A Note on the Number of Hamiltonian Paths in Strong Tournaments

Arthur H. Busch

Department of Mathematics Lehigh University, Bethlehem PA 18105 ahb205@lehigh.edu

Submitted: Sep 20, 2005; Accepted: Jan 18, 2006; Published: Feb 1, 2006 Mathematics Subject Classifications: 05C20, 05C38

Abstract

We prove that the minimum number of distinct hamiltonian paths in a strong tournament of order n is $5^{\frac{n-1}{3}}$. A known construction shows this number is best possible when $n \equiv 1 \mod 3$ and gives similar minimal values for n congruent to 0 and 2 modulo 3.

A tournament T = (V, A) is an oriented complete graph. Let $h_p(T)$ be the number of distinct hamiltonian paths in T (i.e., directed paths that include every vertex of V). It is well known that $h_P(T) = 1$ if and only if T is transitive, and Rédei [3] showed that $h_p(T)$ is always odd. More generally, if T is reducible (i.e., not strongly connected), then there exists a set $A \subset V$ such that every vertex of A dominates every vertex of $V \setminus A$. If we denote the subtournament induced on a set S as T[S], then it is easy to see that $h_p(T) = h_p(T[A]) \cdot h_p(T[V \setminus A])$. Clearly, this process can be repeated to obtain $h_p(T) = h_p(T[A_1]) \cdot h_p(T[A_2]) \cdots h_p(T[A_t])$ where $T[A_1], \ldots, T[A_t]$ are the strong components of T. As a result, we generally consider $h_p(T)$ for strong tournaments T. In particular, we wish to find the minimal value of $h_p(T)$ as T ranges over all strong tournaments of order n. Moon [1] bounded this value above and below with the following result.

Theorem (Moon [1]). Let $h_p(n)$ be the minimum number of distinct hamiltonian paths in a strong tournament of order $n \geq 3$. Then

$$\alpha^{n-1} \le h_p(n) \le \begin{cases} 3 \cdot \beta^{n-3} \approx 1.026 \cdot \beta^{n-1} & \text{for } n \equiv 0 \mod 3\\ \beta^{n-1} & \text{for } n \equiv 1 \mod 3\\ 9 \cdot \beta^{n-5} \approx 1.053 \cdot \beta^{n-1} & \text{for } n \equiv 2 \mod 3 \end{cases}$$

where $\alpha = \sqrt[4]{6} \approx 1.565$ and $\beta = \sqrt[3]{5} \approx 1.710.$

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #N3

This lower bound was used by Thomassen [2] to establish a lower bound for the number of hamiltonian cycles in 2-connected tournaments.

Theorem (Thomassen [2]). Every 2-connected tournament of order n has at least $\alpha^{(\frac{n}{32}-1)}$ distinct hamiltonian cycles.

We shall prove that the upper bound for $h_p(n)$ by Moon is, in fact, best possible, and consequently improve the lower bound on hamiltonian cycles in 2-connected tournaments found by Thomassen.

We will call a tournament T nearly transitive when V(T) can be ordered v_1, v_2, \ldots, v_n such that $v_n \to v_1$ and all other arcs are of the form $v_i \to v_j$ with i < j. In other words, reversing the arc $v_n \to v_1$ gives the transitive tournament of order n. As noted by Moon [1], there is a bijection between partitions of $V \setminus \{v_1, v_n\}$ and hamiltonian paths that include the arc $v_n \to v_1$, and there is a unique hamiltonian path of T that avoids this arc. Hence, there are $2^{n-2} + 1$ distinct hamiltonian paths in a nearly transitive tournament of order n.

Lemma 1. Let T be a strong tournament of order $n \ge 5$. Then, either T is nearly transitive, or there exist sets $A \subset V$ and $B \subset V$ such that

- $|A| \ge 3 \text{ and } |B| \ge 3.$
- T[A] and T[B] are both strong tournaments.
- $|A \cap B| = 1$ and $A \cup B = V$.

Proof. First, assume that T is 2-connected. Choose vertices $C = \{x_0, x_1, x_2\}$ such that T[C] is strong. Since T is 2-connected, every vertex of T has at least two in-neighbors and at least two out-neighbors. As each vertex x_i has a single in- and out-neighbor on the cycle C, we conclude that each x_i beats some vertex in $V \setminus C$ and is beaten by a vertex in $V \setminus C$. If T - C is strong, then A = C and $B = V \setminus \{x_0, x_1\}$ satisfy the lemma. Otherwise, let W_1 (resp. W_t) be the set of vertices in the initial (resp. terminal) strong component of T - C. As T is 2-connected, at least two vertices of C have in-neighbors in W_t , and at least two vertices of C have out-neighbors in W_1 . Thus, at least one vertex of C has both in-neighbors in W_t and out-neighbors in W_1 . Without loss of generality, let this vertex be x_0 . Then C and $V \setminus \{x_1, x_2\}$ satisfy the lemma.

Next, assume that T contains a vertex v such that T - v is not strong and that no sets A and B satisfy the lemma. Let t be the number of strong components of T - vand let W_i be the set of vertices in the i^{th} strong component. If $|W_1| \ge 3$, then choose a vertex $w \in W_1$ such that $v \to w$. Then $A = W_1$ and $B = \bigcup_{i=2}^t W_i \cup \{v, w\}$ satisfy the lemma. Similarly, if $|W_t| \ge 3$, then $A = \bigcup_{i=1}^{t-1} W_i \cup \{v, w\}$ and $B = W_t$ satisfy the lemma for any $w \in W_t$ such that $w \to v$ in T. Hence, since there does not exist a strong tournament on two vertices, we can assume that $W_1 = \{w_1\}$ and $W_t = \{w_t\}$ with $v \to w_1$ and $w_t \to v$. Now, let $W = \bigcup_{i=2}^{t-1} W_i$. If T[W] contains a cyclic triple, let $A = \{u_1, u_2, u_3\} \subseteq W$ with T[A] cyclic. In this case A and $B = V \setminus \{u_2, u_3\}$ are sets which satisfy the lemma. So we can assume that T[W] and hence T - v are both transitive. Finally, let $W^- = W \cap N^-(v)$ and $W^+ = W \cap N^+(v)$. If $W^+ \neq \emptyset$ and $W^- \neq \emptyset$, then $A = W^- \cup \{w_1, v\}$ and $B = W^+ \cup \{w_t, v\}$ satisfy the lemma. Otherwise, either $W^+ = \emptyset$ or $W^- = \emptyset$. If $W^+ = \emptyset$, then $N^+(v) = \{w_1\}$ and reversing the arc vw_1 gives a transitive tournament of order n, and if $W^- = \emptyset$, $N^-(v) = \{w_t\}$ and a transitive tournament of order n is obtained by reversing the arc $w_t v$. In both cases, this implies that T is nearly transitive.

Our next lemma is probably widely known. The proof is an easy inductive extension of the well known fact that in a tournament, every vertex v not on a given path P can be inserted into P. We include the proof for completeness.

Lemma 2. Let $P = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ and $Q = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_m$ be vertex disjoint paths in a tournament T. Then there exists a path R in T such that

- $V(R) = V(P) \cup V(Q)$
- For all $1 \le i < j \le k$, v_i precedes v_j on R
- For all $1 \le i < j \le m$, u_i precedes u_j on R.

Proof. Note that we allow the special case where m = 0; in this case the path Q is a path on 0 vertices, and R = P satisfies the lemma trivially.

The remainder of the proof is by induction on m. For m = 1, let i be the minimal index such that $u_1 \to v_i$. If no such i exists then $R = v_1 \to \cdots \to v_k \to u_1$. If i = 1, then $R = u_1 \to v_1 \to \cdots \to v_k$. In all other cases, $R = v_1 \to \cdots \to v_{i-1} \to u_1 \to v_i \to \cdots \to v_k$. So we assume the result for all paths Q' of order at most m-1. Let $Q' = u_1u_2\cdots u_{m-1}$ and apply the induction hypothesis using the paths P and Q' to obtain a path R' satisfying the lemma. Next, we repeat the above argument with the portion of R' beginning at u_{m-1} and the vertex u_m .

Theorem 1. Let $h_p(n)$ be the minimum number of distinct hamiltonian paths in a strong tournament of order n. Then

$$h_p(n) \ge \begin{cases} 3 \cdot \beta^{n-3} \approx 1.026 \cdot \beta^{n-1} & \text{for } n \equiv 0 \mod 3\\ \beta^{n-1} & \text{for } n \equiv 1 \mod 3\\ 9 \cdot \beta^{n-5} \approx 1.053 \cdot \beta^{n-1} & \text{for } n \equiv 2 \mod 3 \end{cases}$$

where $\beta = \sqrt[3]{5} \approx 1.710$.

Proof. The proof is by induction. The result is easily verified for n = 3 and n = 4, and as observed by Thomassen [2], $h_p(5) = 9$. So assume the result for all tournaments of order at most n - 1 and let T be a strong tournament of order $n \ge 6$.

As T is strong, by Lemma 1 there are two possibilities. If T is a nearly transitive tournament. Then $h_p(T) = 2^{n-2} + 1$, and for $n \ge 6$, this value exceeds $9 \cdot \beta^{n-5}$. Otherwise, there exist sets A and B such that T[A] and T[B] are strong tournaments with $|A| = a \ge 3$,

 $|B| = b \ge 3$, $A \cup B = V$ and $|A \cap B| = 1$. Let $\{v\} = A \cap B$, and let $H_A = P_1 v P_2$ be a hamiltonian path of T[A], and $H_B = Q_1 v Q_2$ a hamiltonian path of T[B]. We apply Lemma 2 twice, and obtain paths R_1 and R_2 such that $V(R_i) = V(P_i) \cup V(Q_i)$, and the vertices of P_i (resp. Q_i) occur in the same order on R_i as they do on P_i (resp. Q_i). Now $H = R_1 v R_2$ is a hamiltonian path of T. Furthermore, distinct hamiltonian paths of T[A](resp. T[B]) give distinct hamiltonian paths of T. Hence by the induction hypothesis,

$$h_p(T) \ge h_p(T[A])h_p(T[B]) \ge \beta^{a-1}\beta^{b-1} \ge \beta^{n-1}$$

Furthermore, strict inequality holds unless $a \equiv 1 \mod 3$ and $b \equiv 1 \mod 3$, which implies that $n \equiv 1 \mod 3$ as well. When $n \equiv 2 \mod 3$, there are two cases, $a \equiv b \equiv 0 \mod 3$ and without loss of generality $a \equiv 2 \mod 3$ and $b \equiv 1 \mod 3$. Using the same induction arguments above, both cases give $h_p(T) \ge 9 \cdot \beta^{n-5}$. Finally, in the case that $n \equiv 0 \mod 3$, we again have two possibilities, $a \equiv b \equiv 2 \mod 3$ and without loss of generality $a \equiv 1 \mod 3$ and $b \equiv 0 \mod 3$. In this case we find that $h_p(T) \ge \min(81 \cdot \beta^{n-9}, 3 \cdot \beta^{n-3}) = 3 \cdot \beta^{n-3}$.

The construction utilized by Moon [1] in Theorem gives the identical upper bound for $h_p(n)$ and equality is established.

Corollary 1. Let $h_p(n)$ be the minimum number of distinct hamiltonian paths in a strong tournament of order n. Then

$$h_p(n) = \begin{cases} 3 \cdot \beta^{n-3} \approx 1.026 \cdot \beta^{n-1} & \text{for } n \equiv 0 \mod 3\\ \beta^{n-1} & \text{for } n \equiv 1 \mod 3\\ 9 \cdot \beta^{n-5} \approx 1.053 \cdot \beta^{n-1} & \text{for } n \equiv 2 \mod 3 \end{cases}$$

where $\beta = \sqrt[3]{5} \approx 1.710$.

Additionally, this result improves Thomassen's bound on hamiltonian cycles in 2connected tournaments.

Corollary 2. Every 2-connected tournament of order n has at least $\beta^{\frac{n}{32}-1}$ distinct hamiltonian cycles, with $\beta = \sqrt[3]{5} \approx 1.710$.

References

- J. W. Moon, The Minimum number of spanning paths in a strong tournament, Publ. Math. Debrecen 19 (1972),101-104.
- [2] C. Thomassen, On the number of Hamiltonian cycles in tournaments, Discrete Math. 31 (1980), no. 3, 315-323.
- [3] L. Redei, *Ein kombinatorischer Satz*, Acta Litt. Szeged 7 (1934), 39-43.