On subgraphs induced by transversals in vertex-partitions of graphs

Maria Axenovich
Department of Mathematics
Iowa State University, Ames, IA 50011, USA
axenovic@math.iastate.edu

Submitted: Mar 18, 2005; Accepted: Mar 30, 2006; Published: Apr 4, 2006
MR Subject Classifications: 05C15
Keywords: vertex-colorings, Ramsey, induced, transversals, rainbow, multicolored

Abstract

For a fixed graph H on k vertices, we investigate the graphs, G, such that for any partition of the vertices of G into k color classes, there is a transversal of that partition inducing H. For every integer $k \geq 1$, we find a family \mathcal{F} of at most six graphs on k vertices such that the following holds. If $H \notin \mathcal{F}$, then for any graph G on at least $4 k-1$ vertices, there is a k-coloring of vertices of G avoiding totally multicolored induced subgraphs isomorphic to H. Thus, we provide a vertex-induced anti-Ramsey result, extending the induced-vertex-Ramsey theorems by Deuber, Rödl et al.

1 Introduction

Let $G=(V, E)$ be a graph. Let $c: V(G) \rightarrow[k]$ be a vertex-coloring of G. We say that G is monochromatic under c if all vertices have the same color and we say that G is rainbow or totally multicolored if all vertices of G have distinct colors. Investigating the existence of monochromatic or rainbow subgraphs isomorphic to H in vertex-colored graphs, the following questions naturally arise:
Question M: Can one find a small graph G such that in any vertex-coloring of G with fixed number of colors, there is an induced monochromatic subgraph isomorphic to H ? Question M-R: Can one find a small graph G so that any vertex coloring of G contains an induced subgraph isomorphic to H which is either monochromatic or rainbow?
Question R: Can one find a large graph G such that any vertex-coloring of G in a fixed number of colors has a rainbow induced subgraph isomorphic to H ?

The first two questions are well-studied, e.g., [7], [8], [2]. Together with specific bounds given by Brown and Rödl [3], the following is known:

Theorem 1 (Vertex-Induced Graph Ramsey Theorem). For any graph H, any integer $t, t \geq 2$, there exists a graph $R_{t}(H)$ such that if the vertices of $R_{t}(H)$ are colored with t colors then there is an induced subgraph of $R_{t}(H)$ isomorphic to H which is monochromatic. Let the smallest order of such a graph be $r_{t}(H)$. There are constants C_{1}, C_{2} such that

$$
\left.C_{1} k^{2} \leq \max \left\{r_{t}(H)\right):|V(H)|=k\right\} \leq C_{2} k^{2} \log _{2} k
$$

The topic of the second question belongs to the area of "canonization", see, for example, a survey by Deuber [5]. The following result of Eaton and Rödl [6] provides specific bounds for vertex-colorings of graphs.

Theorem 2 (Vertex-Induced-Canonical Graph Ramsey Theorem). For any graph H, there is a graph $R_{\text {can }}(H)$ such that if $R_{\text {can }}(H)$ is vertex-colored then there is an induced subgraph of $R_{\text {can }}(H)$ isomorphic to H which is either monochromatic or rainbow. Let the smallest order of such a graph be $r_{\text {can }}(H)$. There is a constant C such that

$$
C k^{3} \leq \max \left\{r_{c a n}(H):|V(H)|=k\right\} \leq k^{4} \log k
$$

In this paper we initiate the study of Question R when the number of colors in the coloring corresponds to the number of vertices in a graph H. We call a vertex-coloring using exactly k colors a k-coloring. In this manuscript we consider only simple graphs with no loops or multiple edges.

Definition 3. For a fixed graph H on k vertices, let $f(H)$ be the maximum order of a graph G such that any coloring of $V(G)$ in k colors has an induced rainbow subgraph isomorphic to H. Note that $f(H) \geq k$.

Since a vertex-coloring of G gives a partition of vertices, finding a rainbow induced copy of a graph H corresponds to finding a copy of H induced by a transversal of this partition. Note that $f(H)=\infty$ if and only if for any $n_{0} \in \mathbb{N}$ there is $n>n_{0}$ and a graph G on n vertices such that any k-coloring of vertices of G produces a rainbow induced copy of H. The results we obtain have a flavor quite different from of those answering Questions M and M-R. In particular, there are few exceptional graphs for which function f is not finite.

Let Λ be a graph on 4 vertices with exactly two adjacent edges and one isolated vertex. Let K_{n}, E_{n}, S_{n} be a complete graph, an empty graph and a star on n vertices, respectively. We define a class of graphs

$$
\mathcal{F}=\left\{K_{n}, E_{n}, S_{n}, \bar{S}_{n}, \Lambda, \bar{\Lambda}: n \in \mathbb{N}\right\}
$$

Note that any graph on at most three vertices is in \mathcal{F}.

Theorem 4. Let H be a graph on k vertices. If $H \in \mathcal{F}$ then $f(H)=\infty$, otherwise $f(H) \leq 4 k-2$.

Corollary 1. Let H be a graph on k vertices, $H \notin \mathcal{F}$. For every graph G on at least $4 k-1$ vertices there is a k-vertex coloring of G avoiding rainbow induced subgraphs isomorphic to H.

2 Proof of Theorem 4

Let H be a graph on k vertices and let $\mathcal{I} n(H)$ be the set of graphs on at most $k-1$ vertices which are isomorphic to induced subgraphs of H.
One of our tools is the following theorem of Akiyama, Exoo and Harary, later strengthened by Bosák.

Proposition 1 ([1], [4]). Let G be a graph on n vertices such that all induced subgraphs of G on t vertices have the same size. If $2 \leq t \leq n-2$ then G is either a complete graph or an empty graph.

Proposition 2. Let H be a graph on k vertices. If G is a graph on at least k vertices such that G has an induced subgraph on at most $k-1$ vertices not isomorphic to any graph from $\mathcal{I} n(H)$, then there is a k-coloring of G with no rainbow induced copy of H.

Proof. Let a set, S, of at most $k-1$ vertices in G induce a graph not in $\mathcal{I} n(H)$. Color the vertices of S with colors $1,2, \ldots,|S|$ and assign all colors from $\{|S|+1, \ldots, k\}$ to other vertices arbitrarily. Any rainbow subgraph of G on k vertices must use all of the vertices from S, but these vertices do not induce a subgraph of H. Therefore there is no rainbow induced copy of H in this vertex-coloring of G.

We call a graph G, H-good if any induced subgraph of G on at most $|V(H)|-1$ vertices is isomorphic to some graph from $\mathcal{I} n(H)$.

Corollary 2. Let $H \notin \mathcal{F}$ be a regular graph on k vertices. Then $f(H)=k$.
Proof. Note that each graph in $\mathcal{I} n(H)$ on $k-1$ vertices has the same size. Let G be a graph on $k+1$ vertices. By Proposition 2 we can assume that G is H-good. Thus all ($k-1$)-subgraphs of G have the same size. It follows from Proposition 1 that G is either a complete or an empty graph. Therefore G does not contain H as an induced subgraph and any k-coloring of G does not result in a rainbow induced copy of H.

We use the following notations for a graph $H=(V, E)$. Let $\alpha(H)$ be the size of the largest independent set of H, let $\omega(H)$ be the order of the largest complete subgraph of H. Let $\delta(H), \Delta(H)$ be the minimum and the maximum degrees of H respectively. For two vertices x, y, such that $\{x, y\} \notin E, e=\{x, y\}$ is a non-edge, for a vertex $v, d(v)$ and $c d(v)$ are the degree and the codegree of v, i.e., the number of edges and non-edges
incident to v, respectively. A $(k-1)$-subgraph of H is an induced subgraph of H on $k-1$ vertices. For all other definitions and notations we refer the reader to [9].
Next several lemmas provide some preliminary results for the proof of Theorem 4. We consider the graph H according to the following cases:
a) $\alpha(H)=k-1$ or $w(H)=k-1$,
b) $2 \leq \delta(H) \leq \Delta(H) \leq k-3$,
c) $\delta(H) \leq 1$ or $\Delta(H) \geq k-2$.

The cases a) and b) give us easy upper bounds on $f(H)$, the case \mathbf{c}) requires some more delicate analysis. The first lemma follows immediately from the definition of function f.

Lemma 1. $f(H)=f(\bar{H})$.
Lemma 2. Let H be a graph on k vertices such that $2 \leq \delta(H) \leq \Delta(H) \leq k-3$. Then $f(H) \leq 2 k-6$.

Proof. If a graph G has a vertex of degree at least $k-2$ or of codegree at least $k-3$, then G contains a subgraph on $k-1$ vertices not in $\mathcal{I} n(H)$ and by Proposition 2, there is a k-coloring of G avoiding rainbow induced copies of H. Therefore, if any k-coloring of G contains a rainbow induced copy of H then for $v \in V(G)$ we have $|V(G)| \leq d(v)+$ $c d(v)+1 \leq(k-3)+(k-4)+1=2 k-6$.

Lemma 3. Let $H \notin \mathcal{F}$ be a graph on k vertices, such that $\alpha(H)=k-1$ or such that $w(H)=k-1$. Then $f(H)=k$, for $k \geq 5$ and $f(H)=k+2$ for $k=4$.

Proof. Let H be a graph on k vertices with $\alpha(H)=k-1, H \notin \mathcal{F}$. Then H is a disjoint union of a star with k^{\prime} edges and $k-k^{\prime}-1$ isolated vertices, $1 \leq k^{\prime} \leq k-2$.

Assume first that $k \geq 5$. Let G be a graph on n vertices, $n \geq k+1$. If G has two nonadjacent edges e, e^{\prime}, or a triangle, or no edges at all, by Proposition 2 there is a coloring of G avoiding a rainbow induced copy of H. Therefore, G must be a disjoint union of a star S with l edges and $n-l-1$ isolated vertices, $1 \leq l \leq n-1$. Then either $l>k^{\prime}$ or $n-l-1>k-k^{\prime}-1$. If $l>k^{\prime}$, we can use colors from $\left\{1, \ldots, k^{\prime}+1\right\}$ on the vertices of S and colors from $\left\{k^{\prime}+2, \ldots, k\right\}$ on isolated vertices of G. If $n-l-1>k-k^{\prime}-1$ then we can use colors from $\left\{1, \ldots, k-k^{\prime}\right\}$ on isolated vertices of G and other colors on the vertices of S. These colorings do not contain an induced rainbow subgraph isomorphic to H.

Let $k=4$. Since $H \notin \mathcal{F}$, we have that H is a disjoint union of an edge and two vertices. If a graph G has two adjacent edges e, e^{\prime}, we are done by Proposition 2. Otherwise, G is a vertex disjoint union of isolated edges and vertices. Lets color G so that the adjacent vertices get the same color. This coloring does not contain an induced rainbow copy of H. Moreover, if $|V(G)| \geq 7$ then there is such a coloring using 4 colors. Thus, $f(H)<7$. On the other hand, any 4 -coloring of a graph G consisting of three disjoint edges gives a rainbow induced H, thus $f(H) \geq 6$. We have then that $f(H)=6$.

If $w(H)=k-1$, Lemma 1 implies the same result.

Lemma 4. Let H be a graph on k vertices, $H \notin \mathcal{F}, \alpha(H)<k-1, \omega(H)<k-1$. If H has at least two nontrivial components then $f(H) \leq 2 k-1$.

Proof. Note that if H has at least two nontrivial components and $\delta(H) \geq 2$, then we are done by Lemma 2. Let m be the largest order of a connected component in H. Let G be a graph on $n \geq 2 k$ vertices. We can assume by Proposition 2 that G is H-good. Then there is no component in G of order larger than m. Moreover, since H is contained in G as an induced subgraph, all components of H of order m appear in G as connected components. Let $F_{1}, F_{2}, \ldots, F_{t}$ be components of G of order m, let $x_{i}, y_{i} \in V\left(F_{i}\right), i=1, \ldots, t$. Assign color i to both vertices x_{i} and $y_{i}, i=1, \ldots, t$, and assign all colors from $\{t+1, \ldots, k\}$ to other vertices arbitrarily. Since $k \leq n / 2, t \leq n / 2$, we have that $t+k \leq n$ and such coloring exists. Consider a copy of H in G. It contains at least one of the components of order m, thus it has at least two vertices of the same color. Therefore there is no rainbow induced subgraph of G isomorphic to H in this coloring.

Lemma 5. Let $H \notin \mathcal{F}$ be a graph on k vertices such that $\delta(H) \leq 1, \alpha(H)<k-1$ and $w(H)<k-1$. Then $f(H) \leq 4 k-2$.

Proof. Let H be a graph on k vertices, $H \notin \mathcal{F}$ such that $\alpha(H)<k-1$ and $\omega(H)<k-1$. Let G be a graph on $n \geq 4 k-1$ vertices. We can assume by Proposition 2 that G is H-good.

Claim 0. If all graphs from $\mathcal{I} n(H)$ on $k-1$ vertices with a spanning star are isomorphic or do not exist, then $\Delta(G) \leq k-1$. If all graphs from $\mathcal{I} n(H)$ on $k-1$ vertices with an isolated vertex are isomorphic or do not exist, then $\Delta(\bar{G}) \leq k-1$.

To prove the Claim, assume that all graphs from $\mathcal{I} n(H)$ on $k-1$ vertices with a spanning star are isomorphic. Consider S, a neighborhood of a vertex v of maximum degree in G. Then, all subsets of S of size $k-2$ induce isomorphic graphs. Therefore, if $|S| \geq k$ we have, by Proposition 1 , that S induces an empty or a complete graph on at least k vertices, a contradiction. Thus, $|S|=\Delta(v) \leq k-1$. If there is no graph from $\mathcal{I} n(H)$ on $k-1$ vertices with a spanning star and G has a vertex v of degree at least $k-2$, then v and $k-2$ of its neighbors induce a subgraph with a spanning star on $k-1$ vertices, a contradiction. The second statement can be proved in the same manner, concluding the proof of Claim 0 .

Case 1. $\delta(H)=0$.
We can assume by Lemma 4 that H has exactly one nontrivial component. Observe that either there is no $(k-1)$-vertex subgraph of H with a spanning star, or all such subgraphs are isomorphic. Thus, by Claim $0, \Delta(G) \leq k-1$. Consider two adjacent vertices of G, u and v. There is a set T of vertices, $|T| \geq n-2-2(k-1)=n-2 k$, such that neither u nor v is adjacent to any vertex in T. Observe also, that since G has no independent set of size $k-1$, the largest size of an independent set induced by vertices of T is at most $k-2$. Let $T^{\prime} \subset T$ induce the largest independent set in $G[T]$. Then, for each
$x \in T \backslash T^{\prime}$, there is $x^{\prime} \in T^{\prime}$ such that $x x^{\prime} \in E(G)$. Since $\left|T \backslash T^{\prime}\right| \geq n-2 k-k+2 \geq k$, it is clear that we can build a subgraph of $G[T]$ on $k-3$ vertices with no isolated vertices using some vertices from $T \backslash T^{\prime}$ and some of their neighbors from T^{\prime} (provided that $k \geq 5$). Together with $u v$ it forms a subgraph on $(k-1)$ vertices with at least two nontrivial components and no isolated vertices. But each disconnected subgraph of H on $k-1$ vertices has an isolated vertex, a contradiction.

Let $k=4$. Since $\delta(H)=0$ and $\alpha(H)<3, H$ must be a disjoint union of an isolated vertex and K_{3}. But then $H \in \mathcal{F}$, which is impossible.

Case 2. $\delta(H)=1$.
Lets call the vertices of degree 1 , leaves. We can assume that H is connected by Lemma 4.

Case 2.1. All leaves in H have a common neighbor, v.
Then all $(k-1)$-subgraphs of H which have an isolated vertex are isomorphic to $H-v$, thus, by Claim 0 , we have that $\Delta(\bar{G}) \leq k-1$. Note that all $(k-1)$-subgraphs of H having two adjacent vertices of degree $k-2$ are either isomorphic or do not exist. Consider x, y, two adjacent vertices of G. Since the codegree of each vertex is at most $k-1$ we have that there is a set S of vertices, $|S| \geq n-2-2(k-1) \geq k-1$, such that each vertex of S is adjacent to x and to y. Thus, all $(k-3)$-subsets of S induce isomorphic graphs, and S must induce a complete or an empty graph on at least $k-1$ vertices by Proposition 1, a contradiction.

Case 2.2. There are at least two leaves in H which do not have a common neighbor.
It is easy to see that either H does not have a vertex of degree $k-2$ or all subgraphs of H on $k-1$ vertices with a spanning star are isomorphic. Then, by Claim $0, \Delta(G) \leq k-1$. Consider a set S of vertices of G inducing H and let $S^{\prime} \subseteq S$ correspond to the set of leaves in H. Let l be the largest number of leaves in H having a common neighbor, let $x(l)$ be the number of distinct vertices in H each adjacent to l leaves.

If $l \leq 2$ or $(l=3$ and $x(l)=1)$ then all $(k-1)$-subgraphs of H with at least three isolated vertices either do not exist or isomorphic. Consider three pairwise nonadjacent vertices $w, w^{\prime}, w^{\prime \prime}$ in G. Since $\Delta(G) \leq k-1$, there are at least $n-3-3(k-1) \geq k-1$ vertices of G non-adjacent to either of $w, w^{\prime}, w^{\prime \prime}$. This is either impossible, or these vertices must induce an independent set or a clique, a contradiction.

Thus, we can assume that there are at least two distinct vertices in H adjacent to at least three leaves each. Let $u, u^{\prime} \in S$ correspond to these vertices, and let $s, s^{\prime} \in N(u) \cap S$, $s^{\prime \prime} \in N\left(u^{\prime}\right) \cap S$. Since $V \backslash S$ has size at least $k-1$, it does not induce an independent set; thus there is an edge $v v^{\prime}, v, v^{\prime} \in V \backslash S$. If v, v^{\prime} are not adjacent to any vertex in S, then $G\left[S \backslash\left\{s, s^{\prime}, s^{\prime \prime}\right\} \cup\left\{v, v^{\prime}\right\}\right]$ is a $(k-1)$-subgraph of G with an isolated edge, no isolated vertices and with $\left|S^{\prime}\right|-1$ leaves. This is impossible, since each $(k-1)$-subgraph of H with an isolated edge and no isolated vertices has at least $\left|S^{\prime}\right|$ leaves. If v or v^{\prime} is adjacent to some vertex $q \in S$ (we can always assume that $q \notin\left\{s, s^{\prime}, s^{\prime \prime}\right\}$ by choosing $s, s^{\prime}, s^{\prime \prime}$ accordingly), then $G\left[S \backslash\left\{s, s^{\prime}, s^{\prime \prime}\right\} \cup\left\{v, v^{\prime}\right\}\right]$ is a connected $(k-1)$-subgraph of G
with at most $\left|S^{\prime}\right|-2$ leaves. This is impossible since each connected subgraph of H has at least $\left|S^{\prime}\right|-1$ leaves.

Now, we can quickly complete the proof of the main theorem using the result about the special graph Λ proven in the next section.

Proof of Theorem 4. If $H=S_{k}$, then any k-coloring of $S_{n}, n \geq k$ induces a rainbow H. If $H=K_{k}$, then any k-coloring of $K_{n}, n \geq k$ induces a rainbow H. Using Proposition 3 for a graph Λ and the fact that $f(H)=f(\bar{H})$ we have now established that for any $H \in \mathcal{F}$, $f(H)=\infty$.

Now, assume that H is a graph on k vertices, $H \notin \mathcal{F}$. If $\alpha(H)=k-1$ or $\omega(H)=k-1$, then, by Lemma 3, $f(H) \leq k+2$. If $\alpha(H)<k-1$ and $\omega(H)<k-1$ then at least one of the following holds:

1) $2 \leq \delta(H) \leq \Delta(H) \leq k-3$, and by Lemma $2, f(H) \leq 2 k-6$,
2) $\delta(H) \leq 1$, and by Lemmas 4 and $5, f(H) \leq 4 k-2$,
3) $\Delta(H) \geq k-2$, by 2) and Lemma $1, f(H) \leq 4 k-2$.

3 Treating Λ

Definition 5. Let $G(m)=(V, E)$,

$$
\begin{gathered}
V=\{v(i, j): \quad 1 \leq i \leq 7, \quad 1 \leq j \leq m\} \\
E=\{v(i, j) v(i+1, k): \quad 1 \leq j, k \leq m, j \neq k, 1 \leq i \leq 7\} \quad \cup \\
\{v(i, j) v(i+3, j): \quad 1 \leq j \leq m, 1 \leq i \leq 7\}
\end{gathered}
$$

addition is taken modulo 7 .

We have $V=V_{1} \cup \cdots \cup V_{7}=L_{1} \cup \cdots \cup L_{m}$, where $V_{i}=\{v(i, j): 1 \leq j \leq m\}$, $1 \leq i \leq 7, L_{j}=\{v(i, j): \quad 1 \leq i \leq 7\}, 1 \leq j \leq m$. We shall refer to V_{i} s as vertex parts and $L_{i} \mathrm{~S}$ as vertex layers. The edge-set of $G(m)$ can be constructed by first taking all the edges between consecutive (in cyclic order) $V_{i} \mathrm{~s}, i=1, \ldots, 7$ then removing the edges induced by each layer $L_{j}, j=1, \ldots, m$, and finally adding, for each $j=1, \ldots, m$, a new 7 cycle induced by L_{j}, see Figure 1. Note that $G(1)$ is isomorphic to a 7 -cycle, $G(2)$ has a spanning 14 -cycle, and can be drawn as in the Figure 2.

Proposition 3. For any positive integer m and any coloring of $V(G(m))$ into 4 colors, there is a rainbow induced subgraph of G isomorphic to Λ.

Proof. We prove the statement, for $m=1,2,3$ and for $m>3$ use induction. This is a somewhat tedious but straightforward case analysis.

Figure 1: $G(1), G(2), G(3)$ and $G(4)$

Claim 1. Any coloring of $G(1)$ in 4 colors contains an induced rainbow Λ.
Let $G(1)$ have vertices x_{1}, \ldots, x_{7} and edges $x_{i} x_{i+1}, i=1, \ldots, 7$, addition taken modulo 7. Assume that there is a 4 -coloring c with no induced rainbow Λ. First observe that any 4-coloring of C_{7} must have three consecutive vertices with distinct colors, say $c\left(x_{i}\right)=i$, for $i=1,2,3$. Then $c\left(x_{5}\right) \neq 4, c\left(x_{6}\right) \neq 4$, thus, without loss of generality $c\left(x_{4}\right)=4$. Note that then $c\left(x_{7}\right) \neq 1, c\left(x_{7}\right) \neq 3$. If $c\left(x_{7}\right)=4$ then x_{6} must have color 3 , and there is no color available for x_{5}. If $c\left(x_{7}\right)=2$ then $c\left(x_{6}\right)=2$ and there is no available color for x_{5}.

Claim 2. Any coloring of $G(2)$ in 4 colors contains an induced rainbow Λ.
Note that $G(2)$ can be drawn as C_{14} with chords as in Figure 2. Let the vertices of $G(2)$ be x_{1}, \ldots, x_{14} in order on the cycle and let the edges be $x_{i}, x_{i+1}, x_{i+4}, i=1, \ldots, 14$, where addition is taken modulo 14 . We shall use the fact that the following sets of vertices

Figure 2: Different drawing of $G(2)$
induce C_{7} and thus cannot use all 4 colors:

$$
\left\{x_{i}, \quad x_{i+2}, x_{i+3}, x_{i+4}, \quad x_{i-2}, x_{i-3}, x_{i-4}\right\}
$$

$i=1, \ldots, 14$ and addition is taken modulo 14 . We shall also use an easy fact that it is impossible to have a 4 -colored C_{4} in $G(2)$.

Case 1. There are three consecutive vertices, using distinct colors, say $c\left(x_{i}\right)=i, i=1,2,3$.
Then, considering all induced cycles of length 7 containing these three vertices, we see that the only vertices which could have color 4 are x_{4}, x_{6}, x_{14} or x_{12}.

Case 1.1. $c\left(x_{4}\right)=4$.
Consider vertex x_{8}. If $c\left(x_{8}\right)=1$ then $\left\{x_{2}, x_{3}, x_{4}, x_{6}, x_{8}, x_{9}, x_{10}\right\}$ induces a C_{7} using 4 colors. If $c\left(x_{8}\right)=2$ then $\left\{x_{1}, x_{3}, x_{4}, x_{8}\right\}$ induces a rainbow Λ. If $c\left(x_{8}\right)=3$ then $\left\{x_{14}, x_{1}, x_{2}, x_{4}, x_{6}, x_{7}, x_{8}\right\}$ induces a C_{7} using 4 colors. Thus x_{8} cannot be assigned any color and this case is impossible.

Case 1.2. $c\left(x_{6}\right)=4$.
Consider vertex x_{7}. If $c\left(x_{7}\right)=1$ then $\left\{x_{2}, x_{3}, x_{6}, x_{7}\right\}$ is a 4-colored C_{4}. If $c\left(x_{7}\right)=2$ then $\left\{x_{1}, x_{3}, x_{7}, x_{6}\right\}$ induces a rainbow Λ. If $c\left(x_{7}\right)=3$ then $\left\{x_{14}, x_{1}, x_{2}, x_{4}, x_{6}, x_{7}, x_{8}\right\}$ induces a C_{7} using 4 colors. Therefore x_{7} cannot be assigned a color and this case is impossible as well.

By symmetry $c\left(x_{14}\right) \neq 4$ and $c\left(x_{12}\right) \neq 4$, so there is no vertex colored 4 , a contradiction.
Case 2. There are no three consecutive vertices using distinct colors.
Then, without loss of generality, there are consecutive vertices $x_{i}, x_{i+1}, \ldots, x_{j}$ such that $c\left(x_{i}\right)=a, c\left(x_{j}\right)=b$ and $c\left(x_{m}\right)=c$, for $i<m<j$, such that a, b, c are distinct. Consider smallest such set of vertices and assume that $i=1, a=2, b=3, c=1$. Then clearly, $j \geq 4$, moreover $j \leq 5$ since otherwise there is a smaller such set.
Case 2.1. $j=4$.
By considering all induced C_{7} containing vertices of colors $1,2,3$ from $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and using the fact that x_{14} and x_{5} cannot have color 4 without creating three consecutive
vertices of distinct colors, we see that the only vertices which could have color 4 are x_{9} and x_{10}. If $c\left(x_{10}\right)=4$ then consider vertex x_{14}. If $c\left(x_{14}\right)=3$ or 4 then x_{14}, x_{1}, x_{2} are three consecutive vertices using distinct colors. If $c\left(x_{14}\right)=2$ then $\left\{x_{14}, x_{10}, x_{4}, x_{2}\right\}$ induces a rainbow Λ. Thus $c\left(x_{14}\right)=1$. Consider $x_{5}: c\left(x_{5}\right) \neq 4$ and $c\left(x_{5}\right) \neq 2$ since otherwise there are three consecutive vertices of distinct colors. If $c\left(x_{5}\right)=3$ then $\left\{x_{2}, x_{1}, x_{5}, x_{9}\right\}$ induces a rainbow Λ. If $c\left(x_{5}\right)=1$ then $\left\{x_{4}, x_{5}, x_{1}, x_{9}\right\}$ induces a rainbow Λ. Thus this case is impossible. If $c\left(x_{9}\right)=4$ we arrive at a contradiction by symmetry.

Case 2.2. $j=5$.
By considering all induced C_{7} containing vertices of colors $1,2,3$ from $\left\{x_{1}, \ldots, x_{5}\right\}$ we see that the only vertex which might, and thus must have color 4 is x_{10}. But then $\left\{x_{10}, x_{1}, x_{2}, x_{5}\right\}$ induces a rainbow Λ, a contradiction.

Claim 3. Any coloring of $G(3)$ in 4 colors contains an induced rainbow Λ.
Let c be a coloring of $G(3)$ using colors $1,2,3,4$ and containing no induced rainbow copy of Λ. If there is a subgraph of $G(3)$ isomorphic to $G(2)$ and using four colors, there is a rainbow induced Λ by Claim 2. Therefore, we can assume that each vertex layer of $G(3)$ has a color used only on its vertices and on no vertex of any other layer. In particular, assume that color i is used only in $L_{i}, i=1,2,3$. So, L_{1} uses colors from $\{1,4\}, L_{2}$ uses colors from $\{2,4\}$, and L_{3} uses colors from $\{3,4\}$.

If there is a part, say V_{1}, using colors $1,2,3$, then it is easy to see that none of the vertices of V_{2} could have color 4 and moreover V_{2} must use all three colors $1,2,3$ again, in respective layers. This shows that in this case all sets $V_{i}, i=1, \ldots, 7$ must use only colors $1,2,3$ and there is no vertex of color 4 , a contradiction. Since there is no part V_{i}, $i=1, \ldots, 7$ using all colors $1,2,3$, each part must have color 4 on some vertex.

Assume that there is a part, say V_{1}, having exactly one vertex of color 4 . Without loss of generality, we have $c(v(1,1))=4, c(v(1,2))=2, c(v(1,3))=3$, then $c(v(7,1))=$ $c(v(2,1))=4$. Moreover, $c(v(i, 1)) \neq 1$ for $i=3,4,5,6$, otherwise one of these vertices together with either $\{v(2,1), v(1,2), v(1,3)\}$ or with $\{v(7,1), v(1,2), v(1,3)\}$ induces a rainbow Λ. Therefore, there is no vertex of color 1 in the graph, a contradiction.

Thus, each part V_{i} has at least two vertices of color 4. Then, it is easy to see that there is always a rainbow induced Λ in such a coloring of $G(3)$, a contradiction.

Induction step. Assume that $m \geq 4$. If there is a vertex layer L_{i} such that $G\left[V-L_{i}\right]$ uses all 4 colors, then, since $G\left[V-L_{i}\right]$ is isomorphic to $G(m-1)$, there is a rainbow induced subgraph isomorphic to Λ. Thus we can assume that each layer $L_{1}, L_{2}, \ldots, L_{m}$ uses a color not present in other layers. It is possible only if $m=4$, in which case all vertices of each layer have the same color. We can assume that all vertices of layer L_{i} have color $i, i=1,2,3,4$. But then it is easy to see that there is an induced rainbow Λ in this coloring.

It is interesting to see that if G is a bipartite graph then there is always a coloring of $V(G)$ in 4 colors avoiding induced rainbow Λ. Indeed, if G is a complete bipartite graph, it does not have any induced copies of Λ, so any 4 -coloring will work. Thus, we can assume that there are two nonadjacent vertices from different partite sets A and $B, x \in A$ and $y \in B$. Let $c(x)=3, c(y)=4, c(N(x))=1, c(N(y))=2, c(A \backslash(N(y) \cup\{x\}))=1$ and $c(B \backslash(N(x) \cup\{y\}))=2$. It is easy to see that this coloring does not have a rainbow induced Λ.

Concluding Remark: We have proven that for any graph $H \notin \mathcal{F}$ on k vertices and any graph G on $4 k-1$ vertices there is a coloring of G in k colors avoiding rainbow induced subgraph isomorphic to H. Together with definition of f, this implies that

$$
k \leq \max \{f(H):|V(H)|=k, H \notin \mathcal{F}\} \leq 4 k-2
$$

There are many classes of graphs for which $f(H)=k$, which follows, for example, from Proposition 2. We believe that the above upper bound could be improved to $2 k-1$ with a more careful analysis, and, perhaps to $k+c$, where c is a constant. As far as the lower bound is concerned, we have only one example when $f(H)=k+2$ for $k=4$, provided by Lemma 3. It will be very interesting to see constructions of graphs giving better lower bounds on f.

References

[1] Akiyama, J., Exoo, G., Harary, F., The graphs with all induced subgraphs isomorphic, Bull. Malaysian Math. Soc. (2), 2 (1979), no. 1, 43-44.
[2] Borowiecka-Olszewska, M., Drgas-Burchardt, E., Mihók, P., Minimal vertex Ramsey graphs and minimal forbidden subgraphs, Discrete Math., 286 (2004), no. 1-2, 31-36.
[3] Brown, J., Rödl, V., A Ramsey type problem concerning vertex colorings, J. Combin. Theory Ser. B, 52 (1991), no. 1, 45-52.
[4] Bosák, J., Induced subgraphs, Finite and infinite sets, Vol. I, II (Eger, 1981), Colloq. Math. Soc. János Bolyai, 37, North-Holland, Amsterdam (1984), 109-118.
[5] Deuber, W. A., Canonization, Combinatorics, Paul Erdős is eighty, Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest, 1 (1993), 107-123,
[6] Eaton, N., Rödl, V., A canonical Ramsey theorem, Random Structures Algorithms, 3 (1992), no. 4, 427-444.
[7] Graham, R., Rothschild, B., Spencer, J., Ramsey theory, Second edition. WileyInterscience Series in Discrete Mathematics and Optimization, New York, 1990.
[8] Łuczak, T., Rucinski, A., Urbanski, S., Vertex Ramsey properties of families of graphs, J. Combin. Theory Ser. B, 84 (2002), no. 2, 240-248.
[9] West, D., Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.

