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Abstract. We study the stability properties of constant mean curva-
ture (CMC) surfaces of revolution in general simply-connected spherically
symmetric 3-spaces, and in the particular case of a positive-definite 3-
dimensional slice of Schwarzschild space. We derive their Jacobi opera-
tors, and then prove that closed CMC tori of revolution in such spaces
are unstable, and finally numerically compute the Morse index of some
minimal and closed non-minimal CMC surfaces of revolution in the slice
of Schwarzschild space.
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1 Introduction

A spherically symmetric 3-manifold is one whose isometry group contains a subgroup
which is isomorphic to the (rotation) group SO(3). These isometries are then inter-
preted as rotations, and so a spherically symmetric Riemannian manifold is often
described as one whose metric is invariant under rotation.

The Morse index of a constant mean curvature (CMC) surface is defined as the
sum of the multiplicities of the negative eigenvalues of its Jacobi operator ([21], [22]
and [26]), and a CMC surface is stable when its area is minimal with respect to all
variations preserving volume on each side of the surface. When it is stable, then the
Morse index is ≤ 1. So conversely, to show that some such surface is unstable, it is
sufficient to show its Morse index is ≥ 2.

We will study the Morse index and stability of CMC surfaces in spherically sym-
metric spaces, such spaces including Euclidean 3-space R3, the unit 3-sphere S3 and
hyperbolic 3-space H3 as special cases.

The index of both minimal and non-minimal CMC surfaces in R3 has been well
studied. It is known that the only stable complete minimal surface is a plane [9], and
minimal surfaces have finite index if and only if they have finite total curvature [12].
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And the index for many minimal surfaces which have finite total curvature has been
found ([10], [12], [17], [18]). It is also reported that a CMC surface is stable if and
only if it is a round sphere [2], and CMC surfaces without boundary have finite index
if and only if they are compact ([15], [24]). Furthermore, the Morse index of Wente
tori is described in [19].

In S3, the totally geodesic spheres have index 1 ([23]). F. Urbano [26] proved
that the minimal Clifford torus has index 5 and any other closed (compact without
boundary) minimal surface has index ≥ 6. For the closed CMC surfaces in S3, a similar
result to that in [26] is not yet known. But W. Rossman and the author [21] found
relatively sharp lower bounds for the index of closed CMC surfaces of revolution, and
a numerical method to compute the index of such surfaces is described in [22]. The
index and stability of minimal and CMC surfaces in H3 have also been studied (see
[7], [3], [14]).

However, the Morse index and stability properties of CMC surfaces in ambient
spaces other than R3, S3, H3 have not yet been well studied. Therefore, the purpose
of this paper is to study these for CMC surfaces of revolution in an ambient space
which is spherically symmetric, and in one particular case that is related to general
relativity. We will show that for a closed CMC torus the index is at least 2 and thus
we have the following theorem:

Theorem 1.1. Any closed immersed CMC torus of revolution (either minimal or
non-minimal) in a spherically symmetric 3-space is unstable.

Spherically symmetry is a characteristic of many solutions of Einstein’s field equa-
tions of general relativity, including the Schwarzschild solution. Thus, as an appli-
cation we consider a 3-dimensional positive-definite slice of the Schwarzschild space.
We describe the surfaces of revolution in this space, and show graphics of some such
minimal and non-minimal CMC surfaces. We also derive their Jacobi operators, and
numerically compute the Morse index for some of those surfaces in Schwarzschild
space.

2 Spherically symmetric spaces and their surfaces

We begin by considering Euclidean 3-space

R3 = {(x1, x2, x3) ∈ R} ,

but with a metric

ds2 = λ2(dx2
1 + dx2

2 + dx2
3) , λ = λ(x1, x2, x3) > 0

that is only conformal to the Euclidean metric ds2
0 = dx2

1+dx2
2+dx2

3. Let X(x, y) : Σ →
(R3, ds2) be an immersion, where (x, y) is a local coordinate chart of a 2-dimensional
manifold Σ. The following well-known lemma gives the mean and Gauss curvatures
of this surface in (R3, ds2), and we include a proof in the appendix (Section 8).
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Lemma 2.1. The mean curvature H and the Gauss curvature K of a surface in the
ambient space R3 with metric ds2 = λ2(dx2

1 + dx2
2 + dx2

3) are given by

(2.1) H =
Ĥ

λ
− DN̂λ

λ2
and K =

K̂

λ2
− 2

ĤDN̂λ

λ3
+

(
DN̂λ

λ2

)2

respectively, where

1. (x1, x2, x3) are the usual rectangular coordinates for R3,

2. the function λ = λ(x1, x2, x3) > 0 is the metric factor,

3. Ĥ and K̂ are the corresponding Euclidean mean and Gauss curvatures of the
surface with respect to the Euclidean metric ds2

0,

4. DN̂λ is the derivative of λ with respect to N̂ , where N̂ is the unit normal vector
of the surface with respect to ds2

0.

We now define what it means for (R3, ds2) to be spherically symmetric, and we
assume this symmetry throughout the remainder of this paper.

Definition 2.1. The 3-manifold (R3, ds2) is called spherically symmetric if λ is
spherically symmetric, that is, if

λ(x1, x2, x3) = λ(y1, y2, y3)

whenever x2
1 + x3

2 + x2
3 = y2

1 + y3
2 + y2

3.

Definition 2.2. Suppose (R3, ds2) is spherically symmetric, and suppose X : Σ →
(R3, ds2) is an immersion. If, after a possible change of coordinate of Σ and a possible
rotation R3 3 X 7→ AX ∈ R3 for some A ∈ SO(3), the surface X can be written as

X(x, y) = (φ(x) cos y, φ(x) sin y, ψ(x))

for some C∞ functions φ and ψ, then we call X a surface of revolution.

3 The Schwarzschild space

Coordinates for the Schwarzschild solution can be given in terms of the coordinates
(r, θ, φ, t) in R4, where (r, θ, φ) are the usual spherical coordinates for Euclidean 3-
space R3, and t is a coordinate in a time-like direction. In these coordinates, taking a
positive constant m to represent mass, the Schwarzschild metric for the region r > 2m
is

(3.1) ds2 =
(

1− 2m

r

)−1

dr2 + r2dθ2 + r2 sin2(θ)dφ2 −
(

1− 2m

r

)
dt2 .
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The above metric appears to have a singularity at r = 2m. However, this is not a
true singularity. The Schwarzschild solution can be analytically continued through
the surface r = 2m, and the sphere r = 2m corresponds to the surface of a black hole.

Each element of the rotation group SO(3) for R3 induces an isometric motion of
the Schwarzschild space. Namely, given ψ ∈SO(3), a rigid motion ψ̄ of Schwarzschild
space-time may be defined by setting ψ̄(r, θ, φ, t) = (ψ(r, θ, φ), t). Thus for each fixed
t, the Schwarzschild space-time is spherically symmetric.

Using the coordinate transformation r = ρ
(
1 + m

2ρ

)2

, from Equation (3.1) we have
the following isotropic form of the Schwarzschild metric in coordinates (ρ, θ, φ, t):

ds2 =
(

1 +
m

2ρ

)4

(dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2)−

(
1− m

2ρ

)2

(
1 + m

2ρ

)2 dt2 .

The coordinates (ρ, θ, φ) are called the isotropic polar coordinates. The advantage
of this form of the metric is that we can replace dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2 by the
standard Euclidean metric on R3 in rectangular coordinates. This is useful when
one considers the solar system as a 3-dimensional vector space, with some choice of
metric and coordinates with respect to one fixed observer and one fixed time for that
observer. The corresponding isotropic rectangular coordinates are obtained by setting
x1 = ρ sin θ cosφ, x2 = ρ sin θ sinφ, x3 = ρ cos θ, which gives

ds2 =
(

1 +
m

2ρ

)4

(dx2
1 + dx2

2 + dx2
3)−

(
1− m

2ρ

)2

(
1 + m

2ρ

)2 dt2 ,

with x2
1 + x2

2 + x2
3 = ρ2. Let us assume t is constant, and then we have

(3.2) ds2 =
(

1 +
m

2ρ

)4

(dx2
1 + dx2

2 + dx2
3) .

The 3-dimensional Riemannian manifold M3 = R3 \ {~0} with metric (3.2) is a
3-dimensional positive definite slice of Schwarzschild space.

4 Surfaces of revolution in Schwarzschild space

Let X(x, y) : Σ →M3 be a conformal immersion, where (x, y) is a local coordinate of
a 2-dimensional manifold Σ, and assume X(x, y) is of the form

(4.1) X(x, y) = (φ(x) cos y, φ(x) sin y, ψ(x))

for functions φ(x) and ψ(x), where φ(x) > 0, i.e. X(x, y) is a surface of revolution in
the Schwarzschild space M3.

Using Equation (2.1), a direct computation gives the following proposition.
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Proposition 4.1. The mean curvature H and Gauss curvature K of the surface X

as in Equation (4.1) are given by

(4.2) H =
1

λφ

(
φ− φ′′

2ψ′
− m(φψ′ − φ′ψ)√

λ(φ2 + ψ2)3/2

)

and

(4.3) K =
1

λ2φ2

{
(φ′)2 − φφ′′

φ2
− m(φ− φ′′)(φψ′ − φ′ψ)√

λψ′(φ2 + ψ2)3/2
+

m2(φψ′ − φ′ψ)2

λ(φ2 + ψ2)3

}
,

respectively, where

(4.4) λ = λ(x) =

(
1 +

m

2
√

φ2 + ψ2

)2

.
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Figure 1: Profile curves of various minimal surfaces of revolution outside (left picture)
and inside (right picture) the black hole.

We have numerically constructed some minimal and non-minimal CMC surfaces
of revolution, and the profile curves of these surfaces are shown in Figure 1 and
Figure 2, respectively. To find these CMC surfaces, we numerically solve the ordinary
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Figure 2: Profile curves of some closed non-minimal CMC surfaces of revolution. The
left-most surface is partially inside and partially outside the black hole, the center
surface is inside the black hole and touches the black hole’s boundary, and the right-
most surface is inside the interior of the black hole.

differential equation (ODE) (4.2) for various constant values of H. For this, we assume
m = 1, and initial conditions φ(0) = c and φ′(0) = 0, where c is a real constant. Here
the profile curves are symmetric with respect to reflection across the x1-axis in the
x1x3-plane.

Remark 4.1. When we take the constant c = 0.5, m = 1, and the mean curvature
H = 0, then we have a surface whose profile curve is a half-circle with radius 0.5, and
the resulting surface is the boundary of a black hole.

5 The Jacobi operator and Morse index

Consider (R3, ds2) with ds2 = λ2ds2
0 conformally equivalent to the Euclidean metric

ds2
0. Suppose X(x, y) : Σ → (R3, ds2) is a conformal C∞ immersion with mean curva-

ture H and Gauss curvature K, respectively. When H is constant, X is critical for a
variation problem ([1], [4], [6], [13], [24]) whose associated Jacobi operator is

(5.1) L = −∆− (2 Ricc(N) + 4H2 − 2K) ,

where ∆ is the Laplace-Beltrami operator of the induced metric ds2 = ρ(dx2+dy2) for
C∞ function ρ = ρ(x, y) : Σ → R+, and Ricc(N) is the (normalized) Ricci curvature
of (R3, ds2) in the direction N (unit normal vector of the surface with respect to ds2).

As −L is elliptic, it is well known ([5], [8], [16], [23], [25]) that the eigenvalues are
real, discrete with finite multiplicities, and diverge to +∞.

Definition 5.1. The index Ind(X) of X is the sum of the multiplicities of the negative
eigenvalues of L.
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Define L̂ = ρL = −∂x∂x − ∂y∂y − ρ(2 Ricc(N) + 4H2 − 2K), then like as for L,
the eigenvalues of L̂ form a discrete sequence

λ1 < λ2 ≤ λ3 ≤ ... ↑ +∞

whose first eigenvalue λ1 is simple, and the corresponding eigenfunctions

φ1, φ2, φ3, ... ∈ C∞(Σ) , L̂φj = λjφj , j = 1, 2, 3, ... ,

can be chosen to form an orthonormal basis for the standard L2 norm over Σ with
respect to the Euclidean metric dx2+dy2. L̂ and L will have different eigenvalues, but
by Rayleigh quotient characterizations ([5], [16], [25]) for the eigenvalues, we know
that these two operators will give the same index Ind(X).

6 The Jacobi operator and Morse index for surfaces
of revolution in spherically symmetric spaces

We now additionally suppose that (R3, ds2) is spherically symmetric, and that
X(x, y) : Σ → (R3, ds2) is a surface of revolution of the form

X = (φ(x) cos y, φ(x) sin y, ψ(x)) .

Any C∞ function f = f(x, y) : Σ → R can be decomposed into a series of spherical
harmonics as follows:

(6.1) f =
∞∑

j=0

fj,1(x) cos(jy) + fj,2(x) sin(jy) ,

where fj,1, fj,2 are functions of x only. We define the operator L̂0 with the function
space of C∞ real-valued functions depending only on x by

(6.2) L̂0 = −∂x∂x − ρ(2 Ricc(N) + 4H2 − 2K) ,

and the spectrum
λ1,0 < λ2,0 ≤ λ3,0 ≤ ... ↑ +∞

of L̂0 has again all the same properties as those for L̂. Furthermore, by uniqueness of
the spherical harmonics decomposition, the following lemma holds ([22]):

Lemma 6.1. We have Ind(X) =
∑

j∈N λj,0 · `(λj,0), where

`(λ) =
{

0 if λ ≥ 0 ,
2i− 1 if λ ∈ [−i2,−(i− 1)2) for i ∈ N .
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In the special case that (R3, ds2) equals the Schwarzchild space M3, the mean
curvature H and Gauss curvature K of X are given by Equations (4.2) and (4.3),
respectively, and H is constant. Furthermore, the term Ricc(N) in L satisfies

(6.3) Ricc(N) = − m

2λ3φ2(φ2 + ψ2)5/2

{−φ2(φ2 + ψ2) + 3(φ′ψ − φψ′)2
}

.

We will return to this special case later.

7 Instability of CMC tori of revolution in spheri-
cally symmetric spaces

In this section, we prove our primary result (Theorem 1.1), and then compute the
spectra of the Jacobi operator L̂0 for minimal annuli of revolution and closed non-
minimal CMC tori of revolution when (R3, ds2) is the slice of Schwarzchild space
M3.

Lemma 7.1. Let X be a closed immersed CMC torus of revolution in a spherically
symetric 3-space (R3, ds2). Then −1 is an eigenvalue of the operator L̂0 and λ1,0 < −1
and Ind(X) ≥ 2.

Proof. We may take
X = (φ(x) cos y, φ(x) sin y, ψ(x)) ,

and the unit normal vector is

N =
1

φ(x)λ
(−ψ′(x) cos y,−ψ′(x) sin y, φ′(x)) .

Let K = (0, ψ(x),−φ(x) sin y) be the restriction of the Killing field, to this surface,
produced from rotation about the x1-axis, so then

f := 〈K, N〉M3 = u(x) · sin y ,

with u(x) = λ
φ(x) (φ(x)φ′(x) + ψ(x)ψ′(x)), satisfies L̂(f) = 0 ([4], [10], [21]). Because

L̂0 = L̂ + ∂y∂y, we have L̂0(u(x)) = −u(x), i.e. −1 is an eigenvalue of L̂0. Then,
because the nodal set of u(x) disconnects Σ, and because any eigenfunction associated
to λ1,0 must have an empty nodal set, we conclude that λ1,0 < −1.

Thus L̂0 has at least two negative eigenvalues, and therefore L does as well, so
Ind(X) ≥ 2.

Because any stable surface X could only have index either 0 or 1, this proves
Theorem 1.1.

Remark 7.1. When λ is as in Equation (4.4), numerical evidence suggests that closed
minimal tori of revolution do not exist.
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A numerical method for computing the spectra of L̂0 on the function space over a
closed loop was reported in [22]. Using this method, we can find the negative eigenval-
ues of the operator L̂0 for closed non-minimal CMC surfaces (Figure 2). Furthermore,
we have an analogous numerical method for the function space on an interval with
Dirichlet boundary conditions, which can be applied to compute the negative eigen-
values of the operator L̂0 for a minimal surface outside the black hole (Figure 1), as
follows:

Algorithm for computing spectra. We can numerically solve the ODE
L̂0(f) = λf for f with the initial conditions f(0) = 0, ( d

dxf)(0) = 1 by
a numerical ODE solver ([22]), and search for the values of λ that give
solutions f in the function space with Dirichlet boundary conditions. Such
values of λ are amongst the λj,0. And the eigenspace associated to each
eigenvalue λ is 1-dimensional ([22]). Any eigenfunction f corresponding to
the j’th eigenvalue λj,0 of L̂0 has exactly j + 1 nodes ([22]). So the value
of j is determined simply by counting the number of nodes of f . Because
we can determine j, we will know when we have found all λj ≤ M for any
given M ∈ R.

After finding the negative eigenvalues, we can compute the Morse index of a surface
by using Lemma 6.1. As examples, we do this for various closed non-minimal CMC
surfaces C1, C2, C3, C4, C5 shown in Figure 3 and minimal surfaces M1 ⊇ M2 ⊇ M3,
M4 ⊇ M5 ⊇ M6 shown in Figure 4. Table 1 shows the numerical results for all of
these surfaces.

surface H a eigenvalues λi,0, i = 1, 2, 3, ... numerical value
for the operator L̂0 for Ind(X)

C1 0.5 - -4.063 , -1, 0.5, 11.1 , 11.1 6
C2 1 - -16.015, -1, 1, 47, 47 10
C3 1.5 - -36.008 , -1, 1, 108, 108 14
C4 2 - -64.4929, -1, 1, 194, 194 18
C5 2.5 - -102.097, -1, 1, 309, 309 22
M1 0 4.03 -0.668 ,-0.55, 1.1 2
M2 0 2.8 -.185 ,0.14, 2.26 1
M3 0 1.8 0.98, 2.72, 6 0
M4 0 5 -0.6397 ,-0.255, 0.66 2
M5 0 3.1 -0.543 , 0.02, 1.83 1
M6 0 1.8 0.1, 1.95, 6 0

Table 1: Numerical estimates for the eigenvalues of the operator L̂0 and index for the
surfaces C1, C2, C3, C4, C5,M1, M2,M3,M4,M5 and M6.

For the minimal surfaces M1,M2 and M3, we take x in the interval [−a, a] where
a > 0, for three different values of a and use the same initial conditions to solve the
ODE (4.2), i.e. we only change the size of the domain, and we can then verify that
Lemma 7.2 is satisfied, as must be the case. We can also check this property (Lemma
7.2) for the minimal surfaces M4,M5 and M6 (see Table 1).
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Figure 3: Profile curves (1st column) and the eigenfunctions (2nd, 3rd, 4th, 5th and
6th columns) associated to the eigenvalues λi,0, i = 1, 2, 3, 4, 5 of the surfaces C1, C2,
C3, C4 and C5.
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Figure 4: Profile curves (1st column) and the eigenfunctions (2nd, 3rd and 4th
columns) associated to the eigenvalues λi,0, i = 1, 2, 3 of the surfaces M1, M2, ..., M6.
Note that M3 ⊆ M2 ⊆ M1 and M6 ⊆ M5 ⊆ M4.
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Lemma 7.2. If the domain Σ increases in size, then the eigenvalues λj,0 either
decrease or stay the same.

Proof. Let Σ1 ⊆ Σ2 be two domains with boundaries ∂Σ1 and ∂Σ2. We will show
that for all j,

λj,0(Σ1) ≥ λj,0(Σ2) .

Let λ1,0(Σ1) < λ2,0(Σ1) ≤ ... ≤ λj−1,0(Σ1) be the first j−1 eigenvalues of the operator
L̂0 with corresponding orthonormal eigenfunctions φ1, φ2, ..., φj−1 defined on Σ1, and
set V◦j−1 = span{φ1, φ2, ..., φj−1}. Here Σ1 ⊆ Σ2, and we extend the functions φk to
the domain Σ2 by setting them equal to zero on Σ2\Σ1. The functions φk thus defined
now have domain in Σ2, and the value of the L2 inner product is the same over the
two domains for any functions that are zero on Σ2 \Σ1. Also, L2(Σ1) ⊆ L2(Σ2), and
it follows that

inf
ψ∈L2(Σ1)

R(ψ) ≥ inf
ψ∈L2(Σ2)

R(ψ) ,

where R(ψ) = 〈L̂0ψ,ψ〉L2

〈ψ,ψ〉L2
is the Rayleigh quotient. Therefore, by variational charac-

terizations as in [5], the j’th eigenvalues of L̂0 for the domains Σ1 and Σ2 are given
by

λj,0(Σ1) = inf
ψ∈(V◦j−1)

⊥∩L2(Σ1)
R(ψ) ≥ inf

ψ∈(V◦j−1)
⊥∩L2(Σ2)

R(ψ) = λj,0(Σ2) .

Remark 7.2. The numerical results shown in Table 1 demonstrate that Ind(X) of
minimal surfaces of revolution outside the black hole (left picture in Figure 1) is ≤ 2,
which is also true for any compact portion of a minimal catenoid in R3 [15].

8 Appendix

Here we prove Lemma 2.1, using the moving frame method. Let Ĥ and K̂ be the
mean and Gauss curvatures of the surface X with respect to the Euclidean metric
ds0

2, and let {ê1, ê2, ê3} be an orthonormal frame of the surface X such that ê1, ê2

are tangent to X and ê3 = N̂ is normal to X. We define 1-forms ω̂i and ω̂j
i by

ω̂i(êj) = δi
j , ∇êi =

3∑

j=1

ω̂j
i êj .

Here the ω̂j
i are skew symmetric, i.e. ω̂j

i = −ω̂i
j . Furthermore, we have the structure

equations dω̂i =
∑3

j=1 ω̂j ∧ ω̂i
j , and can then define Ĥ and K̂ as follows:

Ĥ =
1
2
(ĥ11 + ĥ22) and K̂ = ĥ11ĥ22 − ĥ2

12 ,

where ĥij = 〈∇êi êj , ê3〉(R3,ds2
0)

= ω̂3
j (êi).
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Now consider the same surface X, but with the ambient metric ds2, and can define
an orthonormal moving frame in the same way as above, now with respect to ds2. In
this case, we denote the orthogonal vectors by ei, and 1-forms by ωi and ωi

j . Here
ei = êi

λ and ωi = λω̂i, and also the mean curvature is H = 1
2 (h11 + h22) and Gauss

curvature is K = h11h22 − h2
12. Using the fact that ωi ∧ ω̂i = 0, we have

3∑

j=1

ωj ∧ ωi
j = dωi = d(λω̂i) = dλ ∧ ω̂i + λdω̂i

=
3∑

j=1

(
λjω̂

j ∧ ω̂i + λω̂j ∧ ω̂i
j

)
=

3∑

j=1

(
λω̂j ∧

(
λj

λ
ω̂i + ω̂i

j

))

=
3∑

j=1

(
ωj ∧

(
λj

λ
ω̂i − λi

λ
ω̂j + ω̂i

j

))
.

Here λj

λ ω̂i − λi

λ ω̂j + ω̂i
j is skew symmetric, so we have ωi

j = λj

λ ω̂i − λi

λ ω̂j + ω̂i
j . Thus

for i, j ≤ 2, we have

hij = ω3
j (ei) =

(
λj

λ
ω̂3 − λ3

λ
ω̂j + ω̂3

j

)(
êi

λ

)
=

ĥij

λ
− λ3

λ2
δi
j .

Therefore, H = Ĥ
λ − λ3

λ2 and K = K̂
λ2 − 2Ĥλ3

λ3 +
(

λ3
λ2

)2
, where λ3 = DN̂ (λ) is the

derivative of λ with respect to N̂ = ê3.
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