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Rooted trees and moments of large sparse
random matrices
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In these expository paper we describe the role of the rooted trees as a base for convenient tools in studies of random
matrices. Regarding the Wigner ensemble of random matrices, we represent main ingredients of this approach. Also
we refine our previous result on the limit of the spectral norm of adjacency matrix of large random graphs.
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1 Introduction
In late 50th E. Wigner studied the moments of N � N random symmetric matrices whose entries are
independent identically distributed real random variables [Wig55]. He observed that if the law of these
variables is symmetric, then after certain normalization, the leading contribution to the 2k-th moment

M
�
N �

2k as N � ∞ is described by the set of simple random walks of 2k steps in the upper half-plane starting

and ending at zero. Moreover, the limit limN � ∞ M
�
N �

2k is proportional to the number of these walks.
Later this description was combined with the graph theory tools to study the spectral norm of large

random matrices of this class known as the Wigner ensemble [BY88, FK81]. The use of the graph theory
is possible here due to the one-to-one correspondence between the simple half-plane random walks and
the set of rooted trees Tk with k edges drawn in the upper half-plane. Another version of the random walks
representation is used to prove the universal character of extreme eigenvalue statistics of large random
matrices of the Wigner ensemble [Sos99].

The common feature of these works is that one considers the moments M
�
N �

2k in the limit when k in-
creases proportionally to some power of N [Gem]. Then one has to take into account not only the leading

contribution to M
�
N �

2k , but also next terms of 1 � N-expansion of it. To do this, modifications of the method
of [Wig55] were proposed [BY88, FK81, Sos99] that involve additional combinatorial constructions.

In paper [Kho01] it was shown that the trees still represent a simple and convenient description of

the corrections to M
�
N �

2k . Namely, it was proved that the rooted trees added by the procedure of vertex

gluing and shift of cycles describe all terms of 1 � N-expansion of M
�
N �

2k . On this way one can separate two
different classes of graphs obtained from trees:

(A) those that have gluings of children with different parents and
(B) those that glue the children of the same parent.
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This gives a natural and simple description of two types of corrections to M
�
N �

2k observed independently
in [Sos99]. In the Wigner ensemble, the corrections (A) contribute more than those of (B) and [Sos99] is
mostly related with the corrections of the first type.

Corrections (B) become crucial in the ensemble of sparse random matrices related to adjacency matrix
of random graphs. The ensemble consists of N � N matrices H

�
N � p � that have, in average, p non-zero

elements per row. In paper [Kho01] it is proved that if p � O
���

logN � 1 � δ � with δ � 0, then the spectral
norm of 1�

p H
�
N � p � converges to 2v as N � ∞. In present paper we show that condition p

�
logN �	� 1 � ∞

is sufficient for this convergence. The proof uses the properties of the set of rooted trees. We present
refinements of results of [Kho01] on this subject also.

2 Moments of Wigner random matrices
To model the energy levels of heavy atomic nuclei, E. Wigner proposed to consider the eigenvalues of real
symmetric N � N matrices A

�
N �



A

�
N ���

i j
� 1

N
ai j � i � j � 1 ��������� N �

1 �
where � ai j � i � j � are identically distributed random variables with zero mean value and variance v2. He
showed that if all even moments of ai j are bounded and all odd moments of ai j vanish, then the normalized
traces of A

�
N � converge in average as N � ∞;

lim
N � ∞

E

�
1
N

Tr


A

�
N � � l � � ml

� �
v2k tk � if l � 2k,
0 � if l � 2k � 1,

�
2 �

where tk are the well-known Catalan numbers determined by recurrent relations

t0 � 1 � tk
� k � 1

∑
j � 0

tk � 1 � jt j � �
3 �

and are given by equality tk
� 1

k � 1 � 2k
k � � The limiting moments ml determine the semicircle density ρ

�
λ � :

ml
��� ∞

� ∞
λlρ

�
λ � dλ � �

2πv2 � � 1 � 2v

� 2v
λl � 4v2 � λ2 dλ

and convergence (2) is called the semicircle (or Wigner) law for the eigenvalue counting function σ
�
λ;A

�
N � � �

1
N # � λ

�
N �
j � λ � 1 � j � N � . It implies the weak convergence of the measures

dσ
�
λ;A

�
N � � � ρ

�
λ � dλ � N � ∞ �

Later it was proved that this convergence holds with probability 1.
Let us briefly explain why the Catalan numbers tk arise in the study of the moments

E

�
1
N

Tr


A

�
N ��� 2k � � 1

Nk � 1 ∑
i

Eai1i2ai2i3 ����� ai2ki1 � �
4 �
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Fig. 1: Set I �8 ��� 4 � 3 ��������� 4 � , corresponding random walk and tree τ.

The last mathematical expectation is nonzero only for those sets (or walks) I2k
� �

i1 � i2 ������� � i2k � i1 � where
the random variables a are present even number of times.

The random variables airir 	 1 are labelled by the steps of the walk I2k. Thus one takes into account the
walks I 
 , where each step

�
α � β � is passed an even number of times, when regarded in both directions. It

is easy to see that the leading contribution to (4), in the limit N � ∞, is given by the walks I 
2k where each
step is passed two times only: there and back (see figure 1). The set of these walks I 
2k is separated into
classes of equivalence, and these classes are labelled by half-plane rooted trees τ � Tk of k edges. The
number of classes tk

�� Tk
� is the Catalan number (3). This is the way E. Wigner has counted the limiting

moments ml [Wig55].
One can restore I 
2k from Tk as follows: take τ and assign to vertices of τ different numbers from the set�

1 ��������� N � . The lexicographical path over edges of τ that starts and ends at the root produce a walk of the
type I 
2k. There are N

�
N � 1 � ����� � N � k � � O

�
Nk � 1 � walks of the type I 
2k corresponding to τ.

3 Two types of corrections to the semicircle law
According to the arguments of [Wig55] presented above, relation (4) can be rewritten in the form

M
�
N �

2k
� E

�
1
N

Tr


A

�
N � � 2k � � v2ktk � R

�
N �

K � R
�
N �

k
� O

� Qk

N
� � �

5 �
The factor

�
v2 � k arises due to the fact that in I2k corresponding to trees τ each step is passed exactly two

times.
The situation is different for the terms Qk. First, there are terms that still have powers of v2 only;

second, there are terms where the higher moments V2s
� Ea2s are present. The walks corresponding to

the first type of terms can be described by graphs obtained from the trees after the gluings of children of
different parents (see figure 2).

In the second case the gluings are made between children of the same parents (see figure 3). These
produce the factors V2s, s � 2. This difference plays an important role in the universal behaviour of the
edge spectral statistics of Wigner ensemble. Loosely speaking, the corrections of the second type vanish
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Fig. 2: Gluings of the first type and corresponding walk
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Fig. 3: Gluings of the second type and corresponding walk
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from M
�
N �

2k faster than those of the first type in the limit N � k � ∞. That is why the asymptotic expression

for M
�
N �

2k does not contain the values V2k [Sos99].

Corrections to M
�
N �

2k determine the limit of the spectral norm � A
�
N � � � λ

�
N �

max
� max j � 1 � � � � � N � λ �

N �
j
� (see

[BY88, FK81, Gem]). Indeed, elementary inequality

PN
�
u � � Prob � λ

�
N �

max � u � � 1
uk NM

�
N �

2k

�
6 �

shows that if one can prove the estimate M
�
N �

2k � v2ktk
�
1 � ε � 2 � 2k with ε � 0 for all k � O

�
logN � , N � ∞,

then one can conclude that
limsup

N � ∞
λ

�
N �

max � 2v

with probability 1. This observation together with the convergence of σ
�
λ;A

�
N � � implies convergence

λ
�
N �

max � 2v with probability 1 as N � ∞ [BY88, FK81, Gem].

4 Moments of sparse random matrices
Let us consider the ensemble of random real symmetric matrices


H
�
N � p � �

i j
� di jai j � �

7 �
where the random variables � di j � i � j � of the law

di j
� 1

p

�
1 � with probability p � N,
0 � with probability 1 � p � N

�
8 �

are independent between themselves and independent of ai j. In the limit p � N � 0 matrices (7) become
very sparse and the ensemble is statistically different from the Wigner ensemble (1). The aim of this paper
is to prove the following statement.
Theorem 1. Let random variables ai j verify condition E

�
ai j � 2k � �

Ck � k with some C � 0. If pN
�
logN ��� 1 �

∞ as N � ∞, then the spectral norm of (7) is bounded with probability 1;

limsup
N � ∞

λ
�
N � pN �

max � 2v �
Remark. In paper [Kho01] this bound is proved in the limit N � ∞ and pN

� �
logN � 1 � δ, δ � 0.

The proof of Theorem 1 is based on (6) and therefore involves the study of high moments of (7). The
leading term of the moment

M
�
N � p �

2k
� E

�
1
N

Tr


H

�
N � p � � 2k �

is still described by the Catalan numbers as in (5), but the term R
�
N �

k is replaced by the sum of the terms
of the order O

�
p � lN � m � , l � m � 1. The terms of the order p � l correspond to gluings of the children of

the same parent, the factors N � m arise due to gluings of children of different parents.



150 Oleksiy Khorunzhiy

In paper [Kho01] it is shown that if V2s � �
Cs � s, then

M
�
N � p �

2k � v2ktk � k

∑
s � 1

Cs�
2p � s 1

s! ∑
τ � Tk

�
b2

1 � b2
2 � ����� � b2

k � 1 � s � O
�
k2 N � 1 � � �

9 �
where b j

� b j
�
τ � � 0 is equal to the number of children of the vertex j of τ and b1 � ����� � bk � 1

� k.
Obvious inequality

1
s! ∑

τ � Tk

�
b2

1 � b2
2 � ����� � b2

k � 1 � s � tkks

s!
1
tk

∑
τ � Tk

Bs
τ � Bτ

� max
j � 1 � � � � � k b j

�
10 �

shows that the distribution of the maximal degree of equiprobable trees is essential for estimates of M
�
N � p �

2k .

5 Trees, vertices, children
The following proposition improves observations of [Kho01].

Lemma 1. Denote by T
�
b �

k the set of trees τ 
 � Tk such that Bτ �
� b � k. Then

tk
�
b � � � T

�
b �

k
� � k tk

�
1 � Db � 2 � b � 4 � �

11 �
where Db � 1 � 4 and limb � ∞ Db

� 1 � 2.
Remark. In paper [Kho01] inequality (11) is proved with Db

� 1 � 4.

To prove Lemma 1, let us estimate the number t̂
�
b �

k of trees τ 
 
 � Tk such that the degree of the root of τ 
 

is equal to b. One can consider t̂

�
b �

k also as the number of forests constructed on b roots with the help of

k � b edges. We denote this number by n
�
b �

k � b.
Lemma 2. Given b � 2, the following estimate is true

n
�
b �

k � b
� t̂

�
b �

k � �
1 � Db � b � 2 tk � 1 � �

12 �
Proof. More general form of (3)

t̂
�
b �

k
� k � b

∑
j � 0

t̂
�
b � 1 �

k � 1 � jt j
�
13 �

implies inequality t̂
�
b �

k � tk � 1. Then we deduce from (13) that

t̂
�
b �

k � k � b

∑
j � 0

tk � 2 � jt j
� tk � 1

� �
t0tk � 2 � ����� � tb � 1tk � 1 � b � �

It is easy to see that tk � 2
� 1

k � 1 � 2k � 2
k � 1 � � 1

4 tk � 1. Then

t0tk � 2 � ����� � tb � 1tk � 1 � b �
tk � 1

4

b

∑
l � 0

tl
4l

� Dbtk � 1 �
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where Db tends to 4 � 1 f
�
4 � 1 � � 1 � 2, f being the generating function of the Catalan numbers.

Now we can conclude that if b � 2, then t̂
�
b �

k � �
1 � Db � tk � 1. Regarding a sequence of relations (13)

with b � 2 � 3 ������� , we obtain the estimate (12). Finally, more general than (13) relation

n
�
r � l �

s � l
� s � l

∑
j � 0

n
�
r �
j n

�
l �

s � l � j �
when combined with (12), implies inequality

n
�
r � l �

s � l � �
1 � Dl � l � 2 n

�
r � 1 �

s � 1 � 2 � l � s � �
14 �

Lemma 2 is proved.
Proof of Lemma 1. To accomplish this on the base of (14), we introduce the following description of the
set Tk. Let us consider k numerated edges, take first h of them and construct all trees Th � 1, 1 � h � k.

141 6

Fig. 4: Construction of trees of T14 with α � 3, β � 2 and h � 6.

We can do this in agreement with the lexicographical order: regarding already constructed tree τ � T j,
we attach the edge number j � 1 to one of the vertices of the border of τ j. We call the border of the tree
τ � Tj the set of its vertices such that the new edge adjacent to one of these vertices will be the last in the
lexicographical order (see figure 4, where the border of the tree is shown by small circles).

Given h � 2, let us consider a tree τ of Th � 1 that have the border of α � 1 vertices, 1 � α � h � 1. Then
the edge h can be attached to one of the α vertices the most closes to the root. Let us denote by β the
position of this vertex in the border of τ. There remains k � h edges in our disposition; we use them to
construct the forest on β � 1 roots. The resulting tree belongs to Tk and all of these trees can be obtained
on this way by varying α and β. Therefore,

tk � h � 1

∑
α � 1

n
�
α �

h � 1 � α

α � 1

∑
β � 1

n
�
β � 1 �

k � h � �
15 �

In this relation we assume h � 1. The case of h � 1 can also be included under agreement that α � 0 and

n
�
0 �

0
� 1.

Now let us construct the set of k-edge trees T̃
�
b �

k that have at least one vertex with the number of children
equal to b.
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141 6 8 10

Fig. 5: Construction of trees of T14 with h � 6 and b � 2 � 6.

To do this, we modify the procedure described above, assuming that the edge number h and the next
b � 2 edges are considered as one cluster, i.e. the set of b � 1 children of one parent (see figure 5).

Then one can write equality

� T̃
�
b �

k
� � k � b � 2

∑
h � 1

h � 1

∑
α � 1

n
�
α � 1 �

h � 1 � α

α

∑
β � 1

n
�
β � b � 2 �

k � h � b � 2 � �
16 �

This relation taken with b � 2 differs from (15) for the reason that in (16) we have prohibited to attach the
edges to the vertex, where the edge h is attached; also we do not attach the edge h to the vertex α � 1 of
the border of the tree. Certainly, these restrictions diminish the number of trees obtained. Now, applying
(14) to the last factor of (16), we obtain inequalities

� T̃
�
b �

k
� � k � b � 2

∑
h � 1

h � 1

∑
α � 1

n
�
α � 1 �

h � 1 � α

α

∑
β � 1

n
�
β �

k � h

�
1 � Db � 2 � b � 4 � ktk � 1

�
1 � Db � 2 � b � 4 �

Obvious inclusion T
�
b �

k
�

T̃
�
b �

k completes the proof of (11).

6 Proof of Theorem 1
Let us continue inequalities (9) and (10). We chose B0 � 4 such that χ � χB0

� ln
�
1 � DB0 ��� 1. Then

1
s!tk

∑
τ � Tk

Bs
τ � Bs

0

s!
� 1

s!tk

k � B0 � 1

∑
j � 0

∑�
τ:B0 � j � Bτ � B0 � j � 1 � Bs

τ �
Bs

0

�
1 � 1

s!
k
�
1 � DB0 � j � 2 � B0 � 4

∞

∑
j � 0

�
1 � j � se � j ln

�
1 � DB0 	 j 	 2 ��
 �

Bs
0 � 1 � 2keχe � �

B0 � 4 � χχs � 1 � � Bs
0
�
1 � 6ke � �

B0 � 4 � � �
Substituting this estimate into the right-hand side of (9), we obtain inequality

M
�
N � p �

2k � v2ktk � 1 � k

∑
s � 1  CkB0

2p � s � 1 � 6ke � �
B0 � 4 � χ ��� �
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It follows from this inequality that if p � CkB0 � 2, then

M
�
N � p �

2k � 2
�
k � 1 � 2v2ktk � �

17 �
Using this estimate and inequality (6), we complete the proof of Theorem 1. Indeed, given ε � 0, we

choose k � �
2 � ∆ � lnN



ln
�
1 � ε � � � 1 with ∆ � 0 and for sufficiently large N, p becomes larger than CB0k

and (17) holds. Then

Prob � λ
�
N �

max � 2v
�
1 � ε � � � NM

�
N �

2k�
2v � 2k

�
1 � ε � 2k

� 2
�
k � 1 � 2N�
1 � ε � 2k

� �
4 � ∆ � 2 
 lnN � 2

N1 � ∆ �
Therefore the series ∑N PN

�
2v

�
1 � ε ��� converges and the Borel–Cantelli lemma implies the upper bound

limsup
N � ∞

λ
�
N � pN �

max � 2v
�
1 � ε � with probability 1.

�
18 �

This completes the proof of Theorem 1.

7 Discussion
Let us consider a particular case of H

�
N � p � (7) with Bernoulli random variables ai j

��� 1 with probabilities
1 � 2 and study random variables

η
�
N � p � � max

j � 1 � � � � � N � H
�
N � p � e

�
j � � 2 � �

19 �
where e

�
j � � x � � δx � j . It is easy to show that if pN

�
logN � � 1 � 0, then with probability 1

lim
N � ∞

η
�
N � pN � � r for any r � 0 �

This means that the value p 
N � logN is critical for the spectral norm of H
�
N � p � to be bounded or not.

Random variable (19) is closely related with the maximum of partial sums of the Erdős-Rényi limit
theorem [Kho02]. In this connection it would be interested to analyse the spectral norm of H

�
N � p � in the

limit p � τ logN. On can conject that the spectral norm will depend both on the value of τ and the function
φ
�
t � � Eexp � tai j � . In this studies the detailed analysis of the multigraphs obtained from trees should be

carried out.
Let us also note that if p � ∞, then dσ

�
λ;H

�
N � p � � converges in probability to the semicircle distribution

ρ
�
λ � dλ (see e.g. [AKS92, RB88]). This can be proved by using the resolvent technique [AKS92] as

well as regarding the moments M
�
N � p �

2k (9) with fixed k and p � ∞.s Then one can say that in the limit
1 � � p � � logN the upper bound of the support of σ

�
λ;H

�
N � p � � is bounded, but some of eigenvalues go

to infinity.
In papers [FK81, KS03] the maximal eigenvalue of the adjacency matrix of the random graph is studied.

The matrix is given by


D

�
N � p � �

i j
� 

pdi j (8). The difference between D
�
N � p � and H

�
N � p � is that in our

case the random matrix entries have zero mathematical expectation because of the weights ai j. Also
normalization by


p justified by theoretical physics studies makes results of [KS03] different from ours.

Another spectral characteristics is the diffusion coefficient of the system corresponding to random ma-
trices H

�
N � p � . Here another critical value p 
 
 appears that separates two states of localized and delocalized
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eigenvectors. Numerical and theoretical physics arguments show that p 
 
 is finite [Eva83, MF91]. For this

case of finite parameter p, closed recurrent relations that determine m
�
p �

2k
� limN � ∞ M

�
N � p �

2k are obtained
using the trees and walks with repetitions over them [BG01, KV]. It would be interesting to study the
diffusion coefficient of H

�
N � p � using the approach developed.
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