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Abstract

A Rayleigh matroid is one which satisfies a set of inequalities analogous to the
Rayleigh monotonicity property of linear resistive electrical networks. We show that
every matroid of rank three satisfies these inequalities.

1 Introduction.

For the basic concepts of matroid theory we refer the reader to Oxley’s book [5].
A linear resistive electrical network can be represented as a graph G = (V, E) together

with a set of positive real numbers y = {ye : e ∈ E} that specify the conductances of
the corresponding elements. In 1847 Kirchhoff [3] determined the effective conductance
of the network measured between vertices a, b ∈ V as a rational function Yab(G;y) of the
conductances y. This formula can be generalized directly to any matroid.

For electrical networks the following property is physically intuitive: if yc > 0 for all
c ∈ E then for any e ∈ E,

∂

∂ye

Yab(G;y) ≥ 0.

That is, by increasing the conductance of the element e we cannot decrease the effective
conductance of the network as a whole. This is known as the Rayleigh monotonicity
property.

Informally, a matroid has the Rayleigh property if it satisfies inequalities analogous
to the Rayleigh monotonicity property of linear resistive electrical networks. While there
are non–Rayleigh matroids of rank four or more, we show here that every matroid of rank
(at most) three is Rayleigh, answering a question left open by Choe and Wagner [1].
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Let M be a matroid with ground–set E, and fix indeterminates y := {ye : e ∈ E}
indexed by E. For a basis B of M let yB :=

∏
e∈B ye, and let M(y) :=

∑
B∈M yB with

the sum over all bases of M. (As usual, an empty sum has value 0 and an empty product
has value 1.) Since M(y) is insensitive to the presence of loops we generally consider only
loopless matroids, and regard M as its set of bases.

For disjoint subsets I, J of E, let MJ
I denote the minor of M obtained by contracting

I and deleting J . We use the nonstandard convention that if I is dependent then MJ
I is

empty, so that in general

MJ
I := {B r I : B ∈ M and I ⊆ B ⊆ E(M) r J}.

The matroid M is a Rayleigh matroid provided that whenever yc > 0 for all c ∈ E,
then for every pair of distinct e, f ∈ E,

∆M{e, f}(y) := Mf
e (y)Me

f (y) − Mef(y)Mef (y) ≥ 0.

See Section 3 of Choe and Wagner [1] for more detailed motivation of this definition.
Rayleigh matroids are “balanced” in the sense of Feder and Mihail [2], and for binary
matroids these conditions are equivalent. For example, every sixth–root of unity matroid
– in particular every regular matroid – is Rayleigh (Proposition 5.1 and Corollary 4.9 of
[1]). Since graphic matroids are regular this generalizes the physical assertion that linear
resistive electrical networks satisfy Rayleigh monotonicity. One of the main questions left
open in [1] is whether or not every matroid of rank three is Rayleigh. Here we show that
this is indeed the case.

Theorem 1.1 Every matroid of rank three is Rayleigh.

In contrast to this theorem there are several matroids of rank four that are known not to
be Rayleigh, among them the matroids S8 and J′ discussed in [1].

As a concrete but fairly representative consequence of Theorem 1.1, let E be a finite
non–collinear set of points in a projective plane, and let M be the set of unordered non–
collinear triples of points in E. Assign a positive real number yc to each c ∈ E, and
consider the probability space Ω(M,y) which assigns to each B ∈ M the probability
yB/M(y). Since M is a rank–three matroid it is Rayleigh, by Theorem 1.1. A short
calculation shows that for distinct e, f ∈ E:

Mef (y)

Me(y)
≤ Mf (y)

M(y)
.

That is, in Ω(M,y) the probability that a random basis B ∈ M contains f , given that it
contains e, is at most the probability that a random basis contains f . In short, the events
e ∈ B and f ∈ B are negatively correlated for any distinct e, f ∈ E. This probabilistic
point of view is carried further by Feder and Mihail [2] and Lyons [4].

Several conversations and correspondences with Jim Geelen, Sandra Kingan, and
Bruce Reznick helped to clarify my thoughts on this problem, for which I thank them
sincerely.
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2 Preliminaries.

To simplify notation, when calculating with Rayleigh matroids we will henceforth usually
omit reference to the variables y – writing MJ

I instead of MJ
I (y) et cetera – unless a

particular substitution of variables requires emphasis. We will also write “y > 0” as
shorthand for “yc > 0 for all c ∈ E”.

We require the following facts from [1].

Proposition 2.1 (Section 3 of [1]) The class of Rayleigh matroids is closed by taking
duals and minors.

Sketch of Proof. For the matroid M∗ dual to M and for e, f ∈ E(M∗),

∆M∗{e, f}(y) = y2E∆M{e, f}(1/y)

in which 1/y := {1/yc : c ∈ E}. From this it follows that M∗ is Rayleigh if M is.
For distinct e, f, g ∈ E(M),

∆Mg{e, f} = lim
yg→0

∆M{e, f}

and

∆Mg{e, f} = lim
yg→∞

1

y2
g

∆M{e, f}.

From this it follows that if M is Rayleigh then the deletion Mg and the contraction Mg

are also Rayleigh. The case of a general minor follows by iteration of these two cases. �

(The class of Rayleigh matroids is also closed by 2-sums, but we will not use this fact.)
For polynomials A(y) and B(y) in R[yc : c ∈ E], we write A(y) � B(y) to mean that

every coefficient of A(y)−B(y) is nonnegative. Certainly, if A(y) � 0 then A(y) ≥ 0 for
all y > 0, but not conversely. Making the substitution yc = x2

c for each c ∈ E, we have
A(y) ≥ 0 for all y > 0 if and only if A(x2) ≥ 0 for all x ∈ R

E ; such a form A(x2) is said
to be positive semidefinite. Artin’s solution to Hilbert’s 17th problem asserts that every
positive semidefinite form can be written as a positive sum of squares of rational functions,
but the proof is nonconstructive. Reznick [6] gives an excellent survey of Hilbert’s 17th
problem. To prove Theorem 1.1 we will write ∆M{e, f}(y) as a positive sum of monomials
and squares of polynomials in y.

Regarding the Rayleigh property, one may restrict attention to the class of simple
matroids (although it is not always useful to do so) for the following reason. We may
assume that M is loopless, as remarked above. If a, a1, . . . , ak are parallel elements in M,
then let N be obtained from M by deleting a1, . . . , ak. Letting wc := yc if c ∈ E(N) r {a}
and wa := ya + ya1 + · · · + yak

, one sees that M(y) = N(w). A little calculation shows
that M is Rayleigh if and only if N is Rayleigh. Repeating this reduction as required, we
find a simple matroid L and a substitution of variables z = z(y) such that M(y) = L(z),
and such that M is Rayleigh if and only if L is Rayleigh.

It is very easy to see that matroids of rank one or two are Rayleigh.
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Proposition 2.2 If M has rank at most two then ∆M{e, f} � 0 for all distinct e, f ∈
E(M). Consequently, M is Rayleigh.

Proof. By the above remarks, we may assume that M is simple. Let the ground–set of
M be E = {1, 2, . . . , m}.

If M has rank one then M(y) = y1 +y2 + · · ·+ym, so Mef = 0 for all distinct e, f ∈ E,
and hence ∆M{e, f} = Mf

e Me
f = 1 � 0.

If M has rank two then M(y) =
∑

1≤i<j≤m yiyj is the second elementary symmetric

function of y. By symmetry we only need to show that ∆M{1, 2} � 0. Since M2
1 =

M1
2 = y3 + y4 + · · ·+ ym and M12 = 1 and

M12 =
∑

3≤i<j≤m

yiyj,

it follows that
∆M{1, 2} =

∑

3≤i≤j≤m

yiyi,

proving that ∆M{1, 2} � 0. �

The case of rank–three matroids is much more interesting – the polynomial ∆M{e, f}
can have terms with negative coefficients, as happens already for the graphic matroid K

of the complete graph K4 on four vertices. With the ground–set of K labelled as in Figure
3(IV), we have

∆K{1, 2} = (y3y4 − y5y6)
2.

As will be seen in Table 3, however, in some sense this is the worst that can happen in
rank three.

3 A reduction lemma for any rank.

For distinct elements e, f, g ∈ E(M), a short calculation shows that

∆M{e, f} = y2
g∆Mg{e, f} + ygΘM{e, f |g} + ∆Mg{e, f}

in which

∆Mg{e, f} = Mf
egM

e
fg − MefgM

ef
g ,

∆Mg{e, f} = Mfg
e Meg

f − Mg
efM

efg,

and the central term for {e, f} and g in M is defined by

ΘM{e, f |g} := Mfg
e Me

fg + Meg
f Mf

eg − Mef
g Mg

ef − MefgM
efg.

For a subset S of E(M), we use S to denote the closure of S in M.
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Lemma 3.1 Let M be a matroid, and let e, f, g ∈ E(M) be distinct elements. If {e, f, g}
is dependent in M then ΘM{e, f |g} � 0.

Proof. To prove this we exhibit an injective function

(
Mef

g × M
g
ef

) ∪ (
Mefg × Mefg

) −→ (
Mfg

e × Me
fg

) ∪ (
M

eg
f × Mf

eg

)

such that if (B1, B2) 7→ (A1, A2) then yA1yA2 = yB1yB2 .
Since {e, f, g} is dependent it follows that Mefg = ∅, so let B1 ∈ Mef

g and B2 ∈ M
g
ef .

Let L := B1 r {g}. We claim that either e 6∈ L or f 6∈ L. To see this, suppose not
– then g ∈ {e, f} ⊆ L, which contradicts the fact that B1 is a basis. If e 6∈ L then
let A1 := B1 ∪ {e} r {g} and A2 := B2 ∪ {g} r {e}. If e ∈ L then f 6∈ L, so let
A1 := B1 ∪ {f}r {g} and A2 := B2 ∪{g}r {f}. It is easy to see that in either case both
A1 and A2 are bases of M.

Notice that for (A1, A2) in the image of this function, A1 ∈ Mfg
e ∪M

eg
f and this union

is disjoint. If A1 ∈ Mfg
e then let B′

1 := A1 ∪ {g} r {e} and B′
2 := A2 ∪ {e} r {g}, while

if A1 ∈ M
eg
f then let B′

1 := A1 ∪ {g} r {f} and B′
2 := A2 ∪ {f} r {g}. In either case we

have (B′
1, B

′
2) = (B1, B2) showing that the function (B1, B2) 7→ (A1, A2) is injective.

This construction provides the desired weight–preserving injection. �

Lemma 3.1 has the following consequence which might be helpful in the investigation
of Rayleigh matroids of rank four or more.

Proposition 3.2 Let M be a minor–minimal non–Rayleigh matroid, and let e, f ∈ E(M)
and y > 0 be such that ∆M{e, f} < 0. Then {e, f} is closed in M.

Proof. If g ∈ E(M) r {e, f} is such that {e, f, g} is dependent, then ΘM{e, f |g} � 0 by
Lemma 3.1. From this it follows that if y > 0 then

∆M{e, f} = y2
g∆Mg{e, f} + ygΘM{e, f |g} + ∆Mg{e, f} ≥ 0,

since every proper minor of M is Rayleigh. As this contradicts the hypothesis we conclude
that {e, f} is closed in M. �

The following consequence of Lemma 3.1 is relevant to the present purpose.

Lemma 3.3 Let M be a matroid of rank three, and let e, f ∈ E(M). If g ∈ E(M)r{e, f}
is such that {e, f, g} is dependent in M then ∆M{e, f}(y) � ∆Mg{e, f}(y).

Proof. Since

∆M{e, f} − ∆Mg{e, f} = y2
g∆Mg{e, f} + ygΘM{e, f |g},

the inequality follows directly from Proposition 2.2 and Lemma 3.1. �
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Figure 1: The four–element rank–three simple matroids.

4 Matroids of rank three.

The proof of Theorem 1.1 is completed by means of the following lower bound for
∆M{e, f}(y), which was found mainly by trial and error.

For a ∈ E(M)r{e, f} let L(a, e) := {a, e}r{a, e}, let L(a, f) := {a, f}r{a, f}, and let
U(a) := E(M)r({a, e}∪{a, f}∪{e, f}). Define the linear polynomials B(a) :=

∑
b∈U(a) yb,

C(a) :=
∑

c∈L(a,e) yc, and D(a) :=
∑

d∈L(a,f) yd, and the quartic polynomials

T (M; e, f, a;y) := (yaB(a) − C(a)D(a))2

for each a ∈ E(M) r {e, f}. Finally, define

P (M; e, f ;y) :=
1

4

∑

a∈E(M)r{e,f}
T (M; e, f, a;y).

Proposition 4.1 Let M be a simple matroid of rank three, and let e, f ∈ E(M) be dis-
tinct. With the notation above,

∆M{e, f}(y) � P (M; e, f ;y).

Proof. By repeated application of Lemma 3.3, if necessary, we may assume that {e, f} is
closed in M, so we reduce to this case.

Both ∆ := ∆M{e, f}(y) and P := P (M; e, f ;y) are homogeneous of degree four in
the indeterminates {yj : j ∈ E(M) r {e, f}}, and the only monomials that occur with
nonzero coefficient in either of these polynomials have shape y2

gy
2
h, y2

gyhyi, or ygyhyiyj

in which the subscripts are pairwise distinct. The coefficient of such a monomial in ∆
depends only on the isomorphism type of the restriction M|{e, f, g, h}, M|{e, f, g, h, i}, or
M|{e, f, g, h, i, j}, the positions of e and f in this restriction, and, in the second case, the
position of g relative to e and f in this restriction. (The coefficient of such a monomial in
P can depend on more information, as we shall see.) Since {e, f} is closed in M, {e, f}
is also closed in any such restriction N. The proposition is now proved by an exhaustive
case analysis of these configurations in M.

Figure 1 and Table 1 summarize the case analysis for monomials of shape y2
gy

2
h, Figure

2 and Table 2 summarize the case analysis for monomials of shape y2
gyhyi, and Figure 3
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N{e, f} ∆ P notes
I{1, 2} 0 − 0 = 0 0

II{1, 2} 1 − 0 = 1 1/2, 3/4, 1 A.

Table 1: Monomials of shape y2
gy

2
h.
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Figure 2: The five–element rank–three simple matroids.

N{e, f}, g ∆ P notes
I{1, 2}, 3 0 − 0 = 0 0

II{1, 2}, 3 1 − 1 = 0 0
II{1, 2}, 5 1 − 1 = 0 0

III{1, 2}, 3 2 − 0 = 2 1/2 B.
III{1, 3}, 2 2 − 1 = 1 1/2, 1 C.
III{1, 3}, 4 1 − 1 = 0 0
IV{1, 2}, 3 2 − 1 = 1 1/2 B.

Table 2: Monomials of shape y2
gyhyi.
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N{e, f} ∆ P notes
I{1, 2} 0 − 0 = 0 0

II{1, 2} 3 − 3 = 0 0
III{1, 2} 6 − 0 = 6 0
III{1, 3} 3 − 3 = 0 0
IV{1, 2} 2 − 4 = −2 −2 D.
V{1, 4} 3 − 4 = −1 −1 E.
V{4, 5} 4 − 3 = 1 −1/2 F.

VI{1, 2} 4 − 4 = 0 −1/2 G.
VI{1, 3} 5 − 3 = 2 0
VI{3, 6} 4 − 4 = 0 0

VII{1, 2} 5 − 4 = 1 0, 1 H.
VIII{1, 2} 6 − 3 = 3 0
VIII{1, 4} 5 − 4 = 1 0

IX{1, 2} 6 − 4 = 2 0

Table 3: Monomials of shape ygyhyiyj.

and Table 3 summarize the case analysis for monomials of shape ygyhyiyj. In each table
the first column indicates the isomorphism class (from the corresponding figure) of the
restriction N of M, the choice of {e, f} in that restriction, and, in Table 2, the choice of g
in N. The second column in each table indicates the coefficient of the relevant monomial
in each term of

Mf
e Me

f − MefM
ef = ∆M{e, f},

respectively. As remarked above these coefficients depend only on N, {e, f}, and g and
are computed from the definition by elementary counting. The third column in each table
indicates the coefficient of the relevant monomial in P . Notes in the fourth column of
each table refer to the following list of additional remarks regarding the coefficients of the
monomials in P and (sometimes) in ∆. As a guide to the reasoning involved, we explain
the cases A, C, D, and H in greater detail. It might help to note that

T (M; e, f, a) = y2
aB(a)2 − 2yaB(a)C(a)D(a) + C(a)2D(a)2,

and that monomials with coefficients 1, 2 or 4 occur within the terms y2
aB(a)2 and

C(a)2D(a)2.

• In general, when the coefficient in the third column is zero there is no possible
location for an element a ∈ E(M) such that the monomial occurs in T (M; e, f, a).

A. With N isomorphic to II in Figure 1 we take e = 1 and f = 2, and consider the
coefficient of the monomial y2

3y
2
4 in ∆ and in P . This monomial occurs with coefficient 1

in Mf
e Me

f , and with coefficient 0 in MefM
ef .

The monomial occurs in T (M; 1, 2, a) in the term y2
aB(a)2 when a = 3 or a = 4, and in

the term C(a)2D(a)2 when {a} is one of {1, 3}∩ {2, 4} or {1, 4}∩ {2, 3}. (Either of these
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Figure 3: The six–element rank–three simple matroids.
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last two sets might be empty instead, however. Since M is simple, these intersections
have at most one element.)

B. The monomial occurs with coefficient 2 in the term y2
3B(3)2 of T (M; 1, 2, 3).

C. With N isomorphic to III in Figure 2 we take e = 1 and f = 3 and g = 2, and
consider the coefficient of the monomial y2

2y4y5 in ∆ and in P . Writing ijk for the triple
{i, j, k}, the pairs contributing to the coefficient of this monomial in ∆ are (124, 235) and
(125, 235) from Mf

e × Me
f , and (123, 245) from Mef × Mef .

The monomial occurs with coefficient 2 in the term y2
2B(2)2 of T (M; 1, 3, 2). If {1, 2}∩

{3, 4} = {a} then the monomial also occurs with coefficient 2 in the term C(a)2D(a)2

of T (M; 1, 3, a). (The set {1, 2} ∩ {3, 4} might be empty instead, however. Since M is
simple, this intersection has at most one element.)

D. With N isomorphic to IV in Figure 3 we take e = 1 and f = 2, and consider the
coefficient of the monomial y3y4y5y6 in ∆ and in P . The pairs contributing to the coeffi-
cient of this monomial in ∆ are (134, 256) and (156, 234) from Mf

e × Me
f , and (123, 456),

(124, 356), (125, 346), and (126, 345) from Mef × Mef .
This monomial occurs in the term −2yaB(a)C(a)D(a) of T (M; 1, 2, a) for each a ∈

{3, 4, 5, 6}, for a total contribution of −2y3y4y5y6 to P . (That it occurs nowhere else in P
can be verified by considering where in M the element a must be so that y3y4y4y6 occurs
with nonzero coefficient in T (M; 1, 2, a).)

E. This occurs in the term −2yaB(a)C(a)D(a) of T (M; 1, 4, a) for a = 2 and a = 3.
F. This occurs in the term −2y3B(3)C(3)D(3) of T (M; 4, 5, 3).
G. This occurs in the term −2y6B(6)C(6)D(6) of T (M; 1, 2, 6).
H. With N isomorphic to VII in Figure 3 we take e = 1 and f = 2, and consider

the coefficient of the monomial y3y4y5y6 in ∆ and in P . The pairs contributing to the
coefficient of this monomial in ∆ are (135, 246), (136, 245), (145, 236), (146, 235), and
(156, 234) from Mf

e ×Me
f , and (123, 456), (124, 356), (125, 346), and (126, 345) from Mef ×

Mef .
If {1, 3} ∩ {2, 5} = {a} then the monomial occurs with coefficient 4 in the term

C(a)2D(a)2 of T (M; 1, 2, a). If the above intersection is empty then the monomial does
not occur in P . (This claim can be verified by considering where in M the element a must
be so that y3y4y4y6 occurs with nonzero coefficient in T (M; 1, 2, a).)

These remarks conclude the explanation of the various coefficients of ∆M{e, f} and
P (M; e, f), completing the proof that

∆M{e, f} � P (M; e, f). �

Proof of Theorem 1.1. As seen in Section 2, we may assume that M is simple. Since
P (M; e, f ;y) is a positive sum of squares it follows that P (M; e, f ;y) ≥ 0 for all y ∈
R

E(M). Since ∆M{e, f}(y) � P (M; e, f ;y) by Proposition 4.1 it follows that

∆M{e, f}(y) ≥ P (M; e, f ;y) ≥ 0

for all y > 0. Therefore, M is Rayleigh. �
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