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Abstract. We determine spectrum and eigenspaces of some families of
SpinC Dirac operators over the flat 3-torus. Our method relies on projec-
tions onto appropriate 2-tori on which we use complex geometry.

Furthermore we investigate those families by means of spectral sections (in
the sense of Melrose/Piazza). Our aim is to give a hands-on approach to
this concept. First we calculate the relevant indices with the help of spec-
tral flows. Then we define the concept of a system of infinitesimal spectral
sections which allows us to classify spectral sections for small parameters
R up to equivalence in K-theory. We undertake these classifications for
the families of operators mentioned above.

Our aim is therefore twofold: On the one hand we want to understand the
behavior of SpinC Dirac operators over a 3-torus, especially for situations
which are induced from a 4-manifold with boundary T 3. This has prospec-
tive applications in generalized Seiberg-Witten theory. On the other hand
we want to make the term “spectral section”, for which one normally only
knows existence results, more concrete by giving a detailed description in
a special situation.
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1 Introduction

In the study of smooth 4-manifolds, especially in the context of (generalized) Seiberg-
Witten theory, it would be nice to understand SpinC Dirac operators which are in-
duced on the boundary of a compact 4-manifold.

Manifolds with boundary T 3 where already studied in this context by [5]. But
for generalized Seiberg-Witten theories, also families of operators in non-trivial SpinC

structures become important. Therefore, we undertake a detailed study for some of
these families. We now describe the object of investigation:

For every SpinC structure on T 3 = R3/Z3 we analyse the family of Dirac operators
given by connections ∇K + iα; here ∇K is a fixed background connection (to be
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constructed below) for an appropriate line bundle K and α comes from the parameter
space of closed one-forms.

Our first aim is to determine the spectrum and an orthogonal eigenbasis for these
operators. Our strategy is as follows:

1. We write the 3-torus as S1 bundle over a 2-torus (determined by the SpinC

structure).

2. We equip the 2-torus with a complex structure and choose appropriate holo-
morphic line bundles.

3. We use complex geometry and methods from [1].

4. We combine the calculated terms with exponential functions to get the desired
result.

The calculations above will help us to access our second aim: The construction of
spectral sections.

For a lattice ` ⊂ H1(T 3;Z) ⊂ H1(T 3;R) look at the family of operators parametrized
by B =

(
`⊗R)

/`. Since we know the concrete spectrum we can calculate all spectral
flows in this torus which gives us direct access to the index in K1(B). By [4, section
2] the vanishing of this index corresponds to the existence of spectral sections.

For small parameters R we give a classification of all spectral sections up to equiv-
alence in K-theory.

Remark 1.1. If ι : T 3 ↪→ M is the boundary of a SpinC 4-manifold M and ` is chosen
to be a subset of ι∗

(
H1(M ;Z)

)
, then one can show that our family of operators is a

boundary family in the sense of [4]; this guarantees the existence of spectral sections
in this case but does not lead to concrete constructions of them.

2 Definitions

We take T 3 := R3/Z3 to be the flat 3-torus. We identify the first and second coho-
mology groups with each other by the Hodge star operation. Both of them will be
identified with Z3 or R3 through the standard (positively oriented) basis dx1, dx2, dx3

of TR3.
The trivial Spin structure induces a SpinC structure with associated bundle H =

T 3×H. HereH = span{e0, e1, e2, e3} denotes the space of quaternions. It is considered
as a complex vector space by left multiplication with i = e1 and as a left-quaternionic
vector space by inverse right multiplication.

Now the SpinC structures can be canonically identified with elements k̂ ∈ H2
(
T 3;Z

)

(for a general explanation of SpinC structures and their associated bundles see e.g.
[6]). For every such element we choose a Hermitian line bundle K with c1(K) = k̂
and a unitary background connection ∇K ; possible choices and constructions will be
detailed in the subsequent sections. Then the SpinC structure k̂ has the associated
bundle H⊗K.

For each K and closed one-form α we get a SpinC Dirac operator

DK
α : Γ

(
H⊗K

) → (
H⊗K

)
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for the connection ∇K + iα.
These operators will be analysed in the subsequent sections.

3 Spectrum and Eigenbasis

We distinguish two main cases.

3.1 Nontrivial SpinC structure

We write k̂ = h · k with k ∈ Z3 and maximal h ∈ Z+. Let W be the plane in R3

orthogonal to k and πk the orthogonal projection. By taking quotients we get a map
πk : T 3 → TΛ := W/Λ with Λ = πk(Z3).

Let w1, w2 be the basis of a fundamental parallelogram in Λ. We take ci ∈ [0, 1),
i = 1, 2, with wi − ci · k ∈ Z3.

Lemma 3.1. The map πk : T 3 → TΛ determines a trivial R/Z-bundle with trivial-
ization:

T 3 πk×tri−→ TΛ × R/Z[
χ1w1 + χ2w2 + χk

]
7→

([
χ1w1 + χ2w2

]
,
[
c1χ1 + c2χ2 + χ

])
.

(3.1)

Proof. Direct calculation. ¤

We give TΛ the induced metric and orientation and choose a Hermitian line bun-
dle L over it with c1(L) = h (in the standard identification of H2

(
TΛ;Z

)
with Z).

Furthermore, we equip the bundle with an arbitrary unitary connection ∇L.

Definition 3.1. We define K := π−1

k
(L) and ∇K := π−1

k

(∇L
)
. Then we have

c1(K) = k̂.

3.1.1 Working on TΛ

We now look at the corresponding problem on TΛ. For each (positive) Chern class h,
we have an associated bundle H⊗L over TΛ. Then each closed one-form αΛ over TΛ

defines a Dirac operator

DL
αΛ

: Γ
(
H⊗ L

) → (
H⊗ L

)
.

We give W an arbitrary complex structure and scale everything so that we work on
C/{1,τ} with im τ > 0. Now we can equip L with a holomorphic structure; we choose
it so that ∇L + iαΛ becomes the Chern connection of the holomorphic bundle.

This specifies a problem for twisted Dirac operators on a Riemann surface. We
use the results of [1, section 5.2], where the eigenspaces of DL

αΛ
are described in terms

of holomorphic sections.
The eigenspaces can be made explicit using theta functions. A detailed discussion

of all calculations and identifications can be found in [3, section 2.c]. The result is
the following:
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Lemma 3.2. We can explicitly construct a basis of orthogonal eigensections σm,
m ∈ Z, for DL

αΛ
with respective eigenvalues

µm := sgn m

√
2πh‖k‖

⌊ |m|
h

⌋
.

The eigenvalues are independent of αΛ.

3.1.2 An eigenbasis for (DK
α )2

Remark 3.2. By a standard gauging argument, we can reduce the problem of finding
spectrum and eigenspaces from closed one-forms to harmonic one-forms. So from now
on we assume α ∈ H1(T 3;R) ∼= R3.

We now look at the map sl ◦ tri, l ∈ Z, where sl : R/Z → S1 is defined to be
t 7→ exp(2πlt) and tri is the map from (3.1). Its exterior derivative is given by:

d
(
sl ◦ tri

)
= 2πil

(
sl ◦ tri

) (
c1, c2, 1

)
.

We now want to separate this form into its parallel and orthogonal part with respect
to W :

d
(
sl ◦ tri

)
= 2πi(sl ◦ tri) · (ωl

q + ωl
⊥

)
,

In the same way we split α = αq + α⊥.
We set αΛ := αq + 2πωl

q and use Lemma 3.2 to determine a basis of sections for
Γ(H⊗ L) which we call σl

m, m ∈ Z.
The parameter ωl

q becomes necessary for our construction since the bundle T 3 →
TΛ is trivial but its metric differs from the orthogonal product TΛ × S1.

We further denote

σ̂l,m(v) := (sl ◦ tri)(v) · π∗
k

(
σl

m

)
(v).

This can be interpreted as a combination of a basis of the Dirac operator over S1

with bases over TΛ. Let
λl :=

(
2πl + 〈k, α〉)/‖k‖,

where 〈 , 〉 means the standard scalar product of R3 (or, interpreted differently, the
evaluation of k ∪ α at the orientation class).

Theorem 3.3 (Eigenbasis for (DK
α )2). The set

{
σ̂l,m

∣∣ l, m ∈ Z}
forms an orthog-

onal basis of eigensections for (DK
α )2 with the respective eigenvalues λ2

l + µ2
m.

Proof. Applying DK
α twice and using the definition of ωl, we see that these sections

are indeed eigensections for the given eigenvalues. With a standard calculation (see
[3, p.45]), we conclude that the set span

{
σ̂l,m

∣∣ l, m ∈ Z}
is dense in the space of

L2-sections. The orthogonality can be deduced from the orthogonality of the σl
m by

using the fact that a change of α⊥ changes the spectrum but fixes σl
m. ¤
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3.1.3 An eigenbasis for DK
α

Theorem 3.3 gives a quadratic equation for DK
α . Furthermore, we know that the Dirac

operator on TΛ is graded, so the bases σl
m split into σl+

m + σl−
m . Together this leads

us to the following denominations

σ±l,m := (sl ◦ tri) ·
((

λl + µm ±
√

λ2
l + µ2

m

)
π∗

k

(
σl+

m

)

+
(
− λl + µm ±

√
λ2

l + µ2
m

)
π∗

k

(
σl−

m

))

σ0
l,m := σ̂l,m

and

ν±l,m := ±
√

λ2
l + µ2

m, ν0
l,m :=

{
λl for 0 ≤ m ≤ h− 1
µm otherwise.

From this set of vectors we have to choose a subset of nonzero vectors whose span is
dense.

Theorem 3.4. We get an orthogonal eigenbasis of DK
α by

{
σ±l,m

∣∣∣∣ (l, m) ∈ Z2 with λl 6= 0 and m ≥ h

}

∪
{

σ0
l,m

∣∣∣∣ (l, m) ∈ Z2 with λl = 0 or 0 ≤ m ≤ h− 1
}

,

which will be written as M±
α ∪M0

α. The respective eigenvalues are ν
+/0/−
l,m .

Proof. We check that all these vectors are nonzero and belong to the defined eigenspaces.
From the construction in [1] we know that σl

m = σl+
m + σl−

m implies σl
h−m−1 =

σl+
m − σl−

m . Therefore, we have the DK
α -invariant subspaces

span
{
σ̂l,m, DK

α σ̂l,m

}
= span

{
σ̂l,m, σ̂l,h−m−1

}
.

They can be used to prove the orthogonality and density of the constructed sections.
¤

3.2 Trivial SpinC structure

We look at Dα on Γ(H) = Γ(C2) for the standard connection ∇K . Let
σb(x1, x2, x3) := exp

(
2πi(b1x1 + b2x2 + b3x3)

)
.

Then we get the basis of sections:

span
{
σ+

b = (σb, 0)
∣∣ b ∈ Z3

} ∪ {
σ−b = (0, σb)

∣∣ b ∈ Z3
}
.

Define β = α + 2πb. We use the classical methods of [2] to determine:

Theorem 3.5. We get an orthogonal eigenbasis for Dα as
{
‖β‖σ+

b −Dασ+
b

∣∣∣∣ b ∈ Z3 with β2 6= 0 or β3 6= 0
}

∪
{
‖β‖σ+

b +Dασ+
b

∣∣∣∣ b ∈ Z3 with β2 6= 0 or β3 6= 0
}
∪

{
σ±b

∣∣∣∣ β2 = β3 = 0
}

.
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Furthermore, we have for β2 6= 0 or β3 6= 0:

span
{
σ+

b , σ−b
}

= span
{‖β‖σ+

b −Dασ+
b , ‖β‖σ+

b +Dασ+
b

}
.

The spectrum consists of all numbers ±‖β(b, α)‖ for b ∈ Z3.

Remark 3.3. In the case k̂ 6= 0 the spectrum is determined by α⊥ while the eigenbasis
is determined by αq. Here every change of α has influence on both eigenbasis and
spectrum.

4 Spectral sections

We look at families of Dirac operators over a compact base space B. [4] defined the
concept of a spectral section for a constant R > 0. The most interesting spectral
sections are those for small R; they should be classified in the sense of the following
definition.

Definition 4.1. Let Rinf be defined as the infimum of the set

{R > 0 | for R exists at least one spectral section}.

Furthermore, choose a (small) positive number εP . Then a system of infinitesimal
spectral sections is a map

]
Rinf, Rinf + εP

]× I → {
spectral sections for a fixed operator D

}

(R, i) 7→ P i
R,

where

1. I is an arbitrary index set,

2. P i
R is a spectral section for the constant map R,

3. every
(
P i

R

)
α
, α ∈ B, depends continuously on R (where we consider

(
P i

R

)
α

as
operator between L2 spaces), and

4. ∪i∈I{P i
R} is a representation system for all spectral sections for R, i.e. for all

possible spectral sections PR there is a P i
R with i ∈ I, so that ImPR− ImP i

R is
zero in K-theory.

A minimal system of infinitesimal spectral sections is one in which I is chosen
minimal (under the inclusion relation).

4.1 Definition of the family

Let ` ⊂ H1
(
T 3;Z

)
be a lattice (of non-maximal dimension) and let B := (`⊗ R)/`.

We need the following ingredients for our definition:

• ker(d)l⊗R: The subset of ker(d) representing elements in `⊗ R.
• G`: The subgroup of the gauge group Map

(
T 3, S1

)
determined by `.
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• The projection prT 3 : T 3× (∇K + i ker(d)l⊗R
) → T 3 together with the induced

vector bundle pr∗T 3

(
H⊗K

)
.

If v is an element of the fibre of pr∗T 3

(
H⊗K

)
over

(y,∇K + iαc) ∈ T 3 × (∇K + i ker(d)`⊗R
)
,

we can define the following action of G`:

G` × pr∗T 3

(
H⊗K

) → pr∗T 3

(
H⊗K

)
(

u ,
(
v, y,∇K + iα

)) 7→ (
u(y) · v, y,∇K + iα + udu−1

)
.(4.1)

The quotient is a bundle over T 3 × B. The connection from the parameter space
determines a family of Dirac operators called D.

Depending on k̂ and ` we want to know:

1. Do spectral sections exist?
2. If they exist: What do they look like?

4.2 Existence of spectral sections

Following [4] we know that spectral sections for D exist if and only if the index of D
in K1(B) vanishes. Let I be the following composition of isomorphisms (remember
that B is a torus of maximal dimension 2):

K1(B) Chern−→ H1(B;Z) −→ (
H1(B;Z)

)∗ −→ `∗.

Lemma 4.1. Let a ∈ H1
(
T 3;Z

)
and let f : (R · a)/a → B be the map induced by the

inclusion. In this way we get a pullback family Da over (R · a)/a. Then the spectral
flow of Da in positive direction is given by 〈k̂, a〉 = 〈k̂ ∪ a,

[
T 3

]〉.

Proof. We use our explicit knowledge of the spectrum. First we assume k̂ 6= 0: From
all eigenvalues ν

+/0/−
l,m only those of the form ν0

l,m for 0 ≤ m ≤ h − 1 have a chance
to cross zero. From the definition we know that ν0

l,m = λl =
(
2πl + 〈k, α〉)/‖k‖ for

which we can count the crossings while running around the circle. For k̂ = 0 the
spectrum is always symmetric with respect to zero. We see that every spectral flow
has to vanish. ¤

Remark 4.2. The spectral flow of Da for k̂ is, by a folklore result of Atiyah, the
same as the index of the positive Dirac operator over T 3×S1 equipped with the SpinC

structure belonging to k̂ + a ∪ eS1 , where eS1 is the positive generator of H1(S1;Z).
Since every two-form over T 3 × S1 ∼= T 4 can be written in this form, this allows us
to calculate the index of D+

b for every b ∈ H2
(
T 4;Z

)
. A direct computation yields〈

b ∪ b,
[
T 4

]〉
.

With this Lemma we get a direct access to the following statement:
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Theorem 4.2. The isomorphism I maps the index of D to the map x 7→ 〈k̂ ∪ x,
[
T 3

]〉
in `∗.

Proof. Take a fundamental basis a1, a2 of the torus B; then an element in K1(B) is
determined by its images in K1

(
(R ·ai)/ai

)
, which we calculate with the formula from

the preceding lemma. Since the maps are linear, it is enough to check the theorem
for a1, a2 which is an easy exercise. ¤

Corollary 4.3. Spectral sections for D exist if and only if k ∪ ` = 0.

4.3 Construction of spectral sections for k̂ 6= 0

Theorem 4.4. If spectral sections exist, the spectrum is constant.

Proof. From k ∪ ` = 0 we know that for every α ∈ (` ⊗ R) we have α⊥ = 0. From
section 3.1.3 we know that this implies a constant spectrum. ¤

Therefore, we have Rinf = 0. For εP smaller than the smallest eigenvalue of D,
the spectral sections are fixed everywhere except for the h-dimensional kernel of D.

Let I :=
{
F

∣∣ F subbundle of B × Ch
}
/∼= ∼= Zh−1∪{0}∪{Ck} and define PF |kerD

for R < εP as the orthogonal projection onto F . This defines a system of infinitesimal
spectral sections which is obviously also minimal.

4.4 Construction of spectral sections for k̂ = 0

We split ΓL2(H) into the 2-dimensional Dα-invariant subspaces Σb = span{σ+
b , σ−b }.

On each of them, we have the two eigenvalues ±‖β‖ = ±‖α + 2πb‖. For small R
we know that for each α there is at most one b with ‖β‖ ≤ R. So for any spectral
section P for D with small R we know that it fixes all Σb. Since Pα|Σb : Σb → Σb is
a one-dimensional orthogonal projection for ‖β‖ > R, it has to be a one-dimensional
orthogonal projection for all β (and, therefore, for all α, since α and β are in bijective
correspondence).

We now assume that ` is a plane since dim ` ≤ 1 does not lead to interesting
conclusions. In addition to the assumptions about R above we assume that εP is
smaller than the minimal distance between ` ⊗ R and any point b ∈ Z3\`. This
implies that for such b there are no eigenvalues with ‖β‖ < R on Σb.

The space of one-dimensional orthogonal projections on C2 equals CP1 ∼= S2. Fix
an element b ∈ `Z = (`⊗R)∩Z3 and look at the corresponding map Pβ |Σb

: `⊗R→
CP1 (written as function of β). For ‖β‖ ≥ R every ray coming from zero will be
mapped to one point, producing a circle in CP1 (this follows from the construction of
the eigenbasis). For ‖β‖ < R we have to continue this map in some way; topologically,
the problem is as follows: We have to construct a map from the 2-disc to the 2-sphere
which maps the boundary pointwise to the equator. Up to homotopy, there are
π2(S2) ∼= Z many choices for that.

4.4.1 A system of infinitesimal spectral sections

The preceding discussion leads to the following:
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Since we had imposed no lower bounds for R, we have Rinf = 0. Let εP be so
small that if fulfills all conditions mentioned above.

We take I =
{

g : `Z/` → π2

(
CP1

)}
and define for each R < εP spectral projec-

tions P g. For b 6∈ `Z these maps are already defined on Σb. For b ∈ `Z , we define
P g

α on Σb to be a continuation specified by g(b) ∈ π2

(
CP1

)
as discussed in the pre-

ceding subsection (These continuations can be chosen to depend continuously on the
parameters).

Conditions 1 and 2 (from the definition of infinitesimal spectral sections) are clear,
3 can be checked directly (if we specify the continuations explicitly), and 4 follows
from the discussion above.

In general this system is not minimal. We can choose a minimal system J by
fixing an element g0 ∈ I and a point l0 ∈ `Z/` and defining

J =
{
g ∈ I

∣∣ g(l) = g0(l) for l 6= l0
}
.

This is true because J represents all element of the form (0, z) from K(B) ∼= H0(B;Z)⊕
H2(B;Z) ∼= Z⊕ Z.
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