+s → M̃2m+s(c) be an isometric immersion from a
Riemannian (n + s)−dimensional manifold in to an T−space form M̃2m+s(c), such
that the structure vector fields are tangent to M . Then, for any plane section π in-
variant by P and tangent to D1 or D2

(3.13) δL
M (p) ≤ (n + s)2(n + s− 2)

2(n + s− 1)
‖H‖2 .
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