A Note on the Number of Hamiltonian Paths in Strong Tournaments

Arthur H. Busch
Department of Mathematics
Lehigh University, Bethlehem PA 18105
ahb205@lehigh.edu

Submitted: Sep 20, 2005; Accepted: Jan 18, 2006; Published: Feb 1, 2006
Mathematics Subject Classifications: 05C20, 05C38

Abstract

We prove that the minimum number of distinct hamiltonian paths in a strong tournament of order n is $5^{\frac{n-1}{3}}$. A known construction shows this number is best possible when $n \equiv 1 \bmod 3$ and gives similar minimal values for n congruent to 0 and 2 modulo 3 .

A tournament $T=(V, A)$ is an oriented complete graph. Let $h_{p}(T)$ be the number of distinct hamiltonian paths in T (i.e., directed paths that include every vertex of V). It is well known that $h_{P}(T)=1$ if and only if T is transitive, and Rédei [3] showed that $h_{p}(T)$ is always odd. More generally, if T is reducible (i.e., not strongly connected), then there exists a set $A \subset V$ such that every vertex of A dominates every vertex of $V \backslash A$. If we denote the subtournament induced on a set S as $T[S]$, then it is easy to see that $h_{p}(T)=h_{p}(T[A]) \cdot h_{p}(T[V \backslash A])$. Clearly, this process can be repeated to obtain $h_{p}(T)=h_{p}\left(T\left[A_{1}\right]\right) \cdot h_{p}\left(T\left[A_{2}\right]\right) \cdots h_{p}\left(T\left[A_{t}\right]\right)$ where $T\left[A_{1}\right], \ldots, T\left[A_{t}\right]$ are the strong components of T. As a result, we generally consider $h_{p}(T)$ for strong tournaments T. In particular, we wish to find the minimal value of $h_{p}(T)$ as T ranges over all strong tournaments of order n. Moon [1] bounded this value above and below with the following result.

Theorem (Moon [1]). Let $h_{p}(n)$ be the minimum number of distinct hamiltonian paths in a strong tournament of order $n \geq 3$. Then
$\alpha^{n-1} \leq h_{p}(n) \leq \begin{cases}3 \cdot \beta^{n-3} \approx 1.026 \cdot \beta^{n-1} & \text { for } n \equiv 0 \bmod 3 \\ \beta^{n-1} & \text { for } n \equiv 1 \bmod 3 \\ 9 \cdot \beta^{n-5} \approx 1.053 \cdot \beta^{n-1} & \text { for } n \equiv 2 \bmod 3\end{cases}$
where $\alpha=\sqrt[4]{6} \approx 1.565$ and $\beta=\sqrt[3]{5} \approx 1.710$.

This lower bound was used by Thomassen [2] to establish a lower bound for the number of hamiltonian cycles in 2-connected tournaments.

Theorem (Thomassen [2]). Every 2-connected tournament of order n has at least $\alpha^{\left(\frac{n}{32}-1\right)}$ distinct hamiltonian cycles.

We shall prove that the upper bound for $h_{p}(n)$ by Moon is, in fact, best possible, and consequently improve the lower bound on hamiltonian cycles in 2-connected tournaments found by Thomassen.

We will call a tournament T nearly transitive when $V(T)$ can be ordered $v_{1}, v_{2}, \ldots, v_{n}$ such that $v_{n} \rightarrow v_{1}$ and all other arcs are of the form $v_{i} \rightarrow v_{j}$ with $i<j$. In other words, reversing the arc $v_{n} \rightarrow v_{1}$ gives the transitive tournament of order n. As noted by Moon [1], there is a bijection between partitions of $V \backslash\left\{v_{1}, v_{n}\right\}$ and hamiltonian paths that include the arc $v_{n} \rightarrow v_{1}$, and there is a unique hamiltonian path of T that avoids this arc. Hence, there are $2^{n-2}+1$ distinct hamiltonian paths in a nearly transitive tournament of order n.

Lemma 1. Let T be a strong tournament of order $n \geq 5$. Then, either T is nearly transitive, or there exist sets $A \subset V$ and $B \subset V$ such that

- $|A| \geq 3$ and $|B| \geq 3$.
- $T[A]$ and $T[B]$ are both strong tournaments.
- $|A \cap B|=1$ and $A \cup B=V$.

Proof. First, assume that T is 2-connected. Choose vertices $C=\left\{x_{0}, x_{1}, x_{2}\right\}$ such that $T[C]$ is strong. Since T is 2-connected, every vertex of T has at least two in-neighbors and at least two out-neighbors. As each vertex x_{i} has a single in- and out-neighbor on the cycle C, we conclude that each x_{i} beats some vertex in $V \backslash C$ and is beaten by a vertex in $V \backslash C$. If $T-C$ is strong, then $A=C$ and $B=V \backslash\left\{x_{0}, x_{1}\right\}$ satisfy the lemma. Otherwise, let $W_{1}\left(\right.$ resp. $\left.W_{t}\right)$ be the set of vertices in the initial (resp. terminal) strong component of $T-C$. As T is 2-connected, at least two vertices of C have in-neighbors in W_{t}, and at least two vertices of C have out-neighbors in W_{1}. Thus, at least one vertex of C has both in-neighbors in W_{t} and out-neighbors in W_{1}. Without loss of generality, let this vertex be x_{0}. Then C and $V \backslash\left\{x_{1}, x_{2}\right\}$ satisfy the lemma.

Next, assume that T contains a vertex v such that $T-v$ is not strong and that no sets A and B satisfy the lemma. Let t be the number of strong components of $T-v$ and let W_{i} be the set of vertices in the $i^{\text {th }}$ strong component. If $\left|W_{1}\right| \geq 3$, then choose a vertex $w \in W_{1}$ such that $v \rightarrow w$. Then $A=W_{1}$ and $B=\bigcup_{i=2}^{t} W_{i} \cup\{v, w\}$ satisfy the lemma. Similarly, if $\left|W_{t}\right| \geq 3$, then $A=\bigcup_{i=1}^{t-1} W_{i} \cup\{v, w\}$ and $B=W_{t}$ satisfy the lemma for any $w \in W_{t}$ such that $w \rightarrow v$ in T. Hence, since there does not exist a strong tournament on two vertices, we can assume that $W_{1}=\left\{w_{1}\right\}$ and $W_{t}=\left\{w_{t}\right\}$ with $v \rightarrow w_{1}$ and $w_{t} \rightarrow v$. Now, let $W=\bigcup_{i=2}^{t-1} W_{i}$. If $T[W]$ contains a cyclic triple, let $A=\left\{u_{1}, u_{2}, u_{3}\right\} \subseteq W$ with $T[A]$ cyclic. In this case A and $B=V \backslash\left\{u_{2}, u_{3}\right\}$ are sets which satisfy the lemma. So we can assume that $T[W]$ and hence $T-v$ are both transitive.

Finally, let $W^{-}=W \cap N^{-}(v)$ and $W^{+}=W \cap N^{+}(v)$. If $W^{+} \neq \emptyset$ and $W^{-} \neq \emptyset$, then $A=W^{-} \cup\left\{w_{1}, v\right\}$ and $B=W^{+} \cup\left\{w_{t}, v\right\}$ satisfy the lemma. Otherwise, either $W^{+}=\emptyset$ or $W^{-}=\emptyset$. If $W^{+}=\emptyset$, then $N^{+}(v)=\left\{w_{1}\right\}$ and reversing the arc $v w_{1}$ gives a transitive tournament of order n, and if $W^{-}=\emptyset, N^{-}(v)=\left\{w_{t}\right\}$ and a transitive tournament of order n is obtained by reversing the arc $w_{t} v$. In both cases, this implies that T is nearly transitive.

Our next lemma is probably widely known. The proof is an easy inductive extension of the well known fact that in a tournament, every vertex v not on a given path P can be inserted into P. We include the proof for completeness.

Lemma 2. Let $P=v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}$ and $Q=u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{m}$ be vertex disjoint paths in a tournament T. Then there exists a path R in T such that

- $V(R)=V(P) \cup V(Q)$
- For all $1 \leq i<j \leq k$, v_{i} precedes v_{j} on R
- For all $1 \leq i<j \leq m$, u_{i} precedes u_{j} on R.

Proof. Note that we allow the special case where $m=0$; in this case the path Q is a path on 0 vertices, and $R=P$ satisfies the lemma trivially.

The remainder of the proof is by induction on m. For $m=1$, let i be the minimal index such that $u_{1} \rightarrow v_{i}$. If no such i exists then $R=v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow u_{1}$. If $i=1$, then $R=u_{1} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$. In all other cases, $R=v_{1} \rightarrow \cdots \rightarrow v_{i-1} \rightarrow u_{1} \rightarrow v_{i} \rightarrow \cdots \rightarrow v_{k}$. So we assume the result for all paths Q^{\prime} of order at most $m-1$. Let $Q^{\prime}=u_{1} u_{2} \cdots u_{m-1}$ and apply the induction hypothesis using the paths P and Q^{\prime} to obtain a path R^{\prime} satisfying the lemma. Next, we repeat the above argument with the portion of R^{\prime} beginning at u_{m-1} and the vertex u_{m}.

Theorem 1. Let $h_{p}(n)$ be the minimum number of distinct hamiltonian paths in a strong tournament of order n. Then
$h_{p}(n) \geq \begin{cases}3 \cdot \beta^{n-3} \approx 1.026 \cdot \beta^{n-1} & \text { for } n \equiv 0 \bmod 3 \\ \beta^{n-1} & \text { for } n \equiv 1 \bmod 3 \\ 9 \cdot \beta^{n-5} \approx 1.053 \cdot \beta^{n-1} & \text { for } n \equiv 2 \bmod 3\end{cases}$
where $\beta=\sqrt[3]{5} \approx 1.710$.
Proof. The proof is by induction. The result is easily verified for $n=3$ and $n=4$, and as observed by Thomassen [2], $h_{p}(5)=9$. So assume the result for all tournaments of order at most $n-1$ and let T be a strong tournament of order $n \geq 6$.

As T is strong, by Lemma 1 there are two possibilities. If T is a nearly transitive tournament. Then $h_{p}(T)=2^{n-2}+1$, and for $n \geq 6$, this value exceeds $9 \cdot \beta^{n-5}$. Otherwise, there exist sets A and B such that $T[A]$ and $T[B]$ are strong tournaments with $|A|=a \geq 3$,
$|B|=b \geq 3, A \cup B=V$ and $|A \cap B|=1$. Let $\{v\}=A \cap B$, and let $H_{A}=P_{1} v P_{2}$ be a hamiltonian path of $T[A]$, and $H_{B}=Q_{1} v Q_{2}$ a hamiltonian path of $T[B]$. We apply Lemma 2 twice, and obtain paths R_{1} and R_{2} such that $V\left(R_{i}\right)=V\left(P_{i}\right) \cup V\left(Q_{i}\right)$, and the vertices of P_{i} (resp. Q_{i}) occur in the same order on R_{i} as they do on P_{i} (resp. Q_{i}). Now $H=R_{1} v R_{2}$ is a hamiltonian path of T. Furthermore, distinct hamiltonian paths of $T[A]$ (resp. $T[B]$) give distinct hamiltonian paths of T. Hence by the induction hypothesis,

$$
h_{p}(T) \geq h_{p}(T[A]) h_{p}(T[B]) \geq \beta^{a-1} \beta^{b-1} \geq \beta^{n-1}
$$

Furthermore, strict inequality holds unless $a \equiv 1 \bmod 3$ and $b \equiv 1 \bmod 3$, which implies that $n \equiv 1 \bmod 3$ as well. When $n \equiv 2 \bmod 3$, there are two cases, $a \equiv b \equiv 0$ $\bmod 3$ and without loss of generality $a \equiv 2 \bmod 3$ and $b \equiv 1 \bmod 3$. Using the same induction arguments above, both cases give $h_{p}(T) \geq 9 \cdot \beta^{n-5}$. Finally, in the case that $n \equiv 0$ $\bmod 3$, we again have two possibilities, $a \equiv b \equiv 2 \bmod 3$ and without loss of generality $a \equiv 1 \bmod 3$ and $b \equiv 0 \bmod 3$. In this case we find that $h_{p}(T) \geq \min \left(81 \cdot \beta^{n-9}, 3 \cdot \beta^{n-3}\right)=$ $3 \cdot \beta^{n-3}$.

The construction utilized by Moon [1] in Theorem gives the identical upper bound for $h_{p}(n)$ and equality is established.

Corollary 1. Let $h_{p}(n)$ be the minimum number of distinct hamiltonian paths in a strong tournament of order n. Then
$h_{p}(n)= \begin{cases}3 \cdot \beta^{n-3} \approx 1.026 \cdot \beta^{n-1} & \text { for } n \equiv 0 \bmod 3 \\ \beta^{n-1} & \text { for } n \equiv 1 \bmod 3 \\ 9 \cdot \beta^{n-5} \approx 1.053 \cdot \beta^{n-1} & \text { for } n \equiv 2 \bmod 3\end{cases}$
where $\beta=\sqrt[3]{5} \approx 1.710$.
Additionally, this result improves Thomassen's bound on hamiltonian cycles in 2connected tournaments.

Corollary 2. Every 2-connected tournament of order n has at least $\beta^{\frac{n}{32}-1}$ distinct hamiltonian cycles, with $\beta=\sqrt[3]{5} \approx 1.710$.

References

[1] J. W. Moon, The Minimum number of spanning paths in a strong tournament, Publ. Math. Debrecen 19 (1972),101-104.
[2] C. Thomassen, On the number of Hamiltonian cycles in tournaments, Discrete Math. 31 (1980), no. 3, 315-323.
[3] L. Redei, Ein kombinatorischer Satz, Acta Litt. Szeged 7 (1934), 39-43.

