A STUDY ON SOME NEW TYPES OF HARDY–HILBERT’S INTEGRAL INEQUALITIES

WAAD T. SULAIMAN

Submitted by F. Kittaneh

Abstract. Some new kinds of Hardy–Hilbert’s integral inequality in which the weight function is homogeneous function are given. Other results are also obtained.

1. Introduction

Let \(f, g \geq 0 \) satisfy
\[
0 < \int_0^\infty f^2(t)dt < \infty \quad \text{and} \quad 0 < \int_0^\infty g^2(t)dt < \infty,
\]
then
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y}dxdy < \pi \left(\int_0^\infty f^2(t)dt \int_0^\infty g^2(t)dt \right)^{1/2}, \tag{1.1}
\]
where the constant factor \(\pi \) is the best possible (cf. Hardy et al. [2]). Inequality (1.1) is well known as Hilbert’s integral inequality. This inequality had been extended by Hardy [1] as follows: If \(p > 1, \frac{1}{p} + \frac{1}{q} = 1, f, g \geq 0 \) satisfy
\[
0 < \int_0^\infty f^p(t)dt < \infty \quad \text{and} \quad 0 < \int_0^\infty g^q(t)dt < \infty,
\]

Date: Received: 8 February 2007; Accepted: 20 February 2007.

2000 Mathematics Subject Classification. Primary 54C05; Secondary 46A03, 46A55.

Key words and phrases. Convex, balanced, absorbing, basis, empty interior, non-continuous linear functional.
then
\[\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} \, dx \, dy < \frac{\pi}{\sin(\pi/p)} \left(\int_0^\infty f^p(t) \, dt \right)^{1/p} \left(\int_0^\infty g^q(t) \, dt \right)^{1/q}, \quad (1.2) \]
where the constant factor \(\frac{\pi}{\sin(\pi/p)} \) is the best possible. Inequality (1.2) is called Hardy–Hilbert’s integral inequality and is important in analysis and applications (cf. Mitrinovic et al. [3]).

B. Yang gave the following extension of (1.2) as follows:

Theorem [4]. If \(\lambda > 2 - \min\{p, q\} \) and \(f, g \geq 0 \) satisfy
\[0 < \int_0^\infty t^{1-\lambda} f^p(t) \, dt < \infty \quad \text{and} \quad 0 < \int_0^\infty t^{1-\lambda} g^q(t) \, dt < \infty, \]
then
\[\int_0^\infty \int_0^\infty f(x)g(y) \frac{1}{(x+y)^\lambda} \, dx \, dy < k_\lambda(p) \left(\int_0^\infty t^{1-\lambda} f^p(t) \, dt \right)^{1/p} \left(\int_0^\infty t^{1-\lambda} g^q(t) \, dt \right)^{1/q}, \]
where the constant factor \(k_\lambda(p) = B\left(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\right) \) is the best possible \(B \) is the beta function. The function \(f(x, y) \) is said to be homogeneous of degree \(\lambda \), if
\[f(tx, ty) = t^\lambda f(x, y) \quad (t > 0). \]

The object of this paper is that to give some new inequalities similar to that of Hardy–Hilbert’s integral inequality.

2. **Main result**

Lemma 2.1. Let \(K(t, 1), K(1, t) \) be positive increasing functions, \(0 < \mu + 1 \leq \alpha \). Set for \(s \geq 1, \)
\[f(s) = s^{-\alpha} \int_0^s \frac{t^\mu}{K(1, t)} \, dt, \quad g(s) = s^{-\alpha} \int_0^s \frac{t^\mu}{K(t, 1)} \, dt. \]

Then
\[f(s) \leq f(1), g(s) \leq g(1). \]

Proof. We have
\[f'(s) = s^{-\alpha} \frac{s^\mu}{K(1, s)} - \alpha s^{-\alpha-1} \int_0^s \frac{t^\mu}{K(1, t)} \, dt \]
\[\leq \frac{s^{\mu-\alpha}}{K(1, s)} - \alpha s^{-\alpha-1} \int_0^s t^\mu \, dt \]
\[= \frac{s^{\mu-\alpha}}{K(1, s)} \left(1 - \frac{\alpha}{\mu + 1} \right) \leq 0. \]

This shows that \(f \) is nonincreasing and hence \(f(s) \leq f(1) \). The other part has a similar proof. \(\square \)

The following is our main result
Theorem 2.2. Let $f, g \geq 0$, $K(u, v)$ be positive, increasing, homogeneous function of degree λ, $0 < \lambda \leq \min\{(1 - b)/p, (1 - a)p/q\}$, $a, b > 0$, $p > 1$, $1/p + 1/q = 1$. Set

$$F(u) = \int_0^u f(t)dt, \quad G(v) = \int_0^v g(t)dt.$$

Then

$$\int_0^T \int_0^T \frac{F(u)G(v)}{K(u, v)}du dv \leq T^{\alpha} \sqrt[p]{pK_1} \sqrt[q]{qK_2} \left(\int_0^T (T - t)F^{p-1}(t)f(t)dt \right)^{1/p} \times \left(\int_0^T (T - t)G^{q-1}(t)g(t)dt \right)^{1/q},$$

where

$$K_1 = \int_0^1 \frac{t^{a-1}}{K(1, t)}dt, \quad K_2 = \int_0^1 \frac{t^{b-1}}{K(t, 1)}dt.$$

Proof.

$$\int_0^T \int_0^T \frac{F(u)G(v)}{K(u, v)}du dv = \int_0^T \int_0^T \frac{F(u)v^{a-1}}{u^{b-1}K^{1/p}(u,v)} \times \frac{G(v)u^{b-1}}{v^{a-1}/K^{1/q}(u,v)} du dv$$

$$\leq \left(\int_0^T \int_0^T \frac{F^p(u)v^{a-1}}{u(t-1)p/K(u,v)} du dv \right)^{1/p} \times \left(\int_0^T \int_0^T \frac{G^q(v)u^{b-1}}{v^{(a-1)/q}/K(u,v)} du dv \right)^{1/q}$$

$$= M^{1/p} N^{1/q}.$$

We first consider

$$M = \int_0^T u^{(1-b)p/q} F^p(u) du \int_0^T \frac{u^{a-1}}{K(u, v)} dv.$$

Observe that on putting $v = uy, dv = udv, 0 \leq y \leq t/u$, we have, in view of Lemma 2.1, by writing $\alpha = a + (1 - b)p/q - \lambda$,

$$\int_0^T \frac{u^{a-1}}{K(u, v)} dv = \int_0^{T/u}(uy)^{a-1}u \frac{dy}{K(u, uy)} = u^{a-\lambda} \int_0^{T/u} \frac{y^{a-1}}{K(1, y)} dy$$

$$= u^{a-\lambda} \left(\frac{y}{u} \right)^{a-\lambda} \frac{1}{K(1, y)} \int_0^{T/u} y^{a-1} dy$$

$$\leq T^{\alpha} u^{a-\lambda-\alpha} \int_0^1 \frac{y^{a-1}}{K(1, y)} dy = T^{\alpha} K_1 u^{a-\lambda-\alpha}.$$

By above we obtain

$$M \leq T^{\alpha} K_1 \int_0^T u^{a+(1-b)p/q-\lambda-\alpha} F^p(u) du$$

$$= T^{\alpha} K_1 \int_0^T F^p(u) du.$$

As

$$F^p(u) = \int_0^u (F^p(t))' dt = p \int_0^u F^{p-1}(t)f(t)dt,$$
we have
\[M \leq pT^\alpha K_1 \int_0^T \int_0^u F^{p-1}(t)f(t)dtdu = pT^\alpha K_1 \int_0^T (T-t)F^{p-1}(t)f(t)dt. \]

Similarly, the other part follows by using Lemma 2.1, replacing \(\alpha \) by \(\beta \), where
\[\beta = b + (1-a)q/p - \lambda \]
to obtain
\[N \leq qT^\alpha K_2 \int_0^T (T-t)G^{q-1}(t)g(t)dt. \]

This completes the proof of the theorem. \(\square \)

3. Applications

Corollary 3.1. By an application of Theorem 2.2 for the special case \(a = b = \lambda/2 \), we have
\[
\int_0^T \int_0^T \frac{F(u)G(v)}{K(u,v)}dudv \leq T^\alpha \sqrt[1/p]{pK_1 \sqrt[K_3]{qK_3}} \left(\int_0^T (T-t)F^{p-1}(t)f(t)dt \right)^{1/p} \times \\
\left(\int_0^T (T-t)G^{q-1}(t)g(t)dt \right)^{1/q},
\]
where
\[K_3 = \int_1^\infty \frac{t^{1/2-1}}{K(1,t)}dt, \]

Furthermore, when \(K(u,v) = (u+v)^\lambda \), we have
\[
\int_0^T \int_0^T \frac{F(u)G(v)}{(u+v)^\lambda}dudv \leq T^\alpha B\left(\frac{\lambda}{2}, \frac{\lambda}{2} \right) \sqrt[p]{p} \sqrt[q]{q} \left(\int_0^T (T-t)F^{p-1}(t)f(t)dt \right)^{1/p} \times \\
\left(\int_0^T (T-t)G^{q-1}(t)g(t)dt \right)^{1/q}.
\]

Proof. For \(a = b = \lambda/2 \), we have \(K_2 = K_3 \) as
\[
\int_0^1 \frac{t^{1/2-1}}{K(t,1)} = \int_0^1 \frac{t^{1/2-1}}{K(t,tt^{-1})}dt = \int_0^1 \frac{t^{-1/2-1}}{K(1,t^{-1})}dt = \int_1^\infty \frac{t^{1/2-1}}{K(1,t)}dt.
\]
The other part follows from the fact that for \(K(1,t) = (1+t)^\lambda \),
\[K_1 = K_2 = K_3 = B\left(\frac{\lambda}{2}, \frac{\lambda}{2} \right). \]

\(\square \)
Corollary 3.2. By an application of Theorem 2.2 with \(K(u, v) = u^\lambda + v^\lambda \), we have

\[
\int_0^T \int_0^T \frac{F(u)G(v)}{u^\lambda + v^\lambda} \, du \, dv
\leq T^\alpha qK_a q\sqrt{qK_b} \left(\int_0^T (T - t)F^{p-1}(t)f(t)dt \right)^{1/p} \times \left(\int_0^T (T - t)G^{q-1}(t)g(t)dt \right)^{1/q},
\]

where

\[
K_r = \int_0^1 \frac{t^{r-1}}{1 + t^\lambda} \, dt \quad (r \in \{a, b\}).
\]

References

Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Iraq.

E-mail address: waadsulaiman@hotmail.com