Dirac operators over the flat 3-torus

J. Fabian Meier

Abstract

We determine spectrum and eigenspaces of some families of Spin ${ }^{\mathbb{C}}$ Dirac operators over the flat 3 -torus. Our method relies on projections onto appropriate 2 -tori on which we use complex geometry.

Furthermore we investigate those families by means of spectral sections (in the sense of Melrose/Piazza). Our aim is to give a hands-on approach to this concept. First we calculate the relevant indices with the help of spectral flows. Then we define the concept of a system of infinitesimal spectral sections which allows us to classify spectral sections for small parameters R up to equivalence in K-theory. We undertake these classifications for the families of operators mentioned above. Our aim is therefore twofold: On the one hand we want to understand the behavior of Spin ${ }^{\mathbb{C}}$ Dirac operators over a 3 -torus, especially for situations which are induced from a 4-manifold with boundary T^{3}. This has prospective applications in generalized Seiberg-Witten theory. On the other hand we want to make the term "spectral section", for which one normally only knows existence results, more concrete by giving a detailed description in a special situation.

M.S.C. 2010: 47A10, 58C40, 58J30.

Key words: Spinc Dirac operator; 3-torus; spectral section.

1 Introduction

In the study of smooth 4-manifolds, especially in the context of (generalized) SeibergWitten theory, it would be nice to understand Spin ${ }^{\mathbb{C}}$ Dirac operators which are induced on the boundary of a compact 4-manifold.

Manifolds with boundary T^{3} where already studied in this context by [5]. But for generalized Seiberg-Witten theories, also families of operators in non-trivial Spin ${ }^{\mathbb{C}}$ structures become important. Therefore, we undertake a detailed study for some of these families. We now describe the object of investigation:

For every Spin ${ }^{\mathbb{C}}$ structure on $T^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$ we analyse the family of Dirac operators given by connections $\nabla^{K}+\mathrm{i} \alpha$; here ∇^{K} is a fixed background connection (to be

[^0]constructed below) for an appropriate line bundle K and α comes from the parameter space of closed one-forms.

Our first aim is to determine the spectrum and an orthogonal eigenbasis for these operators. Our strategy is as follows:

1. We write the 3 -torus as S^{1} bundle over a 2 -torus (determined by the $\operatorname{Spin}{ }^{\mathbb{C}}$ structure).
2. We equip the 2 -torus with a complex structure and choose appropriate holomorphic line bundles.
3. We use complex geometry and methods from [1].
4. We combine the calculated terms with exponential functions to get the desired result.

The calculations above will help us to access our second aim: The construction of spectral sections.

For a lattice $\ell \subset H^{1}\left(T^{3} ; \mathbb{Z}\right) \subset H^{1}\left(T^{3} ; \mathbb{R}\right)$ look at the family of operators parametrized by $B=(\ell \otimes \mathbb{R}) / \ell$. Since we know the concrete spectrum we can calculate all spectral flows in this torus which gives us direct access to the index in $K^{1}(B)$. By [4, section 2] the vanishing of this index corresponds to the existence of spectral sections.

For small parameters R we give a classification of all spectral sections up to equivalence in K-theory.
Remark 1.1. If $\iota: T^{3} \hookrightarrow M$ is the boundary of a Spin ${ }^{\mathbb{C}} 4$-manifold M and ℓ is chosen to be a subset of $\iota^{*}\left(H^{1}(M ; \mathbb{Z})\right)$, then one can show that our family of operators is a boundary family in the sense of [4]; this guarantees the existence of spectral sections in this case but does not lead to concrete constructions of them.

2 Definitions

We take $T^{3}:=\mathbb{R}^{3} / \mathbb{Z}^{3}$ to be the flat 3-torus. We identify the first and second cohomology groups with each other by the Hodge star operation. Both of them will be identified with \mathbb{Z}^{3} or \mathbb{R}^{3} through the standard (positively oriented) basis $d x_{1}, d x_{2}, d x_{3}$ of TR^{3}.

The trivial Spin structure induces a $\operatorname{Spin}^{\mathbb{C}}$ structure with associated bundle $\mathbb{H}=$ $T^{3} \times \mathbb{H}$. Here $\mathbb{H}=\operatorname{span}\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ denotes the space of quaternions. It is considered as a complex vector space by left multiplication with $i=e_{1}$ and as a left-quaternionic vector space by inverse right multiplication.

Now the Spin ${ }^{\mathbb{C}}$ structures can be canonically identified with elements $\hat{k} \in H^{2}\left(T^{3} ; \mathbb{Z}\right)$ (for a general explanation of $\operatorname{Spin}^{\mathbb{C}}$ structures and their associated bundles see e.g. [6]). For every such element we choose a Hermitian line bundle K with $c_{1}(K)=\hat{k}$ and a unitary background connection ∇^{K}; possible choices and constructions will be detailed in the subsequent sections. Then the $\operatorname{Spin}^{\mathbb{C}}$ structure \hat{k} has the associated bundle $\mathbb{H} \otimes K$.

For each K and closed one-form α we get a Spin ${ }^{\mathbb{C}}$ Dirac operator

$$
\mathcal{D}_{\alpha}^{K}: \Gamma(\underline{H} \otimes K) \rightarrow(\underline{\mathbb{H}} \otimes K)
$$

for the connection $\nabla^{K}+i \alpha$.
These operators will be analysed in the subsequent sections.

3 Spectrum and Eigenbasis

We distinguish two main cases.

3.1 Nontrivial Spin ${ }^{\mathbb{C}}$ structure

We write $\hat{k}=h \cdot k$ with $k \in \mathbb{Z}^{3}$ and maximal $h \in \mathbb{Z}^{+}$. Let W be the plane in \mathbb{R}^{3} orthogonal to k and π_{k} the orthogonal projection. By taking quotients we get a map $\pi_{\bar{k}}: T^{3} \rightarrow T_{\Lambda}:=W / \Lambda$ with $\Lambda=\pi_{k}\left(\mathbb{Z}^{3}\right)$.

Let w_{1}, w_{2} be the basis of a fundamental parallelogram in Λ. We take $c^{i} \in[0,1)$, $i=1,2$, with $w_{i}-c^{i} \cdot k \in \mathbb{Z}^{3}$.

Lemma 3.1. The map $\pi_{\bar{k}}: T^{3} \rightarrow T_{\Lambda}$ determines a trivial \mathbb{R} / \mathbb{Z}-bundle with trivialization:

$$
\begin{align*}
& T^{3} \stackrel{\pi_{\bar{k} \times \operatorname{tri}}}{\longrightarrow} T_{\Lambda} \times \mathbb{R} / \mathbb{Z} \\
& {\left[\chi_{1} w_{1}+\chi_{2} w_{2}+\chi k\right] } \mapsto \tag{3.1}\\
&\left(\left[\chi_{1} w_{1}+\chi_{2} w_{2}\right],\left[c^{1} \chi_{1}+c^{2} \chi_{2}+\chi\right]\right) .
\end{align*}
$$

Proof. Direct calculation.
We give T_{Λ} the induced metric and orientation and choose a Hermitian line bundle L over it with $c_{1}(L)=h$ (in the standard identification of $H^{2}\left(T_{\Lambda} ; \mathbb{Z}\right)$ with \mathbb{Z}). Furthermore, we equip the bundle with an arbitrary unitary connection ∇^{L}.

Definition 3.1. We define $K:=\pi_{\bar{k}}^{-1}(L)$ and $\nabla^{K}:=\pi_{\bar{k}}^{-1}\left(\nabla^{L}\right)$. Then we have $c_{1}(K)=\hat{k}$.

3.1.1 Working on T_{Λ}

We now look at the corresponding problem on T_{Λ}. For each (positive) Chern class h, we have an associated bundle $\underline{H} \otimes L$ over T_{Λ}. Then each closed one-form α_{Λ} over T_{Λ} defines a Dirac operator

$$
\mathcal{D}_{\alpha_{\Lambda}}^{L}: \Gamma(\underline{\mathbb{H}} \otimes L) \rightarrow(\underline{\mathbb{H}} \otimes L) .
$$

We give W an arbitrary complex structure and scale everything so that we work on $\mathbb{C} /\{1, \tau\}$ with $\operatorname{im} \tau>0$. Now we can equip L with a holomorphic structure; we choose it so that $\nabla^{L}+\mathrm{i} \alpha_{\Lambda}$ becomes the Chern connection of the holomorphic bundle.

This specifies a problem for twisted Dirac operators on a Riemann surface. We use the results of [1, section 5.2], where the eigenspaces of $\mathcal{D}_{\alpha_{\Lambda}}^{L}$ are described in terms of holomorphic sections.

The eigenspaces can be made explicit using theta functions. A detailed discussion of all calculations and identifications can be found in [3, section 2.c]. The result is the following:

Lemma 3.2. We can explicitly construct a basis of orthogonal eigensections σ_{m}, $m \in \mathbb{Z}$, for $\mathcal{D}_{\alpha_{\Lambda}}^{L}$ with respective eigenvalues

$$
\mu_{m}:=\operatorname{sgn} m \sqrt{2 \pi h\|k\|\left\lfloor\frac{|m|}{h}\right\rfloor}
$$

The eigenvalues are independent of α_{Λ}.

3.1.2 An eigenbasis for $\left(\mathcal{D}_{\alpha}^{K}\right)^{2}$

Remark 3.2. By a standard gauging argument, we can reduce the problem of finding spectrum and eigenspaces from closed one-forms to harmonic one-forms. So from now on we assume $\alpha \in H^{1}\left(T^{3} ; \mathbb{R}\right) \cong \mathbb{R}^{3}$.

We now look at the map $s_{l} \circ \operatorname{tri}, l \in \mathbb{Z}$, where $s_{l}: \mathbb{R} / \mathbb{Z} \rightarrow S^{1}$ is defined to be $t \mapsto \exp (2 \pi l t)$ and tri is the map from (3.1). Its exterior derivative is given by:

$$
d\left(s_{l} \circ \operatorname{tri}\right)=2 \pi \mathrm{i} l\left(s_{l} \circ \operatorname{tri}\right)\left(c^{1}, c^{2}, 1\right)
$$

We now want to separate this form into its parallel and orthogonal part with respect to W :

$$
d\left(s_{l} \circ \operatorname{tri}\right)=2 \pi \mathrm{i}\left(s_{l} \circ \operatorname{tri}\right) \cdot\left(\omega_{॥}^{l}+\omega_{\perp}^{l}\right),
$$

In the same way we split $\alpha=\alpha_{\|}+\alpha_{\perp}$.
We set $\alpha_{\Lambda}:=\alpha_{\| 1}+2 \pi \omega_{\| 1}^{l}$ and use Lemma 3.2 to determine a basis of sections for $\Gamma(\underline{\mathbb{H}} \otimes L)$ which we call $\sigma_{m}^{l}, m \in \mathbb{Z}$.

The parameter $\omega_{\|}^{l}$ becomes necessary for our construction since the bundle $T^{3} \rightarrow$ T_{Λ} is trivial but its metric differs from the orthogonal product $T_{\Lambda} \times S^{1}$.

We further denote

$$
\hat{\sigma}_{l, m}(v):=\left(s_{l} \circ \operatorname{tri}\right)(v) \cdot \pi_{\bar{k}}^{*}\left(\sigma_{m}^{l}\right)(v) .
$$

This can be interpreted as a combination of a basis of the Dirac operator over S^{1} with bases over T_{Λ}. Let

$$
\lambda_{l}:=(2 \pi l+\langle k, \alpha\rangle) /\|k\|,
$$

where \langle,$\rangle means the standard scalar product of \mathbb{R}^{3}$ (or, interpreted differently, the evaluation of $k \cup \alpha$ at the orientation class).

Theorem 3.3 (Eigenbasis for $\left.\left(\mathcal{D}_{\alpha}^{K}\right)^{2}\right)$. The set $\left\{\hat{\sigma}_{l, m} \mid l, m \in \mathbb{Z}\right\}$ forms an orthogonal basis of eigensections for $\left(\mathcal{D}_{\alpha}^{K}\right)^{2}$ with the respective eigenvalues $\lambda_{l}^{2}+\mu_{m}^{2}$.

Proof. Applying \mathcal{D}_{α}^{K} twice and using the definition of ω^{l}, we see that these sections are indeed eigensections for the given eigenvalues. With a standard calculation (see [3, p.45]), we conclude that the set span $\left\{\hat{\sigma}_{l, m} \mid l, m \in \mathbb{Z}\right\}$ is dense in the space of L^{2}-sections. The orthogonality can be deduced from the orthogonality of the σ_{m}^{l} by using the fact that a change of α_{\perp} changes the spectrum but fixes σ_{m}^{l}.

3.1.3 An eigenbasis for \mathcal{D}_{α}^{K}

Theorem 3.3 gives a quadratic equation for \mathcal{D}_{α}^{K}. Furthermore, we know that the Dirac operator on T_{Λ} is graded, so the bases σ_{m}^{l} split into $\sigma_{m}^{l+}+\sigma_{m}^{l-}$. Together this leads us to the following denominations

$$
\begin{aligned}
\sigma_{l, m}^{ \pm}:= & \left(s_{l} \circ \text { tri }\right) \cdot\left(\left(\lambda_{l}+\mu_{m} \pm \sqrt{\lambda_{l}^{2}+\mu_{m}^{2}}\right) \pi_{\frac{k}{k}}^{*}\left(\sigma_{m}^{l+}\right)\right. \\
& \left.\quad+\left(-\lambda_{l}+\mu_{m} \pm \sqrt{\lambda_{l}^{2}+\mu_{m}^{2}}\right) \pi_{\frac{*}{k}}^{*}\left(\sigma_{m}^{l-}\right)\right) \\
\sigma_{l, m}^{0}:= & \hat{\sigma}_{l, m}
\end{aligned}
$$

and

$$
\nu_{l, m}^{ \pm}:= \pm \sqrt{\lambda_{l}^{2}+\mu_{m}^{2}}, \quad \nu_{l, m}^{0}:= \begin{cases}\lambda_{l} & \text { for } 0 \leq m \leq h-1 \\ \mu_{m} & \text { otherwise } .\end{cases}
$$

From this set of vectors we have to choose a subset of nonzero vectors whose span is dense.
Theorem 3.4. We get an orthogonal eigenbasis of \mathcal{D}_{α}^{K} by

$$
\begin{aligned}
& \left\{\sigma_{l, m}^{ \pm} \mid(l, m) \in \mathbb{Z}^{2} \quad \text { with } \lambda_{l} \neq 0 \text { and } m \geq h\right\} \\
& \cup\left\{\sigma_{l, m}^{0} \mid(l, m) \in \mathbb{Z}^{2} \quad \text { with } \lambda_{l}=0 \text { or } 0 \leq m \leq h-1\right\},
\end{aligned}
$$

which will be written as $M_{\alpha}^{ \pm} \cup M_{\alpha}^{0}$. The respective eigenvalues are $\nu_{l, m}^{+/ 0 /-}$.
Proof. We check that all these vectors are nonzero and belong to the defined eigenspaces.
From the construction in [1] we know that $\sigma_{m}^{l}=\sigma_{m}^{l+}+\sigma_{m}^{l-}$ implies $\sigma_{h-m-1}^{l}=$ $\sigma_{m}^{l+}-\sigma_{m}^{l-}$. Therefore, we have the \mathcal{D}_{α}^{K}-invariant subspaces

$$
\operatorname{span}\left\{\hat{\sigma}_{l, m}, \mathcal{D}_{\alpha}^{K} \hat{\sigma}_{l, m}\right\}=\operatorname{span}\left\{\hat{\sigma}_{l, m}, \hat{\sigma}_{l, h-m-1}\right\} .
$$

They can be used to prove the orthogonality and density of the constructed sections.

3.2 Trivial Spin ${ }^{\mathbb{C}}$ structure

We look at \mathcal{D}_{α} on $\Gamma(\underline{\mathbb{H}})=\Gamma\left(\underline{\mathbb{C}}^{2}\right)$ for the standard connection ∇^{K}. Let

$$
\sigma_{b}\left(x_{1}, x_{2}, x_{3}\right):=\exp \left(2 \pi \mathrm{i}\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right)\right) .
$$

Then we get the basis of sections:

$$
\operatorname{span}\left\{\sigma_{b}^{+}=\left(\sigma_{b}, 0\right) \mid b \in \mathbb{Z}^{3}\right\} \cup\left\{\sigma_{b}^{-}=\left(0, \sigma_{b}\right) \mid b \in \mathbb{Z}^{3}\right\}
$$

Define $\beta=\alpha+2 \pi b$. We use the classical methods of [2] to determine:
Theorem 3.5. We get an orthogonal eigenbasis for \mathcal{D}_{α} as

$$
\begin{aligned}
& \left\{\|\beta\| \sigma_{b}^{+}-\mathcal{D}_{\alpha} \sigma_{b}^{+} \mid b \in \mathbb{Z}^{3} \text { with } \beta_{2} \neq 0 \text { or } \beta_{3} \neq 0\right\} \\
\cup & \left\{\|\beta\| \sigma_{b}^{+}+\mathcal{D}_{\alpha} \sigma_{b}^{+} \mid b \in \mathbb{Z}^{3} \text { with } \beta_{2} \neq 0 \text { or } \beta_{3} \neq 0\right\} \cup\left\{\sigma_{b}^{ \pm} \quad \mid \beta_{2}=\beta_{3}=0\right\} .
\end{aligned}
$$

Furthermore, we have for $\beta_{2} \neq 0$ or $\beta_{3} \neq 0$:

$$
\operatorname{span}\left\{\sigma_{b}^{+}, \sigma_{b}^{-}\right\}=\operatorname{span}\left\{\|\beta\| \sigma_{b}^{+}-\mathcal{D}_{\alpha} \sigma_{b}^{+},\|\beta\| \sigma_{b}^{+}+\mathcal{D}_{\alpha} \sigma_{b}^{+}\right\}
$$

The spectrum consists of all numbers $\pm\|\beta(b, \alpha)\|$ for $b \in \mathbb{Z}^{3}$.
Remark 3.3. In the case $\hat{k} \neq 0$ the spectrum is determined by α_{\perp} while the eigenbasis is determined by α_{11}. Here every change of α has influence on both eigenbasis and spectrum.

4 Spectral sections

We look at families of Dirac operators over a compact base space B. [4] defined the concept of a spectral section for a constant $R>0$. The most interesting spectral sections are those for small R; they should be classified in the sense of the following definition.

Definition 4.1. Let $R_{\text {inf }}$ be defined as the infimum of the set

$$
\{R>0 \mid \text { for } R \text { exists at least one spectral section }\} .
$$

Furthermore, choose a (small) positive number ε_{P}. Then a system of infinitesimal spectral sections is a map

$$
\begin{aligned}
] R_{\mathrm{inf}}, R_{\mathrm{inf}}+\varepsilon_{P}\right] \times I & \rightarrow\{\text { spectral sections for a fixed operator } D\} \\
(R, i) & \mapsto P_{R}^{i}
\end{aligned}
$$

where

1. I is an arbitrary index set,
2. P_{R}^{i} is a spectral section for the constant map R,
3. every $\left(P_{R}^{i}\right)_{\alpha}, \alpha \in B$, depends continuously on R (where we consider $\left(P_{R}^{i}\right)_{\alpha}$ as operator between L^{2} spaces), and
4. $\cup_{i \in I}\left\{P_{R}^{i}\right\}$ is a representation system for all spectral sections for R, i.e. for all possible spectral sections P_{R} there is a P_{R}^{i} with $i \in I$, so that $\operatorname{Im} P_{R}-\operatorname{Im} P_{R}^{i}$ is zero in K-theory.

A minimal system of infinitesimal spectral sections is one in which I is chosen minimal (under the inclusion relation).

4.1 Definition of the family

Let $\ell \subset H^{1}\left(T^{3} ; \mathbb{Z}\right)$ be a lattice (of non-maximal dimension) and let $B:=(\ell \otimes \mathbb{R}) / \ell$.
We need the following ingredients for our definition:

- $\operatorname{ker}(d)_{l \otimes \mathbb{R}}$: The subset of $\operatorname{ker}(d)$ representing elements in $\ell \otimes \mathbb{R}$.
- \mathcal{G}_{ℓ} : The subgroup of the gauge group $\operatorname{Map}\left(T^{3}, S^{1}\right)$ determined by ℓ.
- The projection $\mathrm{pr}_{T^{3}}: T^{3} \times\left(\nabla^{K}+\mathrm{i} \operatorname{ker}(d)_{l \otimes \mathbb{R}}\right) \rightarrow T^{3}$ together with the induced vector bundle $\mathrm{pr}_{T^{3}}^{*}(\underline{\mathbb{H}} \otimes K)$.

If v is an element of the fibre of $\operatorname{pr}_{T^{3}}^{*}(\underline{H} \otimes K)$ over

$$
\left(y, \nabla^{K}+\mathrm{i} \alpha^{c}\right) \in T^{3} \times\left(\nabla^{K}+\mathrm{i} \operatorname{ker}(d)_{\ell \otimes \mathbb{R}}\right),
$$

we can define the following action of \mathcal{G}_{ℓ} :

$$
\begin{align*}
\mathcal{G}_{\ell} \times \operatorname{pr}_{T^{3}}^{*}(\underline{\mathbb{H}} \otimes K) & \rightarrow \operatorname{pr}_{T^{3}}^{*}(\underline{\mathbb{H}} \otimes K) \\
\left(u,\left(v, y, \nabla^{K}+\mathrm{i} \alpha\right)\right) & \mapsto\left(u(y) \cdot v, y, \nabla^{K}+\mathrm{i} \alpha+u d u^{-1}\right) \tag{4.1}
\end{align*}
$$

The quotient is a bundle over $T^{3} \times B$. The connection from the parameter space determines a family of Dirac operators called \mathcal{D}.

Depending on \hat{k} and ℓ we want to know:

1. Do spectral sections exist?
2. If they exist: What do they look like?

4.2 Existence of spectral sections

Following [4] we know that spectral sections for \mathcal{D} exist if and only if the index of \mathcal{D} in $K^{1}(B)$ vanishes. Let \mathcal{I} be the following composition of isomorphisms (remember that B is a torus of maximal dimension 2):

$$
K^{1}(B) \xrightarrow{\text { Chern }} H^{1}(B ; \mathbb{Z}) \longrightarrow\left(H_{1}(B ; \mathbb{Z})\right)^{*} \longrightarrow \ell^{*}
$$

Lemma 4.1. Let $a \in H^{1}\left(T^{3} ; \mathbb{Z}\right)$ and let $f:(\mathbb{R} \cdot a) / a \rightarrow B$ be the map induced by the inclusion. In this way we get a pullback family \mathcal{D}^{a} over $(\mathbb{R} \cdot a) / a$. Then the spectral flow of \mathcal{D}^{a} in positive direction is given by $\langle\hat{k}, a\rangle=\left\langle\hat{k} \cup a,\left[T^{3}\right]\right\rangle$.

Proof. We use our explicit knowledge of the spectrum. First we assume $\hat{k} \neq 0$: From all eigenvalues $\nu_{l, m}^{+/ 0 /-}$ only those of the form $\nu_{l, m}^{0}$ for $0 \leq m \leq h-1$ have a chance to cross zero. From the definition we know that $\nu_{l, m}^{0}=\lambda_{l}=(2 \pi l+\langle k, \alpha\rangle) /\|k\|$ for which we can count the crossings while running around the circle. For $\hat{k}=0$ the spectrum is always symmetric with respect to zero. We see that every spectral flow has to vanish.

Remark 4.2. The spectral flow of \mathcal{D}^{a} for \hat{k} is, by a folklore result of Atiyah, the same as the index of the positive Dirac operator over $T^{3} \times S^{1}$ equipped with the Spin ${ }^{\mathbb{C}}$ structure belonging to $\hat{k}+a \cup e_{S^{1}}$, where $e_{S^{1}}$ is the positive generator of $H^{1}\left(S^{1} ; \mathbb{Z}\right)$. Since every two-form over $T^{3} \times S^{1} \cong T^{4}$ can be written in this form, this allows us to calculate the index of \mathcal{D}_{b}^{+}for every $b \in H^{2}\left(T^{4} ; \mathbb{Z}\right)$. A direct computation yields $\left\langle b \cup b,\left[T^{4}\right]\right\rangle$.

With this Lemma we get a direct access to the following statement:

Theorem 4.2. The isomorphism \mathcal{I} maps the index of \mathcal{D} to the map $x \mapsto\left\langle\hat{k} \cup x,\left[T^{3}\right]\right\rangle$ in ℓ^{*}.

Proof. Take a fundamental basis a_{1}, a_{2} of the torus B; then an element in $K^{1}(B)$ is determined by its images in $K^{1}\left(\left(\mathbb{R} \cdot a_{i}\right) / a_{i}\right)$, which we calculate with the formula from the preceding lemma. Since the maps are linear, it is enough to check the theorem for a_{1}, a_{2} which is an easy exercise.

Corollary 4.3. Spectral sections for \mathcal{D} exist if and only if $k \cup \ell=0$.

4.3 Construction of spectral sections for $\hat{k} \neq 0$

Theorem 4.4. If spectral sections exist, the spectrum is constant.
Proof. From $k \cup \ell=0$ we know that for every $\alpha \in(\ell \otimes \mathbb{R})$ we have $\alpha_{\perp}=0$. From section 3.1.3 we know that this implies a constant spectrum.

Therefore, we have $R_{\mathrm{inf}}=0$. For ε_{P} smaller than the smallest eigenvalue of \mathcal{D}, the spectral sections are fixed everywhere except for the h-dimensional kernel of \mathcal{D}.

Let $I:=\left\{F \mid F\right.$ subbundle of $\left.B \times \mathbb{C}^{h}\right\} / \cong \cong \mathbb{Z}^{h-1} \cup\{0\} \cup\left\{\mathbb{C}^{k}\right\}$ and define $\left.P_{F}\right|_{\text {ker } \mathcal{D}}$ for $R<\varepsilon_{P}$ as the orthogonal projection onto F. This defines a system of infinitesimal spectral sections which is obviously also minimal.

4.4 Construction of spectral sections for $\hat{k}=0$

We split $\Gamma_{L^{2}}(\mathbb{H})$ into the 2-dimensional $\mathcal{D}_{\alpha^{-}}$-invariant subspaces $\Sigma_{b}=\operatorname{span}\left\{\sigma_{b}^{+}, \sigma_{b}^{-}\right\}$. On each of them, we have the two eigenvalues $\pm\|\beta\|= \pm\|\alpha+2 \pi b\|$. For small R we know that for each α there is at most one b with $\|\beta\| \leq R$. So for any spectral section P for \mathcal{D} with small R we know that it fixes all Σ_{b}. Since $P_{\alpha} \mid \Sigma_{b}: \Sigma_{b} \rightarrow \Sigma_{b}$ is a one-dimensional orthogonal projection for $\|\beta\|>R$, it has to be a one-dimensional orthogonal projection for all β (and, therefore, for all α, since α and β are in bijective correspondence).

We now assume that ℓ is a plane since $\operatorname{dim} \ell \leq 1$ does not lead to interesting conclusions. In addition to the assumptions about R above we assume that ε_{P} is smaller than the minimal distance between $\ell \otimes \mathbb{R}$ and any point $b \in \mathbb{Z}^{3} \backslash \ell$. This implies that for such b there are no eigenvalues with $\|\beta\|<R$ on Σ_{b}.

The space of one-dimensional orthogonal projections on \mathbb{C}^{2} equals $\mathbb{C P}^{1} \cong S^{2}$. Fix an element $b \in \ell_{\mathbb{Z}}=(\ell \otimes \mathbb{R}) \cap \mathbb{Z}^{3}$ and look at the corresponding map $\left.P_{\beta}\right|_{\Sigma_{b}}: \ell \otimes \mathbb{R} \rightarrow$ $\mathbb{C P}^{1}$ (written as function of β). For $\|\beta\| \geq R$ every ray coming from zero will be mapped to one point, producing a circle in $\mathbb{C} \mathbb{P}^{1}$ (this follows from the construction of the eigenbasis). For $\|\beta\|<R$ we have to continue this map in some way; topologically, the problem is as follows: We have to construct a map from the 2 -disc to the 2 -sphere which maps the boundary pointwise to the equator. Up to homotopy, there are $\pi_{2}\left(S^{2}\right) \cong \mathbb{Z}$ many choices for that.

4.4.1 A system of infinitesimal spectral sections

The preceding discussion leads to the following:

Since we had imposed no lower bounds for R, we have $R_{\mathrm{inf}}=0$. Let ε_{P} be so small that if fulfills all conditions mentioned above.

We take $I=\left\{g: \ell_{\mathbb{Z}} / \ell \rightarrow \pi_{2}\left(\mathbb{C P}^{1}\right)\right\}$ and define for each $R<\varepsilon_{P}$ spectral projections P^{g}. For $b \notin \ell_{\mathbb{Z}}$ these maps are already defined on Σ_{b}. For $b \in \ell_{Z}$, we define P_{α}^{g} on Σ_{b} to be a continuation specified by $g(b) \in \pi_{2}\left(\mathbb{C P}^{1}\right)$ as discussed in the preceding subsection (These continuations can be chosen to depend continuously on the parameters).

Conditions 1 and 2 (from the definition of infinitesimal spectral sections) are clear, 3 can be checked directly (if we specify the continuations explicitly), and 4 follows from the discussion above.

In general this system is not minimal. We can choose a minimal system J by fixing an element $g_{0} \in I$ and a point $l_{0} \in \ell_{\mathbb{Z}} / \ell$ and defining

$$
J=\left\{g \in I \mid g(l)=g_{0}(l) \quad \text { for } l \neq l_{0}\right\} .
$$

This is true because J represents all element of the form $(0, z)$ from $K(B) \cong H^{0}(B ; \mathbb{Z}) \oplus$ $H^{2}(B ; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Acknowledgements. This article grew out of my dissertation [3]. I would like to thank my supervisor Prof. Stefan Bauer for his support. Furthermore, I thank Johannes Ebert for helpful suggestions.

References

[1] A.L. Almorox and C.T. Prieto, Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces, J. Geom. Phys. 56 (2006), 2069-2091.
[2] T. Friedrich, Zur abhangigkeit des dirac-operators von der spin-struktur, Colloquium Mathematicum, Vol. XLVIII, 1984.
[3] F. Meier, Spectral properties of Spinc Dirac operators on $T^{3}, S^{1} \times S^{2}$ and S^{3}, PhD thesis, Universitat Bielefeld, July 2010. http://bieson.ub.unibielefeld.de/volltexte/2010/1731/.
[4] R.B. Melrose and P. Piazza, Families of dirac operators, boundaries and the b calculus, J. Differential Geom. 45 (1997), 99-180.
[5] J.W. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton University Press, first edition, 1996.
[6] J.W. Morgan, T.S. Mrowka and Z. Szabo, Product formulas along T ${ }^{3}$ for SeibergWitten invariants, Math. Res. Lett. 4 (1997), 915-929.

Author's address:
Johannes Fabian Meier
Institute of Mathematics, Endenicher Allee 60, 53115 Bonn, Germany.
E-mail: brief@fabianmeier.de

[^0]: Balkan Journal of Geometry and Its Applications, Vol.17, No.1, 2012, pp. 78-87.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2012.

