A CHARACTERIZATION OF B-CONVEXITY AND J-CONVEXITY OF BANACH SPACES

KEN-ICHI MITANI¹ AND KICHI-SUKE SAITO ²*

This paper is dedicated to Professor Themistocles M. Rassias.

Submitted by M. Abel

ABSTRACT. In [K.-I. Mitani and K.-S. Saito, J. Math. Anal. Appl. 327 (2007), 898–907] we characterized the strict convexity, uniform convexity and uniform non-squareness of Banach spaces using ψ-direct sums of two Banach spaces, where ψ is a continuous convex function with some appropriate conditions on [0, 1]. In this paper, we characterize the Bₙ-convexity and Jₙ-convexity of Banach spaces using ψ-direct sums of n Banach spaces, where ψ is a continuous convex function with some appropriate conditions on a certain convex subset of \(\mathbb{R}^n \).

1. INTRODUCTION AND PRELIMINARIES

A norm \(\| \cdot \| \) on \(\mathbb{C}^n \) is said to be absolute if

\[\|(x_1, x_2, \ldots, x_n)\| = \|(|x_1|, |x_2|, \ldots, |x_n|)\| \]

for all \(x_1, x_2, \ldots, x_n \in \mathbb{C} \), and normalized if

\[\|(1, 0, \ldots, 0)\| = \|(0, 1, 0, \ldots, 0)\| = \cdots = \|(0, \ldots, 0, 1)\| = 1. \]

Date: Received: 30 September 2007; Accepted: 19 October 2007.

* Corresponding author

The second author is supported in part by a Grants-in-Aid for Scientific Research((C)16540142), Japan Society for the Promotion of Science.

2000 Mathematics Subject Classification. Primary 46B20; Secondary 46B25.

Key words and phrases. B-convexity, J-convexity, superreflexivity, absolute norm, ψ-direct sum.
The ℓ_p-norms $\| \cdot \|_p$ are such examples:

$$
\| (x_1, \ldots, x_n) \|_p = \begin{cases}
(\sum_{j=1}^n |x_j|^p)^{1/p} & \text{if } 1 \leq p < \infty, \\
\max \{|x_1|, \ldots, |x_n|\} & \text{if } p = \infty.
\end{cases}
$$

Let AN_n be the family of all absolute normalized norms on \mathbb{C}^n. The second author, Kato and Takahashi in [9] showed that for every absolute normalized norm $\| \cdot \|$ on \mathbb{C}^n, there corresponds a unique continuous convex function on Δ_n with some appropriate conditions, where

$$
\Delta_n = \left\{ (t_1, \ldots, t_n) \in \mathbb{R}^n : t_j \geq 0 \ (\forall j), \ \sum_{j=1}^n t_j = 1 \right\}.
$$

Indeed, for any $\| \cdot \| \in AN_n$, we define

$$
\psi(t_1, \ldots, t_n) = \| (t_1, \ldots, t_n) \|, \quad (t_1, \ldots, t_n) \in \Delta_n.
$$

Then ψ is a continuous convex function on Δ_n, and satisfies the following conditions:

$$
\begin{align*}
\psi(1, 0, \ldots, 0) &= \psi(0, 1, 0, \ldots, 0) = \cdots = \psi(0, 0, 1, \ldots, 0) = 1 \quad (A_0) \\
\psi(t_1, \ldots, t_n) &\geq (1 - t_1)\psi \left(0, \frac{t_2}{1 - t_1}, \ldots, \frac{t_n}{1 - t_1} \right), \quad \text{if } t_1 \neq 1 \quad (A_1) \\
\psi(t_1, \ldots, t_n) &\geq (1 - t_2)\psi \left(\frac{t_1}{1 - t_2}, \frac{t_3 - 1}{1 - t_2}, \ldots, \frac{t_n}{1 - t_2} \right), \quad \text{if } t_2 \neq 1 \quad (A_2) \\
&\vdots
\end{align*}
$$

$$
\psi(t_1, \ldots, t_n) \geq (1 - t_n)\psi \left(\frac{t_1}{1 - t_n}, \ldots, \frac{t_{n-1}}{1 - t_n}, 0 \right), \quad \text{if } t_n \neq 1. \quad (A_n)
$$

Let Ψ_n be the set of all continuous convex functions ψ on Δ_n satisfying $(A_0) - (A_n)$. Conversely, for any $\psi \in \Psi_n$, we define

$$
\| (x_1, \ldots, x_n) \|_\psi = \begin{cases}
\psi \left(\sum_{j=1}^n |x_j| \right) \psi \left(\sum_{j=1}^n |x_j|, \ldots, \sum_{j=1}^n |x_j| \right), & \text{if } (x_1, \ldots, x_n) \neq (0, \ldots, 0), \\
0, & \text{if } (x_1, \ldots, x_n) = (0, \ldots, 0).
\end{cases}
$$

Then $\| \cdot \|_\psi \in AN_n$ and satisfies (1.1) (cf. [9, Theorem 4.2]). Further, AN_n and Ψ_n are in a one-to-one correspondence. In particular, let ψ_p be the function corresponding to ℓ_p-norms on \mathbb{C}^n. According to Kato, the second author and Tamura in [6, 8], for any Banach spaces X_1, X_2, \cdots, X_n and any $\psi \in \Psi_n$, we define the ψ-direct sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_\psi$ to be their direct sum equipped with the norm

$$
\| (x_1, \ldots, x_n) \|_\psi := \|(\|x_1\|, \ldots, \|x_n\|)\|_\psi.
$$

Let $B_X = \{ x \in X : \| x \| \leq 1 \}$ be the closed unit ball of a Banach space X. A Banach space X is said to be uniformed non-square if there exists a $\delta > 0$ such that $\|(x - y)/2\| > 1 - \delta$, $x, y \in B_X$ implies $\|(x + y)/2\| \leq 1 - \delta$ (cf. [5]). In [7], we characterized the uniform non-squareness of Banach spaces. That is, let
ϕ, ψ ∈ Ψ2. Assume that ϕ ≠ ψ∞ and ψ has a unique minimal point t0 in Δ2. Then a Banach space X is uniformly non-square if and only if

\[\|A_2 : (X \oplus X)_\psi \rightarrow (X \oplus X)_\varphi\| < \frac{\|(1, 1)\|_\varphi}{\psi(t_0)} \]

holds, where A2 is the Littlewood matrix, that is, \(A_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \).

In this paper, we give some characterizations of the B-convexity (or uniformly non-ℓ1-ness) and the J-convexity (which is related to superreflexivity) for Banach spaces using ψ-direct sums \((X \oplus \cdots \oplus X)_\psi \). We note that these characterizations are an extension of some results in Takahashi and Kato [11].

We need some preliminaries. Recall the following properties concerning absolute norms on \(C^n \) (see [9]).

Lemma 1.1 ([9]).

(i) Let \(\psi \in \Psi_n \). If \(|x_i| \leq |y_i| \) for all \(i \), then

\[\|(x_1, x_2, \ldots, x_n)\|_\psi \leq \|(y_1, y_2, \ldots, y_n)\|_\psi. \]

(ii) Let \(\varphi, \psi \in \Psi_n \) with \(\varphi \leq \psi \). Put \(M = \max_{t \in \Delta_n} \psi(t)/\varphi(t) \). Then we have \(\| \cdot \|_\varphi \leq \| \cdot \|_\psi \leq M \| \cdot \|_\varphi \).

Let \(X \) be a Banach space. For any \(\psi \in \Psi_n \), we define the space \(\ell^n_\psi(X) \) by

\[\ell^n_\psi(X) = (X \oplus \cdots \oplus X)_\psi. \]

In particular, for the case \(\psi = \psi_p \) (1 ≤ p ≤ ∞), let the space \(\ell^n_\psi(X) \) be \(\ell^n_p(X) = \ell^n_{\psi_p}(X) \).

2. B-CONVEXITY

The notion of B-convexity was introduced by Beck [2] in order to obtain a strong law of large numbers for certain vector-valued random variables. A Banach space \(X \) is called \(B_n \)-convex (or uniformly non-ℓ1) if there is a real number \(\delta > 0 \) such that for any \(x_1, \ldots, x_n \in B_X \)

\[\min_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \left\| \sum_{j=1}^n \varepsilon_j x_j \right\| \leq n(1 - \delta) \]

holds. If \(X \) is \(B_n \)-convex for some \(n \), then \(X \) is called B-convex. For the fundamental properties of \(B \)-convexity, we refer to [11, 12, 13, 10, 11].

We consider the Rademacher matrices \(R_\mathbb{Z} \); that is,

\[R_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad R_{n+1} = \begin{pmatrix} \vdots & R_n \\ 1 & \vdots \\ -1 \end{pmatrix} \quad (n = 1, 2, \cdots). \]
Proposition 2.1. Let $\varphi \in \Psi_{2^n}$ and $\psi \in \Psi_n$ where $n \geq 2$. Then for any Banach space X

$$
\|R_n : \ell^n(X) \to \ell_{\varphi}^{2^n}(X)\| \leq \frac{\|(1, \cdots, 1)\|_{\varphi}}{\min_{t \in \Delta_n} \psi(t)}.
$$

(2.1)

Proof. Put $R_n = (a_{ij})$. From Lemma 1.1 we have for any $x_1, \cdots, x_n \in X$,

$$
\left\| \left\{ \sum_{j=1}^{n} a_{ij} x_j \right\}^{2^n}_{i=1} \right\|_{\varphi} = \left\{ \left\| \sum_{j=1}^{n} a_{ij} x_j \right\|_{i=1}^{2^n} \right\}.
$$

$$
\leq \left\{ \sum_{j=1}^{n} \left\| x_j \right\|_{i=1}^{2^n} \right\}
$$

$$
= \left(\sum_{j=1}^{n} \left\| x_j \right\| \right) \|(1, \cdots, 1)\|_{\varphi}
$$

$$
= \|(x_1, \cdots, x_n)\|_1 \|(1, \cdots, 1)\|_{\varphi}
$$

$$
\leq \max_{t \in \Delta_n} \frac{\psi(t)}{\psi(t)} \|(x_1, \cdots, x_n)\|_1 \psi(1, \cdots, 1)\|_{\varphi}
$$

$$
= \frac{\|(1, \cdots, 1)\|_{\varphi}}{\min_{t \in \Delta_n} \psi(t)} \|(x_1, \cdots, x_n)\|_1 \psi,
$$

which implies (2.1). \hfill \square

The main theorem is the following.

Theorem 2.2. Let $\varphi \in \Psi_{2^n}$ and $\psi \in \Psi_n$ where $n \geq 2$. Assume that ψ has a unique minimal point $t_0 = \{t_j\}_{j=1}^{n} \in \Delta_n$ with $t_j > 0$ for all j and φ has the condition:

$$
\|(i, \cdots, 1, 0, 1, \cdots, 1)\|_{\varphi} < \|(1, \cdots, 1)\|_{\varphi}
$$

(2.2)

for every i. Then a Banach space X is B_n-convex if and only if

$$
\|R_n : \ell^n(X) \to \ell_{\varphi}^{2^n}(X)\| < \frac{\|(1, \cdots, 1)\|_{\varphi}}{\psi(t_0)}
$$

holds.

We reformulate Theorem 2.2 as follows.

Theorem 2.3. Let $\varphi \in \Psi_{2^n}$ and $\psi \in \Psi_n$ where $n \geq 2$. Assume that ψ has a unique minimal point $t_0 = \{t_j\}_{j=1}^{n} \in \Delta_n$ with $t_j > 0$ for all j and φ has the condition:

$$
\|(i, \cdots, 1, 0, 1, \cdots, 1)\|_{\varphi} < \|(1, \cdots, 1)\|_{\varphi}
$$

(2.3)

for every i. Then for a Banach space X the following are equivalent:

(i) X is B_n-convex.
(ii) There exists a real number δ ($0 < \delta < 1$) such that for all $x_1, \cdots, x_n \in X$,

$$\left\| \left\{ \sum_{j=1}^{n} a_{ij}t_j x_j \right\}_{i=1}^{2^n} \right\| \leq (1 - \delta) \left\| (1, \cdots, 1) \right\| \phi \left\{ t_j x_j \right\}_{j=1}^{n} \psi \left(t_0 \right)$$

holds, where $R_n = (a_{ij})$.

We shall show Theorem 2.3. To do it, we need the following lemma about norm convexity.

Lemma 2.4. Let X be a Banach space. Then the following are equivalent:

(i) There exists a real number δ ($0 < \delta < 1$) such that for all $x_1, \cdots, x_n \in B_X$,

$$\min_{1 \leq i \leq 2^n} \left\| \sum_{j=1}^{n} a_{ij} x_j \right\| \leq n(1 - \delta).$$

(ii) For any (resp. some) $\{t_j\}_{j=1}^{n} \in \Delta_n$ with $t_j > 0$ for all $j = 1, \cdots, n$, there exists a real number δ_0 ($0 < \delta_0 < 1$) such that for all $x_1, \cdots, x_n \in B_X$,

$$\min_{1 \leq i \leq 2^n} \left\| \sum_{j=1}^{n} a_{ij} t_j x_j \right\| \leq 1 - \delta_0.$$

Proof. (i)⇒(ii): Assume that the assertion (i) holds. We take $\{t_j\}_{j=1}^{n} \in \Delta_n$ with $t_j > 0$ for all j, and fix $x_1, \cdots, x_n \in B_X$. Then there exists a number i_0 satisfying

$$\left\| \sum_{j=1}^{n} a_{i_0 j} x_j \right\| \leq n(1 - \delta).$$

We choose a number k such that $t_k = \min\{t_1, \cdots, t_n\}$. Note that $t_k > 0$. Then we have

$$\left\| \sum_{j=1}^{n} a_{i_0 j} t_j x_j \right\| = \left\| \sum_{j=1}^{n} a_{i_0 j} t_k x_j + \sum_{j=1}^{n} a_{i_0 j} (t_j - t_k) x_j \right\|$$

$$\leq t_k \left\| \sum_{j=1}^{n} a_{i_0 j} x_j \right\| + \sum_{j=1}^{n} (t_j - t_k)$$

$$\leq nt_k (1 - \delta) + 1 - nt_k = 1 - nt_k \delta.$$

Put $\delta_0 = nt_k \delta$. Then the assertion (ii) holds.

(ii)⇒(i): Assume that the assertion (ii) holds. We take $\{t_j\}_{j=1}^{n} \in \Delta_n$ with $t_j > 0$ for all j, and fix $x_1, \cdots, x_n \in B_X$. Then there exists a number i_0 such that

$$\left\| \sum_{j=1}^{n} a_{i_0 j} t_j x_j \right\| \leq 1 - \delta_0.$$
We choose a number \(\ell \) such that \(t_\ell = \max\{t_1, \cdots, t_n\} \). Then
\[
\left\| \sum_{j=1}^n a_{i_0j} x_j \right\| = \left\| \sum_{j=1}^n a_{i_0j} \frac{t_j}{t_\ell} x_j + \sum_{j=1}^n \left(1 - \frac{t_j}{t_\ell} \right) a_{i_0j} x_j \right\|
\leq \frac{1}{t_\ell} \left\| \sum_{j=1}^n a_{i_0j} t_j x_j \right\| + \sum_{j=1}^n \left(1 - \frac{t_j}{t_\ell} \right)
\leq \frac{1}{t_\ell} (1 - \delta_0) + n - \frac{1}{t_\ell} = n \left(1 - \frac{1}{nt_\ell} \delta_0 \right).
\]

Put \(\delta = \frac{1}{nt_\ell} \delta_0 \). Then the assertion (i) holds. This completes the proof.

\(\square\)

Proof of Theorem 2.3. We put
\[
K = \frac{\| (1, \cdots, 1) \|_\varphi}{\psi(t_0)}.
\]

(i)\(\Rightarrow\)(ii): Assume that the assertion (ii) fails to hold. Then, for each positive number \(\ell \), there exist \(x_{\ell 1}, \cdots, x_{\ell n} \in X \) such that
\[
K \left(1 - \frac{1}{t_\ell} \right) \left\| \{ t_j x_{\ell j} \} \right\|_\psi < \left\| \left\{ \sum_{j=1}^n a_{ij} t_j x_{\ell j} \right\} \right\|_\varphi.
\]

(2.4)

Since \((x_{\ell 1}, \cdots, x_{\ell n}) \neq (0, \cdots, 0) \) for all \(\ell \), we may assume
\[
\max \{ \| x_{\ell 1} \|, \cdots, \| x_{\ell n} \| \} = 1
\]
for all \(\ell \). So we can take sequences \(\{ \ell(k) \}_{k=1}^\infty \), \(\{ \alpha_j \}_{j=1}^n \) and \(\{ \beta_i \}_{i=1}^2 \) such that for all \(i, j \),
\[
\| x_{\ell(k)j} \| \to \alpha_j \ (k \to \infty)
\]
and
\[
\left\| \sum_{j=1}^n a_{ij} t_j x_{\ell(k)j} \right\| \to \beta_i \ (k \to \infty).
\]

(2.5)

Note that \(0 \leq \alpha_j \leq 1 \) for all \(j \), and \(0 \leq \beta_i \leq 1 \) for all \(i \). By (2.4) and Lemma 1.1 we have
\[
K \left(1 - \frac{1}{t_{\ell(k)}} \right) \left\| \{ t_j x_{\ell(k)j} \} \right\|_\psi < \left\| \left\{ \sum_{j=1}^n a_{ij} t_j x_{\ell(k)j} \right\} \right\|_\varphi
\leq \left\| \left\{ \sum_{j=1}^n t_j x_{\ell(k)j} \right\} \right\|_\varphi
= \sum_{j=1}^n t_j x_{\ell(k)j} \| (1, \cdots, 1) \|_\varphi.
\]

(2.6)

As \(k \to \infty \), we obtain
\[
K \| \{ t_j \alpha_j \} \|_\psi \leq \sum_{j=1}^n t_j \alpha_j \| (1, \cdots, 1) \|_\varphi.
\]
and so
\[\psi \left(\frac{t_1 \alpha_1}{\sum_{j=1}^{n} t_j \alpha_j}, \ldots, \frac{t_n \alpha_n}{\sum_{j=1}^{n} t_j \alpha_j} \right) \leq \psi(t_0). \]
Since \(\psi(t) > \psi(t_0) \) for all \(t \in \Delta_n \) with \(t \neq t_0 \) by the assumption, we have
\[t_0 = (t_1, \ldots, t_n) = \left(\frac{t_1 \alpha_1}{\sum_{j=1}^{n} t_j \alpha_j}, \ldots, \frac{t_n \alpha_n}{\sum_{j=1}^{n} t_j \alpha_j} \right), \]
which implies
\[\alpha_1 = \alpha_2 = \cdots = \alpha_n = \sum_{j=1}^{n} t_j \alpha_j, \]
by \(t_j > 0 \) for all \(j \). Since \(\|x_{\ell(k)j}\| \to \alpha_j \) for all \(j \) and
\[\max\{\|x_{\ell(k)1}\|, \ldots, \|x_{\ell(k)n}\|\} = 1, \]
we have \(\max\{\alpha_1, \ldots, \alpha_n\} = 1 \), and so \(\alpha_1 = \alpha_2 = \cdots = \alpha_n = 1 \). We also have by (2.6),
\[\left\| \left\{ \sum_{j=1}^{n} a_{ij} t_j x_{\ell(k)j} \right\}_{i=1}^{2^n} \right\| \to \|(1, \cdots, 1)\|_\varphi. \]
Hence we have by (2.5),
\[\|(\beta_1, \beta_2, \cdots, \beta_{2^n})\|_\varphi = \|(1, 1, \cdots, 1)\|_\varphi. \]
If \(\beta_1 < 1 \), then we have by the assumption
\begin{align*}
\|(\beta_1, \beta_2, \cdots, \beta_n)\|_\varphi &\leq \|(\beta_1, 1, 1, \cdots, 1)\|_\varphi \\
&\leq (1 - \beta_1)\|(0, 1, 1, \cdots, 1)\|_\varphi + \beta_1\|(1, 1, \cdots, 1)\|_\varphi \\
&\leq (1 - \beta_1)\|(1, 1, \cdots, 1)\|_\varphi + \beta_1\|(1, 1, \cdots, 1)\|_\varphi \\
&= \|(1, 1, \cdots, 1)\|_\varphi,
\end{align*}
which is a contradiction. Hence \(\beta_1 = 1 \). We similarly have \(\beta_2 = \beta_3 = \cdots = \beta_n = 1 \). Namely, we obtain
\[\left\| \sum_{j=1}^{n} a_{ij} t_j x_{\ell(k)j} \right\| \to 1 \quad (k \to \infty) \]
for all \(i \). Therefore it follows from Lemma 2.4 that (i) fails to hold.

(ii)\(\Rightarrow\)(i): Assume that the assertion (ii) holds. For any \(x_1, \cdots, x_n \in B_X \), we have
\begin{align*}
\min_{1 \leq i \leq 2^n} \left\| \sum_{j=1}^{n} a_{ij} t_j x_j \right\| \|(1, \cdots, 1)\|_\varphi &\leq \left\| \left\{ \left\| \sum_{j=1}^{n} a_{ij} t_j x_j \right\|_{i=1}^{2^n} \right\}_{i=1}^{2^n} \right\|_\varphi \\
&\leq K(1 - \delta)\|\{t_j \|x_j\|\}_{j=1}^{n}\|_\psi \\
&\leq K(1 - \delta)\|\{t_j\}_{j=1}^{n}\|_\psi \\
&= \|(1, \cdots, 1)\|_\varphi(1 - \delta)
\end{align*}
and so
\[\min_{1 \leq i \leq 2^n} \left\| \sum_{j=1}^{n} a_{ij} t_j x_j \right\| \leq 1 - \delta. \]

Thus it follows from Lemma 2.4 that the assertion (i) holds. This completes the proof. \(\square \)

In Theorem 2.2, we suppose that \(\varphi \) is strictly convex on \(\Delta_n \). Then \(\varphi \) satisfies (2.2) for every \(i \). Therefore we have

Corollary 2.5. Let \(\varphi \in \Psi_{2^n} \) and \(\psi \in \Psi_n \) where \(n \geq 2 \). Assume that \(\psi \) has a unique minimal point \(t_0 = \{ t_j \}_{j=1}^{n} \in \Delta_n \) with \(t_j > 0 \) for all \(j \) and \(\varphi \) is strictly convex on \(\Delta_n \). Then a Banach space \(X \) is \(B_n \)-convex if and only if

\[\| R_n : \ell_{\psi}^{n}(X) \rightarrow \ell_{\varphi}^{2^n}(X) \| < \frac{\| (1, \cdots, 1) \|_{\varphi}}{\psi(t_0)} \]

holds.

We remark that Theorem 2.2 is an extension of the following result in Takahashi and Kato [11].

Corollary 2.6 ([11]). Let \(1 < r \leq \infty \) and \(1 \leq s < \infty \). Then a Banach space \(X \) is \(B_n \)-convex if and only if \(\| R_n : \ell_{\psi}^{r}(X) \rightarrow \ell_{\varphi}^{2^n}(X) \| < 2^{n/s} n^{1/r'} \) holds, where \(1/r + 1/r' = 1 \).

Proof. Note that \(\psi_r(t_1, \cdots, t_n) > \psi_r(\frac{1}{n}, \cdots, \frac{1}{n}) \) for all \(t = (t_1, \cdots, t_n) \in \Delta_n \) with \(t \neq (\frac{1}{n}, \cdots, \frac{1}{n}) \), and \(\psi_s \) satisfies (2.2), for all \(i \). Therefore we can apply Theorem 2.2 to \(\psi = \psi_r \) and \(\varphi = \psi_s \), and

\[\frac{\| (1, \cdots, 1) \|_{\psi_s}}{\psi_r(\frac{1}{n}, \cdots, \frac{1}{n})} = \frac{(1^s + \cdots + 1^s)^{1/s}}{((\frac{1}{n})^r + \cdots + (\frac{1}{n})^r)^{1/r}} = 2^{n/s} n^{1/r'}. \]

Further we consider Theorem 2.2 for the case \(n = 2 \).

Corollary 2.7 ([7]). Let \(\psi \in \Psi_2 \) and \(\varphi \in \Psi_2 \). Assume that \(\psi \) has a unique minimal point \(t_0 \in \Delta_2 \) and \(\varphi \neq \psi_\infty \). Then a Banach space \(X \) is uniformly non-square if and only if

\[\| A_2 : \ell_{\psi}^2(X) \rightarrow \ell_{\varphi}^2(X) \| < \frac{\| (1, 1) \|_{\varphi}}{\psi(t_0)} \]

holds.

Proof. If \(\varphi \in \Psi_2 \) satisfies \(\varphi \neq \psi_\infty \), then by the convexity of \(\varphi \), we have \(\varphi(\frac{1}{2}, \frac{1}{2}) > \frac{1}{2} \), which implies \(\| (0, 1) \|_{\varphi} < \| (1, 1) \|_{\varphi} \) and \(\| (1, 0) \|_{\varphi} < \| (1, 1) \|_{\varphi} \). Also, if \(\psi \in \Psi_2 \) has a unique minimal point \(t_0 = (t_1, t_2) \in \Delta_2 \), then it is obvious that \(t_1 > 0 \) and \(t_2 > 0 \). Thus we obtain this corollary. \(\square \)
3. J-convexity

A finite sequence of signs $\varepsilon_1, \cdots, \varepsilon_n$ will be called admissible if all $+$ signs are before all $-$ signs. A Banach space X is called J_n-convex if there exists some $\delta > 0$ such that for every $x_1, x_2, \cdots, x_n \in B_X$, there is an admissible choice of signs $\varepsilon_1, \cdots, \varepsilon_n$ such that

$$\left\| \sum_{j=1}^{n} \varepsilon_j x_j \right\| \leq n(1 - \delta)$$

holds. If X is J_n-convex for some n, then X is called J-convex. Note that X is uniformly non-square if and only if it is J_2-convex. It is well-known that X is J-convex if and only if it is super-reflexive (see [1]). For the fundamental properties of J-convexity, we refer to [1], [5], [11] and so on.

The $n \times n$ matrices A_n (called admissible matrices) are defined by

$$A_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad A_{n+1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \\ -1 & \cdots & -1 \end{pmatrix}$$

$(n = 2, 3, \cdots)$.

As in Theorem 2.2 we can characterize J_n-convexity of Banach spaces using ψ-direct sums.

Theorem 3.1. Let $\psi \in \Psi_n$ and $\varphi \in \Psi_n$ where $n \geq 2$. Assume that ψ has a unique minimal point $t_0 = \{t_j\} \in \Delta_n$ with $t_j > 0$ for all j and φ has the condition:

$$\| (1, \cdots, 1, (i), 1, 0, 1, \cdots, 1) \|_\varphi < \| (1, \cdots, 1) \|_\varphi$$

for every i. Then a Banach space X is J_n-convex if and only if

$$\| A_n : \ell^n_\psi (X) \to \ell^n_\varphi (X) \| < \frac{\| (1, \cdots, 1) \|_\varphi}{\psi(t_0)}$$

holds.

In particular, we have

Corollary 3.2 ([11]). Let $1 < r \leq \infty$ and $1 \leq s < \infty$. Then a Banach space X is J_n-convex if and only if $\| A_n : \ell^n_r (X) \to \ell^n_s (X) \| < n^{1/s+1/r'}$ holds, where $1/r + 1/r' = 1$.

References

1 Department of Mathematics and Information Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
E-mail address: mitani@m.sc.niigata-u.ac.jp

2 Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan.
E-mail address: saito@math.sc.niigata-u.ac.jp