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Abstract

A graph G is said to be Cl-saturated if G contains no cycle of length l, but for
any edge in the complement of G the graph G + e does contain a cycle of length l.
The minimum number of edges of a Cl-saturated graph was shown by Barefoot et
al. to be between n + c1

n
l and n + c2

n
l for some positive constants c1 and c2. This

confirmed a conjecture of Bollobás. Here we improve the value of c2 for l ≥ 8.
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1 Introduction

We let G = (V, E) be a graph on |V | = n vertices and |E| = m edges. We denote the
cycle on l vertices by Cl, and the complete graph on t vertices by Kt. The graph G is said
to be F -saturated if G contains no copy of F as a subgraph, but for any edge e in the
complement of G, the graph G+(e) contains a copy of F , where G+(e) denotes the graph
(V, E ∪ e). For a subgraph F we will denote the minimum size of an F -saturated graph
by sat(n, F ). In 1964 Erdős, Hajnal and Moon [10] determined the minimum number of
edges in a graph that is Kt-saturated. This number, sat(n, Kt), is (t − 2)(n − 1) − (

t−2
2

)
and arises from the graph Kt−2 + K

n−t+2
, where + denotes the join. Determining the

exact value of this function for a given graph F has been quite difficult, and is known for
relatively few graphs. Kászonyi and Tuza in [12] proved the best known general upper
bound for sat(n, F ).

Cycle-saturated graphs of minimum size have been considered by various authors. The
case l = 3 is covered by the result of Erdős, Hajnal and Moon [10]. The case l = 4 was
first considered by L.T. Ollmann [14] where he proved that sat(n, C4) = b3n−5

2
c for n ≥ 5.

Later, Z. Tuza [16] gave a shortened proof of this result. Recently, the value of sat(n, C5)
was announced by Y. Chen, [6]. In 1972 Bondy [5] showed that sat(n, Cn) ≥ d3n

2
e. Later

results by various authors [7, 8, 9] showed that sat(n, Cn) = b3n+1
2

c for n ≥ 53. No other
exact values are known.

In 1996, Barefoot, Clark, Entringer, Porter, Székely and Tuza [1] obtained bounds
for sat(n, Cl) for all l 6= 8 or 10 and n sufficiently large. They showed that n + c1

n
l
≤

sat(n, Cl) ≤ n + c2
n
l

for some positive constants c1 and c2. This confirmed a conjecture
of Bollobás from 1978. In particular, for l odd and l ≥ 9 they showed sat(n, Cl) ≤ n

(
1 +

6
l−3

)
+O(l2). For l = 12 they showed that sat(n, C12) ≤ n29

22
+ 99

22
. For l ≥ 14, l ≡ 0 mod 2

they showed that sat(n, Cl) ≤ n
(
1 + 4

l−2

)
+ O(l3). Finally, for l ≥ 20, l ≡ 4 mod 8 they

showed that sat(n, Cl) ≤ n
(

5
4

+ 3
4l−4

)
+ l

2
. In terms of a lower bound, they showed for

l ≥ 5 that sat(n, Cl) ≥ n
(
1 + 1

2l+8

)
.

We will provide an upper bound for the function sat(n, Cl) that improves the upper
bound given in [1] for most values of l. We improve the upper bound via several construc-
tions. In our first construction we consider l even and l ≥ 10 (thus giving an upper bound
for l = 10), and in the second construction we consider l odd and l ≥ 17. Finally we
supplement these results by a construction valid for all l ≥ 5 which results in new upper
bounds for sat(n, Cl) when l = 8, 9, 11, 13 and 15. Table 1 summarizes all best known
results.

For any undefined terms we refer the reader to [3].

2 The Generalized Wheel Construction

2.0.1 The Even Case: W (n, 2k + 2)

The figure below will help illustrate this graph which we refer to as the Generalized Wheel
(or just the wheel for short) and adopt the terminology of the bicycle wheel in describing
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Cl-saturated graphs of minimum size

l sat(n, Cl) n ≥ Reference

3 = n − 1 3 [10]

4 b3n−5
2

c 5 [14, 16]

5 d10n−10
7

e 21 [6]

6 ≤ 3n
2

11 [1]

7 ≤ 7n+12
5

10 [1]

8,9,11,13,15 ≤ 3n
2

+ l2

2
2l Theorem 3

≥ 10 and ≡ 0 mod 2 ≤ (
1 + 2

l−2

)
n + 5l2

4
3l Theorem 1

≥ 17 and ≡ 1 mod 2 ≤ (
1 + 2

l−3

)
n + 5l2

4
7l Theorem 2

n b3n+1
2

c 20 [7, 8, 9, 13]

Table 1: A Summary of Results for sat(n, Cl)

the graph.
To construct a C2k+2-saturated graph W (n, 2k+2) (k ≥ 4), we proceed as follows. We

begin with a set of k vertices, {h1, h2, . . . hk}, that form a clique, and refer to this clique
as the hub. Surrounding the hub exists a cycle, R, of length sk for some s ≥ 4. We will
refer to this cycle as the rim. Each kth vertex of the rim will be joined by an edge, called
a spoke, to the hub. Thus the number of spokes is equal to s. The vertex on the rim
that is adjacent to a spoke will be referred to as a spoke-nut. We label the vertices of
the rim as follows, R = {n1,α, r1,1, r1,2, . . . r1,k−1, n2,β, r2,1, r2,2, . . . ns,ω, rs,1, rs,2, . . . rs,k−1}.
Here we have listed the vertices in a clockwise fashion with spoke-nut vertices denoted by
ni,κ, and the remaining vertices by rp,q. For vertices denoted ni,κ the subscript i refers to
its placement on the wheel and the subscript κ denotes the subscript of the vertex in the
hub to which it is connected - i.e. ni,κ ∼ hκ. For vertices denoted rp,q, the subscript p
denotes the spoke-nut, np,κ, preceding it and the subscript q the distance along the rim
from np,κ. We place the following restriction on the spokes of the wheel, indicating this
through the subscripts of the spoke-nuts.

Rule 1 Given four consecutive spoke-nut vertices ni,α, ni+1,β, ni+2,κ, ni+3,δ we require
that α, β, κ, δ are all distinct.

We will call spokes si, si+1 consecutive if si has an end-vertex ni,α and si+1 has an
end-vertex ni+1,β.

If k ≥ 7, Rule 1 may be observed regardless of the number of spokes used, and thus
the graph just described has n ≡ 0 mod k vertices. When n ≡ a mod k we make the
following adjustment to the graph just described. We select a set of a vertices from the
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Figure 1: The Even Generalized Wheel - Cycle-Saturated Graph

hub and to each of these vertices, {h1, h2, . . . ha}, in the hub we attach a pendant edge,
referred to as a flange, with end vertices {f1, f2, . . . fa}. Thus hifi is an edge for all
i, 0 ≤ i ≤ a. We will refer to these vertices as flange vertices. (Thus, when a = 0 no
adjustment is made.)

If 4 ≤ k ≤ 6, Rule 1 may force the number of spokes to be a multiple of four, and
thus the number of vertices not in the hub is a multiple of 4k, and thus the graph just
described has n − k ≡ 0 mod 4k vertices on the rim. If n − k ≡ a mod 4k we make
the following adjustment to the graph. We evenly distribute the a vertices into k flange
sets, F1, F2, . . . , Fk, of size a1, a2, . . . , ak and on each set, Fi, we construct a clique and
completely join it to the vertex in the hub labeled hi. See Figure 1.

We now show that this graph is C2k+2-saturated.

Lemma 1 For k ≥ 4 the graph W (n, 2k + 2) contains no cycle of length l = 2k + 2.

Proof: First note that a flange vertex may not lie on a cycle of length l as the corre-
sponding hub vertex is a cut-vertex and no flange set contains more than k vertices. As
s ≥ 4, there is no cycle of length l comprised of edges solely from the rim. This, together
with the fact that the hub contains only k vertices, implies that if such a cycle exists, it
must use a spoke. As the set of spokes form an edge-cut of the graph W (n, 2k + 2), such
a cycle must in fact use an even number of spokes. If the number of spokes used is four
or more then the number of vertices involved in any cycle will be strictly greater than l.
To see this note that upon using four, or more, spokes we use a corresponding number of
spoke-nuts. The number of vertices used along the rim between any two distinct spoke-
nuts is at least k − 1 and thus the number of vertices used from the rim in such a cycle
is at least 2k + 2 in addition to a positive number of vertices from the hub.
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Thus, the number of spokes used in such a cycle must be exactly two. If the two
spokes used are consecutive then the cycle contains k + 1 vertices from the rim and at
most k from the hub. Thus such a cycle has length at most 2k + 1 < l. If the spokes are
more than one apart then any cycle containing them must use at least 3k + 1 > l vertices
from the rim. Thus the two spokes used are exactly one apart, say si, si+2. Notice that
any cycle containing them uses exactly 2k + 1 vertices from the rim. Thus to create a
cycle of length 2k + 2 we must use only one vertex from the hub, which would imply that
the two spokes meet in a common vertex. However, in constructing W (n, 2k + 2) we have
forbidden this to occur for spokes this close. Thus no cycle of length l exists. 2

Lemma 2 For any edge e in the complement of W (n, 2k + 2) and k ≥ 4, the graph
W (n, 2k + 2) + e contains a cycle of length l = 2k + 2.

Proof: We divide the proof into the appropriate cases and in each case demonstrate the
cycle of length l. Recall that we have four types of vertices - spoke-nut, hub, rim and
flange.

1. Suppose e = ni,αnj,β; that is spoke-nut to spoke-nut (different indices).

If for nj+1,κ and ni,α the indices κ 6= α, then

Cl = ni,α

k+1︷ ︸︸ ︷
nj,βrj,1rj,2 . . . nj+1,κ

k︷ ︸︸ ︷
hκ . . . hα ni,α.

Hence, |Cl| = 2k + 2.

Otherwise, for nj+1,κ and ni,α the indices κ = α. Thus, by our construction we are
guaranteed that for nj−1,δ the indices δ 6= α and we have

Cl = ni,α

k+1︷ ︸︸ ︷
nj,βrj−1,k−1rj,k−2 . . . nj−1,δ

k︷ ︸︸ ︷
hδ . . . hα ni,α.

Again, |Cl| = 2k + 2.

2. Suppose e = ni,αnj,α; spoke-nut to spoke-nut (same indices). Then by our construc-
tion we are guaranteed that for nj+1,β the indices α 6= β and we have

Cl = ni,α

k+1︷ ︸︸ ︷
nj,αrj,1rj,2 . . . nj+1,β

k︷ ︸︸ ︷
hβ . . . hα ni,α.

The remaining cases are shown in the Appendix. 2

Together Lemmas 1 and 2 imply that W (n, 2k + 2) is C2k+2-saturated.
We now count the number of edges in the graph W (n, 2k + 2).
Let n ≡ a mod k. The number of edges on the rim is thus n− k − a. The number of

spokes is equal to n−k−a
k

. The number of flange vertices is a and each is adjacent to one
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vertex of the hub. Furthermore, if k is small then we have partitioned these a vertices
into flange sets of size a1, a2, . . . ak each of which induces a clique and thus Σk

i=1

(
ai

2

)
edges.

Finally, the hub contributes
(

k
2

)
edges.

Thus, when k ≥ 7 and n ≡ a mod k we have:

|E(W (n, 2k + 2))| = (n − k − a) +
n − k − a

k
+ a +

(
k

2

)
(1)

= n
(
1 +

1

k

)
+

k2 − 3k − 2

2
− a

k
. (2)

By a similar count, when 4 ≤ k ≤ 6 and n ≡ a mod 4k we have:

|E(W (n, 2k + 2))| = n
(
1 +

1

k

)
+

k2 − 3k − 2

2
− a

k
+ Σk

i=1

(
ai

2

)
. (3)

This immediately implies the following.

Theorem 1 For k ≥ 4, l = 2k + 2, and n ≥ 3l,

sat(n, Cl) ≤ n
(
1 +

2

l − 2

)
+

5l2

4
. (4)

2.0.2 The Odd Case: W (n, 2k + 3)

We proceed in a similar fashion as in the even case. The graph we now define, W (n, 2k+3),
will differ slightly from W (n, 2k + 2), however we will use the same terminology given
above.

To construct a C2k+3-saturated graph, k ≥ 7 we proceed as follows. To construct
W (n, 2k + 3) we begin by placing k + 1 vertices into the hub. These k + 1 vertices will

induce the following split graph Kk−3 + K
4
. We label the four vertices of the copy of K

4

by h1, h2, h3, h4 and the remaining vertices by h5, . . . hk+1. Surrounding the hub exists a
cycle, Ro - the rim, of length sk for some s ≥ 4. Each kth vertex of the rim will be joined
by a spoke to one of the four vertices h1, h2, h3, h4 of the hub. We will, in the same fashion
as above, label the vertices of the rim.

Surrounding the hub exists a cycle, R, of length sk for some sufficiently large s. We
will refer to this cycle as the rim. Each kth vertex of the rim will be joined by an edge,
called a spoke, to the hub. The vertex on the rim that is adjacent to a spoke will be
referred to as a spoke-nut. Thus,

R = {n1,α, r1,1, r1,2, . . . r1,k−1, n2,β, r2,1, r2,2, . . . ns,ω, rs,1, rs,2, . . . rs,k−1}.

Here we have listed the vertices in a clockwise fashion with spoke-nut vertices denoted by
ni,κ, and the remaining vertices by rp,q. For vertices denoted ni,κ the subscript i refers to
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Figure 2: The Odd Generalized Wheel - Cycle-Saturated Graph

its placement on the wheel and κ denotes the subscript of the vertex in the hub to which
it is connected, that is ni,κ ∼ hκ. For vertices denoted rp,q, the subscript p denotes the
spoke-nut, np,κ, preceding it in the clockwise orientation and q the distance along the rim
from np,κ. We place the following restriction on the spokes of the wheel, indicating this
through the subscripts of the spoke-nuts.

Rule 2: Given three consecutive spoke-nut vertices ni,α, ni+1,β, ni+2,γ we require that
α, β, γ are all distinct. Furthermore, we require that for each pair α, β where 1 ≤ α <
β ≤ 4 there exist spoke-nut vertices of the form ni,α, ni+2,β and spoke-nut vertices of the
form nj,α, nj+1,β.

Rule 2 may be observed when the number of spokes used is a multiple of four and at
least twelve. This can be done by labeling the first twelve spoke nut vertices in the fol-
lowing manner: {n1,α, n2,β, n3,γ, n4,δ, n5,α, n6,γ , n7,β, n8,δ, n9,α, n10,β , n11,δ, n12,γ}, and each
additional four spoke-nut vertices are labeled by repeating the labeling of the first four
of these vertices. The graph just described has n ≡ 0 mod 4k vertices. When n ≡ a
mod 4k we make the following adjustment to the graph just described. We select these
vertices, {h1, h2, h3, h4} in the hub, and evenly distribute the a vertices into 4 flange
sets, F1, F2, F3, F4, of size a1, a2, a3, a4 (thus ai ≤ k) and on each set, Fi, we construct a
clique and completely join it to the vertex in the hub labeled hi. (Thus when a = 0 no
adjustment is made.) See Figure 2.

We now show that this graph is C2k+3-saturated.

Lemma 3 For k ≥ 7 the graph W (n, 2k + 3) contains no cycle of length l = 2k + 3.

Proof: First note that a flange vertex may not lie on a cycle of length l as the corre-
sponding hub vertex is a cut-vertex and no flange set contains more than k vertices. As
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s ≥ 12 there is no cycle of length l comprised of edges solely from the rim. This, together
with the fact that the hub contains only k + 1 vertices, implies that if such a cycle exists
it must use a spoke. As the set of spokes form an edge-cut of the graph W (n, 2k+3), such
a cycle must in fact use an even number of spokes. If the number of spokes used is four
or more then the number of vertices involved in any cycle will be strictly greater than l.
To see this note that upon using four or more spokes we use a corresponding number of
spoke-nuts. The number of vertices used along the rim between any two spoke-nuts is at
least k − 1 and thus the number of vertices used from the rim in such a cycle is at least
2k + 2 in addition to at least two vertices from the hub. Thus l > 2k + 3.

Hence the number of spokes used in such a cycle must be two. If the two spokes used
are consecutive then the cycle contains k +1 vertices from the rim and at most k +1 from
the hub. Thus such a cycle has length at most 2k + 2 < l. If the spokes are more than
one apart then any cycle containing them must use at least 3k + 1 > l vertices from the
rim. Hence the two spokes used are exactly one apart, si, si+2. Notice that any cycle
containing them uses exactly 2k+1 vertices from the rim. Thus to create a cycle of length
2k + 3 we must use exactly two vertices from the hub. These two vertices would need
to be adjacent and both would need to be the end vertex of some spoke. However, by
our construction, no such pair of vertices exists in the hub. Thus, no cycle of length l
exists. 2

Lemma 4 For any edge e in the complement of W (n, 2k + 3) and k ≥ 7, the graph
W (n, 2k + 3) + e contains a cycle of length l = 2k + 3.

Proof: We divide the proof into the appropriate cases and in each case demonstrate the
cycle of length l. Recall that we have four types of vertices - spoke-nut, hub, rim and
flange.

1. Suppose e = ni,αnj,β; spoke-nut to Spoke-nut (different indices, that is α 6= β).

If for nj+1,γ and ni,α the indices γ 6= α, then

Cl = ni,α

k+1︷ ︸︸ ︷
nj,βrj,1rj,2 . . . nj+1,γ

k+1︷ ︸︸ ︷
hγ . . . hα ni,α.

Hence, |Cl| = 2k + 3. Otherwise, for nj+1,κ and ni,α the indices κ = α. Hence,

Cl = ni,α

k+1︷ ︸︸ ︷
nj,βrj−1,k−1rj,k−2 . . . nj−1,δ

k+1︷ ︸︸ ︷
hδ . . . hα ni,α.

Hence, |Cl| = 2k + 3.

2. Suppose e = ni,αnj,α; spoke-nut to spoke-nut (same indices). We then have

Cl = ni,α

k+1︷ ︸︸ ︷
nj,αrj,1rj,2 . . . nj+1,β

k+1︷ ︸︸ ︷
hβ . . . hα ni,α.
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The remaining cases are shown in the Appendix. 2

Together Lemmas 3 and 4 imply that W (n, 2k + 3) is C2k+3-saturated.
We now count the number of edges in the graph W (n, 2k + 3). Let n ≡ a mod 4k.

The number of edges on the rim is thus n − (k + 1) − a. The number of spokes is equal

to n−(k+1)−a
k

. The number of flange edges is equal to a + Σ4
i=1

(
ai

2

)
. Finally, the hub

contributes
(

k+1
2

) − 6 edges.
Thus,

|E(W (n, 2k + 3))| = (n − k − 1 − a) +
n − k − 1 − a

k
+ a + Σ4

i=1

(
ai

2

)
(5)

+

(
k + 1

2

)
− 6 (6)

= n
(
1 +

1

k

)
+

k2 − k − 16 − 2a

2
− a + 1

k
+ Σ4

i=1

(
ai

2

)
. (7)

This immediately implies the following.

Theorem 2 For k ≥ 7, l = 2k + 3, n ≡ a mod 4k and n ≥ 7l ≥ 13k + 1,

sat(n, Cl) ≤ n
(
1 +

1

k

)
+

k2 − k − 16 − 2a

2
− a + 1

k
+ Σ4

i=1

(
ai

2

)
(8)

≤ n
(
1 +

2

l − 3

)
+

5l2

4
. (9)

3 Another Construction

We now construct a graph, F (n, l), on n ≥ 2l vertices that is Cl-saturated for all l ≥ 5. We
begin with constructing a cycle on l+1 vertices, {c1, c2, . . . cl+1, c1}. To vertices c1, cl+1 we
join a clique on l−4 vertices, and label these vertices {h1, h2, . . . hl−4}. On the remaining
n− 2l + 3 vertices, {x1, y1, x2, y2, . . . xt, yt, xt+1}, we place a perfect, or near-perfect if this
number is odd, matching so that xiyi is an edge for all i, 1 ≤ i ≤ bn−2l+3

2
c. To complete

the construction we add all edges of the type xic1 and xicl+1. Figure 3 helps to illustrate
this.

Lemma 5 F (n, l) contains no cycle of length l ≥ 5.

Proof: First note that no vertex labeled yi is contained in a (non-trivial) cycle. If
a cycle of length l were to exist using some xi and xj with i 6= j the vertices c1 and cl+1

must also be used, hence the cycle can be at most length four. Thus at most one xi may
be used in such a cycle. If xi were used in such a cycle then the cycle must contain the
path c1xicl+1, and thus there would need to exist a path of length l− 1 connecting c1 and
cl+1. However, no such path exists and thus no xi is on a cycle of length l. It is now easy
to observe that no cycle of length l exists on the vertices {c1, . . . cl+1, h1, . . . hl−4}. 2
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Figure 3: Another Cycle-Saturated Graph

Lemma 6 For any edge e in the complement of F (n, l) and l ≥ 5, the graph F (n, l) + e
contains a cycle of length l.

Proof: We divide the proof into the appropriate cases and in each case demonstrate the
cycle of length l.

1. Suppose e = yiyj, i 6= j. Then

Cl = yi

3︷ ︸︸ ︷
yjxjcl+1

l−6︷ ︸︸ ︷
h1h2 . . . hl−6

2︷︸︸︷
c1xi yi.

2. Suppose e = yixj , i 6= j. Then

Cl = yi

2︷ ︸︸ ︷
xjcl+1

l−5︷ ︸︸ ︷
h1h2 . . . hl−5

2︷︸︸︷
c1xi yi.

The remaining cases are shown in the Appendix. 2

Together Lemmas 5 and 6 imply that F (n, l) is Cl-saturated. We now count the
number of edges in F (n, l). First, there are l + 1 edges on the cycle Cl+1. The number
of edges in the clique and those joining the clique and the cycle total

(
l−2
2

) − 1. The
matching contains bn−2l+3

2
c edges and there are 2dn−2l+3

2
e edges joining c1, cl+1 to the

vertices labeled xi. Thus,
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|E(G)| = (l + 1) +

(
l − 2

2

)
− 1 + bn − 2l + 3

2
c + 2dn − 2l + 3

2
e (10)

=
⌈3(n − 2l + 3)

2

⌉
+

l2 − 3l + 6

2
(11)

=
⌈3n + l2 − 9l + 15

2

⌉
. (12)

This construction gives an improvement of the upper bound for sat(n, Cl) for a few
particular cases, as noted in the following theorem.

Theorem 3 For l = 8, 9, 11, 13 or 15 and n ≥ 2l

sat(n, Cl) ≤
⌈3n + l2 − 9l + 15

2

⌉
(13)

≤ d3n

2
e +

l2

2
. (14)

4 Other Graphs

Other than cycles, there are many other instances of determining F -saturated graphs of
minimum size. Some instances that have been considered, outside of those mentioned
in the introduction, include paths and stars [12], complete hypergraphs [2], and more
recently non-traceable graphs [11]. For a survey of further results we refer the reader to
[4]. For a list of interesting open problems we refer the reader to [15].

5 Appendix

We complete the lemmas that demonstrate the l-cycle in G+e for each of the graphs that
we have constructed.

Proof of Lemma 2 continued:

1. Suppose e = ni,αrj,q; spoke-nut to rim.

If q 6= 1 and for nj+1,β 6= ni−1,κ, β 6= κ, then let

Cl = ni,α

k−q+1︷ ︸︸ ︷
rj,qrj,q+1 . . . nj+1,β

q︷ ︸︸ ︷
hβ . . . hκ

k︷ ︸︸ ︷
ni−1,κ, ri−1,1 . . . ri−1,k−1 ni,α.

If q 6= 1 and β = κ then we must have β 6= δ for nj+1,β 6= ni+1,δ, hence we have

Cl = ni,α

k−q+1︷ ︸︸ ︷
rj,qrj,q+1 . . . nj+1,β

q︷ ︸︸ ︷
hβ . . . hδ

k︷ ︸︸ ︷
ni+1,δ, ri,k−1 . . . ri,1 ni,α.
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If q = 1 and for nj,γ, ni−1,κ, γ 6= κ, we have

Cl = ni,α

2︷ ︸︸ ︷
rj,1nj,γ

k−1︷ ︸︸ ︷
hγ . . . hκ

k︷ ︸︸ ︷
ni−1,κri−1,1 . . . ri−1,k−1 ni,α.

If q = 1 and for nj,γ, ni+1,δ, γ 6= δ, we have

Cl = ni,α

2︷ ︸︸ ︷
rj,1nj,γ

k−1︷ ︸︸ ︷
hγ . . . hδ

k︷ ︸︸ ︷
ni+1,δri,k−1 . . . ri,1 ni,α.

2. Suppose e = ni,αhβ ; spoke-nut to hub.

If there exists an nj,β and nj+1,κ with κ 6= α then let

Cl = ni,α

1︷︸︸︷
hβ

k+1︷ ︸︸ ︷
nj,βrj,1 . . . nj+1,κ

k−1︷ ︸︸ ︷
hκ . . . hα ni,α.

Otherwise, there exists an nj,β and nj−1,δ with δ 6= α and then let

Cl = ni,α

1︷︸︸︷
hβ

k+1︷ ︸︸ ︷
nj,βrj−1,k−1 . . . nj−1,δ

k−1︷ ︸︸ ︷
hδ . . . hα ni,α.

3. Suppose e = ni,αfβ ; spoke-nut to flange (different indices, that is α 6= β). If for
nj+1,κ the indices α 6= κ then let

Cl = ni,α

2︷︸︸︷
fβhβ

k+1︷ ︸︸ ︷
nj,βrj,1 . . . nj+1,κ

k−2︷ ︸︸ ︷
hκ . . . hα ni,α.

Otherwise, we may be assured by our construction that for nj−1,γ the indices α 6= γ
and thus

Cl = ni,α

2︷︸︸︷
fβhβ

k+1︷ ︸︸ ︷
nj,βrj−1,k−1 . . . nj−1,γ

k−2︷ ︸︸ ︷
hγ . . . hα ni,α.

4. Suppose e = ni,αfα; spoke-nut to flange (same indices). We are guaranteed by our
construction that for ni−1,κ the indices α 6= κ and thus

Cl = ni,α

k+1︷ ︸︸ ︷
fαhαhβ . . . hκ

k︷ ︸︸ ︷
ni−1,κri−1,1 . . . ri−1,k−1 ni,α.

5. Suppose e = ri,qhδ; rim to hub.

If for ni−1,β the indices β 6= δ then,

Cl = ri,q

k+1−q︷ ︸︸ ︷
hδ . . . hβ

k+1︷ ︸︸ ︷
ni−1,βri−1,1 . . . ni,α,

q−1︷ ︸︸ ︷
ri,1 . . . ri,q−1 ri,q.
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Otherwise, for ni+2,β the index β 6= δ then,

Cl = ri,q

q+1︷ ︸︸ ︷
hδ . . . hβ

k+1︷ ︸︸ ︷
ni+2,βri+1,k−1 . . . ni,α,

k−q−1︷ ︸︸ ︷
ri,k−1 . . . ri,q+1 ri,q.

6. Suppose e = ri,qfδ; rim to flange.

If for ni−1,β the indices β 6= δ then,

Cl = ri,q

k+1−q︷ ︸︸ ︷
fδhδ . . . hβ

k+1︷ ︸︸ ︷
ni−1,βri−1,1 . . . ni,α,

q−1︷ ︸︸ ︷
ri,1 . . . ri,q−1 ri,q.

Otherwise, for ni+2,γ the index γ 6= δ then,

Cl = ri,q

k+1−q︷ ︸︸ ︷
fδhδ . . . hγ

k+1︷ ︸︸ ︷
ni+2,γri+1,1 . . . ni+1,κ,

q−1︷ ︸︸ ︷
ri,k−1 . . . ri,q+1 ri,q.

7. Suppose e = ri,qri,q+s; rim to rim (same indices). We then have

Cl = ri,q

k−(q+s)+1︷ ︸︸ ︷
ri,q+sri,q+s+1 . . . ni+1,β

k︷ ︸︸ ︷
ri+1,1 . . . ni+2,κ

s︷ ︸︸ ︷
hκ . . . hα

q︷ ︸︸ ︷
ni,α . . . ri,q−1 ri,q.

8. Suppose e = ri,jri+1,q; rim to rim (indices differ by 1).

If k − j + 1 and k − q + 1 sum to at least k + 2 (this sum is at most 2k) then

Cl = ri,j

k−q+1︷ ︸︸ ︷
ri+1,qri+1,q+1 . . . ni+2,δ

q+j︷ ︸︸ ︷
hδ . . . hβ

k−j︷ ︸︸ ︷
ni+1,βri,k−1 . . . ri,j+1 ri,j.

Otherwise, it must be the case that j + 1 and q + 1 sum to at least k + 2. To see
this note that (k− j + 1) + (j + 1) = k + 2 and (k− q + 1) + (q + 1) = k + 2, together
a total of 2k + 4 and if neither k − j + 1 + k − q + 1 or j + 1 + q + 1 were at least
k + 2 we would reach a contradiction. Hence,

Cl = ri,j

q+1︷ ︸︸ ︷
ri+1,qri+1,q−1 . . . ni+1,β

2k−q−j︷ ︸︸ ︷
hβ . . . hα

j︷ ︸︸ ︷
ni,αri,1 . . . ri,j−1 ri,j.

9. Suppose e = ri,jrp,q; rim to rim (indices differ by at least 2, that is there exists at
least two spoke-nuts between ri,j and rp,q).

We will suppose that the distance from ri,j to ni+1,β is at least the distance from ri,j

to ni,α, and that the distance from rp,q to np+1,δ is at least the distance from rp,q to
np.γ. The other cases are similar to that shown here.

By the supposition it follows that k + 2 ≤ (k − j + 1) + (k − q + 1) ≤ 2k. Thus, if
for ni+1,β, np+1,δ, the indices β 6= δ then let
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Cl = ri,j

k−q+1︷ ︸︸ ︷
rp,qrp,q+1 . . . np+1,δ

q+j︷ ︸︸ ︷
hδ . . . hβ

k−j︷ ︸︸ ︷
ni+1,βri,k−1 . . . ri,j+1 ri,j.

Thus it must be the case that β = δ.

If k − q + 1 and j + 1 sum to at least k + 2 (this sum is at most 2k) then

Cl = ri,j

k−q+1︷ ︸︸ ︷
rp,qrp,q+1 . . . np+1,δ

k+q−j︷ ︸︸ ︷
hδ . . . hα

j︷ ︸︸ ︷
ni,αri,1 . . . ri,j−1 ri,j.

Otherwise, it must be the case that q + 1 and k − j + 1 sum to at least k + 2. To
see this note that (k − j + 1) + (j + 1) = k + 2 and (k − q + 1) + (q + 1) = k + 2,
together a total of 2k + 4 and if neither (k− q + 1) + (j + 1) and (k− j + 1) + (q + 1)
were at least k + 2 we would reach a contradiction. Hence,

Cl = ri,j

q+1︷ ︸︸ ︷
rp,qrp,q−1 . . . np,γ

k+j−q︷ ︸︸ ︷
hγ . . . hβ

k−j︷ ︸︸ ︷
ni+1,βri,k−1 . . . ri,j+1 ri,j.

10. Suppose e = hαfβ; hub to flange. We then have

Cl = hα

k︷ ︸︸ ︷
fβhβ . . . hκ

k+1︷ ︸︸ ︷
ni,κri,1 . . . ni+1,α hα.

11. Suppose e = fαfβ ; flange to flange. We then have

Cl = fα

k−1︷ ︸︸ ︷
fβhβ . . . hκ

k+1︷ ︸︸ ︷
ni,κri,1 . . . ni+1,α

1︷︸︸︷
hα fα.

This completes the proof of Lemma 2. 2
Proof of Lemma 4 continued:

1. Suppose e = ni,αrj,q; spoke-nut to rim.

If q 6= 1 and for nj+1,β, ni−1,κ, if the indices β 6= κ, then

Cl = ni,α

k−q+1︷ ︸︸ ︷
rj,qrj,q+1 . . . nj+1,β

q+1︷ ︸︸ ︷
hβ . . . hκ

k︷ ︸︸ ︷
ni−1,κ, ri−1,1 . . . ri−1,k−1 ni,α.

If q 6= 1 then it must be the case by our construction that for nj+1,β, ni+1,δ, the
indices β 6= δ. We then have

Cl = ni,α

k−q+1︷ ︸︸ ︷
rj,qrj,q+1 . . . nj+1,β

q+1︷ ︸︸ ︷
hβ . . . hδ

k︷ ︸︸ ︷
ni+1,δ, ri,k−1 . . . ri,1 ni,α.

If q = 1 and for nj,γ, ni−1,κ, if γ 6= κ, then
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Cl = ni,α

2︷ ︸︸ ︷
rj,1nj,γ

k︷ ︸︸ ︷
hγ . . . hκ

k︷ ︸︸ ︷
ni−1,κri−1,1 . . . ri−1,k−1 ni,α.

Otherwise, q = 1 and for nj,γ, ni+1,δ, it must be the case by our construction that
γ 6= δ. We then have

Cl = ni,α

2︷ ︸︸ ︷
rj,1nj,γ

k︷ ︸︸ ︷
hγ . . . hδ

k︷ ︸︸ ︷
ni+1,δri,k−1 . . . ri,1 ni,α.

2. Suppose e = ni,αhβ ; spoke-nut to hub.

If there exists an nj,γ and nj+1,δ with δ 6= α then

Cl = ni,α

s+1︷ ︸︸ ︷
hβ . . . hγ

k+1︷ ︸︸ ︷
nj,γrj,1 . . . nj+1,δ

k−s︷ ︸︸ ︷
hδ . . . hα ni,α.

Otherwise, there exists an nj,γ and nj−1,κ with κ 6= α and we then have

Cl = ni,α

s+1︷ ︸︸ ︷
hβ . . . hγ

k+1︷ ︸︸ ︷
nj,γrj−1,k−1 . . . nj−1,κ

k−s︷ ︸︸ ︷
hκ . . . hα ni,α.

3. Suppose e = ni,αfβ; spoke-nut to flange (different indices, that is α 6= β).

If there exists an nj,β and nj+1,κ with κ 6= α then

Cl = ni,α

2︷︸︸︷
fβhβ

k+1︷ ︸︸ ︷
nj,βrj,1 . . . nj+1,κ

k−1︷ ︸︸ ︷
hκ . . . hα ni,α.

Otherwise, there exists an nj,β and nj−1,δ with δ 6= α, and we then have

Cl = ni,α

2︷︸︸︷
fβhβ

k+1︷ ︸︸ ︷
nj,βrj−1,k−1 . . . nj−1,δ

k−1︷ ︸︸ ︷
hδ . . . hα ni,α.

4. Suppose e = ni,αfα; spoke-nut to flange (same indices). We then have

Cl = ni,α

k+2︷ ︸︸ ︷
fαhαhβ . . . hκ

k︷ ︸︸ ︷
ni−1,κri−1,1 . . . ri−1,k−1 ni,α.

5. Suppose e = ri,qhδ; rim to hub. We then have

Cl = ri,q

s+1︷ ︸︸ ︷
hδ . . . hβ

k+1︷ ︸︸ ︷
nj,βrj,1 . . . nj+1,γ

q−s︷ ︸︸ ︷
hγ . . . hκ

k−q︷ ︸︸ ︷
ni+1,κri,k−1 . . . ri,q+1 ri,q.
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6. Suppose e = ri,qfδ; rim to flange.

If for ni−1,β the indices β 6= δ then,

Cl = ri,q

k+2−q︷ ︸︸ ︷
fδhδ . . . hβ

k+1︷ ︸︸ ︷
ni−1,βri−1,1 . . . ni,α,

q−1︷ ︸︸ ︷
ri,1 . . . ri,q−1 ri,q.

Otherwise, for ni+2,γ the index γ 6= δ then,

Cl = ri,q

k+2−q︷ ︸︸ ︷
fδhδ . . . hγ

k+1︷ ︸︸ ︷
ni+2,γri+1,1 . . . ni+1,κ,

q−1︷ ︸︸ ︷
ri,k−1 . . . ri,q+1 ri,q.

7. Suppose e = ri,qri,q+s; rim to rim (same indices). We then have

Cl = ri,q

k−(q+s)+1︷ ︸︸ ︷
ri,q+sri,q+s+1 . . . ni+1,β

k︷ ︸︸ ︷
ri+1,1 . . . ni+2,γ

s+1︷ ︸︸ ︷
hγ . . . hα

q︷ ︸︸ ︷
ni,α . . . ri,q−1 ri,q.

8. Suppose e = ri,jri+1,q; rim to rim (indices differ by 1).

If k − j + 1 and k − q + 1 sum to at least k + 2 (this sum is at most 2k) then

Cl = ri,j

k−q+1︷ ︸︸ ︷
ri+1,qri+1,q+1 . . . ni+2,δ

q+j+1︷ ︸︸ ︷
hδ . . . hβ

k−j︷ ︸︸ ︷
ni+1,βri,k−1 . . . ri,j+1 ri,j.

Otherwise, it must be the case that j + 1 and q + 1 sum to at least k + 2. To see
this note that (k− j + 1) + (j + 1) = k + 2 and (k− q + 1) + (q + 1) = k + 2, together
a total of 2k + 4 and if neither k − j + 1 + k − q + 1 or j + 1 + q + 1 were at least
k + 2 we would reach a contradiction. Hence,

Cl = ri,j

q+1︷ ︸︸ ︷
ri+1,qri+1,q−1 . . . ni+1,β

2k−q−j+1︷ ︸︸ ︷
hβ . . . hα

j︷ ︸︸ ︷
ni, αri,1 . . . ri,j−1 ri,j.

9. Suppose e = ri,jrp,q; rim to rim (indices differ by at least 2, that is there exists at
least two spoke nuts between ri,j and rp,q).

We will suppose that the distance from ri,j to ni+1,β is at least the distance from ri,j

to ni,α, and that the distance from rp,q to np+1,δ is at least the distance from rp,q to
np.γ. The other cases are similar to that shown here.

By the supposition it follows that k + 2 ≤ (k − j + 1) + (k − q + 1) ≤ 2k. Thus if
for ni+1,β, np+1,δ the indices β 6= δ, then

Cl = ri,j

k−q+1︷ ︸︸ ︷
rp,qrp,q+1 . . . np+1,δ

q+j+1︷ ︸︸ ︷
hδ . . . hβ

k−j︷ ︸︸ ︷
ni+1,βri,k−1 . . . ri,j+1 ri,j.

Thus it must be the case that β = δ.

the electronic journal of combinatorics 13 (2006), #R29 16



If k − q + 1 and j + 1 sum to at least k + 2 (this sum is at most 2k) then

Cl = ri,j

k−q+1︷ ︸︸ ︷
rp,qrp,q+1 . . . np+1,δ

k+q−j+1︷ ︸︸ ︷
hδ . . . hα

j︷ ︸︸ ︷
ni,αri,1 . . . ri,j−1 ri,j.

Otherwise, it must be the case that q + 1 and k − j + 1 sum to at least k + 2. To
see this note that (k − j + 1) + (j + 1) = k + 2 and (k − q + 1) + (q + 1) = k + 2,
together a total of 2k + 4 and if neither (k− q + 1) + (j + 1) and (k− j + 1) + (q + 1)
were at least k + 2 we would reach a contradiction. Hence,

Cl = ri,j

q+1︷ ︸︸ ︷
rp,qrp,q−1 . . . np,γ

k+j−q+1︷ ︸︸ ︷
hγ . . . hβ

k−j︷ ︸︸ ︷
ni+1,βri,k−1 . . . ri,j+1 ri,j.

10. Suppose e = hαfβ; hub to flange. We then have

Cl = hα

s+1︷ ︸︸ ︷
fβhβ . . . hγ

k+1︷ ︸︸ ︷
ni,γri,1 . . . ni+1,δ

k+1−s︷ ︸︸ ︷
hδ . . . hκ hα.

11. Suppose e = fαfβ ; flange to flange. We then have

Cl = fα

k︷ ︸︸ ︷
fβhβ . . . hγ

k+1︷ ︸︸ ︷
ni,γri,1 . . . ni+1,α

1︷︸︸︷
hα fα.

12. Suppose e = hαhβ for 1 ≤ α < β ≤ 4; hub to hub.

Rule 2 guarantees that there exists a pair of spoke-nut vertices labeled ni,β, ni+2,α.
We then have

Cl = hα

1︷︸︸︷
hβ

2k+1︷ ︸︸ ︷
ni,βri,1 . . . ni+1,γri+1,1 . . . ni+2,α hα.

This completes the proof of Lemma 4.

Proof of Lemma 6 continued:

1. Suppose e = yihj for 1 ≤ j ≤ (l − 4). Without loss of generality we may assume
j = 1. Then

Cl = yi

l−4︷ ︸︸ ︷
h1h2 . . . hl−4

3︷ ︸︸ ︷
cl+1c1xi yi.

2. Suppose e = yicj for 1 ≤ j ≤ l − 2. Then

Cl = yi

j︷ ︸︸ ︷
cjcj−1 . . . c1

l−2−j︷ ︸︸ ︷
h1h2 . . . hkcl+1 xiyi.
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3. Suppose e = yicj for l − 1 ≤ j ≤ l + 1 and l ≥ 6, or for l ≤ j ≤ l + 1 and l = 5.
Then

Cl = yi

l+2−j︷ ︸︸ ︷
cj . . . cl+1

j−5︷ ︸︸ ︷
h1h2 . . . hk

2︷︸︸︷
c1xi yi.

Otherwise, for j = l − 1 and l = 5 we have

Cl = yicl−1clcl+1xiyi.

4. Suppose e = xixj. Then

Cl = xi

2︷ ︸︸ ︷
xjcl+1

l−4︷ ︸︸ ︷
h1h2 . . . hl−4 c1xi.

5. Suppose e = xihj for 1 ≤ j ≤ (l − 4). Without loss of generality we may assume
j = 1. Then

Cl = xi

l−4︷ ︸︸ ︷
h1h2 . . . hl−4

3︷ ︸︸ ︷
cl+1xjc1 ci.

6. Suppose e = xicj for 2 ≤ j ≤ l − 1. Then

Cl = xi

j︷ ︸︸ ︷
cjcj−1 . . . c1

l−1−j︷ ︸︸ ︷
h1h2 . . . hkcl+1 xi.

7. Suppose e = hicj for 3 ≤ j ≤ l−1. Without loss of generality we may assume i = 1.
Then

Cl = h1

j︷ ︸︸ ︷
cjcj−1 . . . c1

l−1−j︷ ︸︸ ︷
h2 . . . hkcl+1 h1.

8. Suppose e = hicl. Without loss of generality we may assume i = 1. (The case
e = h1c2 is symmetric and we omit it here.) Then

Cl = h1

4︷ ︸︸ ︷
clcl+1xic1

l−5︷ ︸︸ ︷
h2h3 . . . hl−4 h1.

9. Suppose e = cicj for 1 ≤ i < j ≤ l + 1. Then

Cl = ci

l+2−j︷ ︸︸ ︷
cjcj+1 . . . cl+1

j−i−2︷ ︸︸ ︷
h1 . . . hk

i−1︷ ︸︸ ︷
c1c2 . . . ci−1 ci.

This completes the proof of Lemma 6. 2
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