Edge and total choosability of near-outerplanar graphs

Timothy J. Hetherington Douglas R. Woodall
School of Mathematical Sciences
University of Nottingham
Nottingham NG7 2RD, UK
pmxtjh@nottingham.ac.uk douglas.woodall@nottingham.ac.uk

Submitted: Jan 25, 2005; Accepted: Oct 18, 2006; Published: Oct 31, 2006
Mathematics Subject Classification: 05C15

Abstract

It is proved that, if G is a K_{4}-minor-free graph with maximum degree $\Delta \geqslant 4$, then G is totally $(\Delta+1)$-choosable; that is, if every element (vertex or edge) of G is assigned a list of $\Delta+1$ colours, then every element can be coloured with a colour from its own list in such a way that every two adjacent or incident elements are coloured with different colours. Together with other known results, this shows that the List-Total-Colouring Conjecture, that $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)$ for every graph G, is true for all K_{4}-minor-free graphs. The List-Edge-Colouring Conjecture is also known to be true for these graphs. As a fairly straightforward consequence, it is proved that both conjectures hold also for all $K_{2,3}$-minor free graphs and all $\left(\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)\right)$-minor-free graphs.

Keywords: Outerplanar graph; Minor-free graph; Series-parallel graph; List edge colouring; List total colouring.

1 Introduction

We use standard terminology, as defined in the references: for example, [8] or [11]. We distinguish graphs (which are always simple) from multigraphs (which may have multiple edges); however, our theorems are only for graphs. For a graph (or multigraph) G, its edge chromatic number, total (vertex-edge) chromatic number, edge choosability (or list edge chromatic number), total choosability, and maximum degree, are denoted by $\chi^{\prime}(G)$, $\chi^{\prime \prime}(G), \operatorname{ch}^{\prime}(G), \operatorname{ch}^{\prime \prime}(G)$, and $\Delta(G)$, respectively. So ch (G) is the smallest k for which G is totally k-choosable.

There is great interest in discovering classes of graphs H for which the choosability or list chromatic number $\operatorname{ch}(H)$ is equal to the chromatic number $\chi(H)$. The List-EdgeColouring Conjecture (LECC) and List-Total-Colouring Conjecture (LTCC) [1, 5, 6] are that, for every multigraph $G, \operatorname{ch}^{\prime}(G)=\chi^{\prime}(G)$ and $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)$, respectively; so the
conjectures are that $\operatorname{ch}(H)=\chi(H)$ whenever H is the line graph or the total graph of a multigraph G.

For an outerplanar (simple) graph G, Wang and Lih [9] proved that $\operatorname{ch}^{\prime}(G)=\chi^{\prime}(G)=$ $\Delta(G)$ if $\Delta(G) \geqslant 3$ and $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)=\Delta(G)+1$ if $\Delta(G) \geqslant 4$. For the larger class of K_{4}-minor-free (series-parallel) graphs, the first of these results had already been proved by Juvan, Mohar and Thomas [7], and we will prove the second in Section 2, following an incomplete outline proof by Zhou, Matsuo and Nishizeki [13].

Woodall [12] filled in the missing case by proving that every K_{4}-minor-free graph with maximum degree 3 is totally 4 -choosable. Incorporating obvious results for $\Delta=1$ and known results [4, 6] for $\Delta=2$, we can summarize the situation for both edge and total colourings as follows.

Theorem 1.1. The LECC and LTCC hold for all K_{4}-minor-free graphs. In fact, if G is a K_{4}-minor-free graph with maximum degree Δ, then $\operatorname{ch}^{\prime}(G)=\chi^{\prime}(G)=\Delta$ and $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)=\Delta+1$, apart from the following exceptions:
(i) if $\Delta=1$ then $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)=3=\Delta+2$;
(ii) if $\Delta=2$ and G has an odd cycle as a component, then $\operatorname{ch}^{\prime}(G)=\chi^{\prime}(G)=3=\Delta+1$;
(iii) if $\Delta=2$ and G has a component that is a cycle whose length is not divisible by 3 , then $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)=4=\Delta+2$.

It is well known that a graph is outerplanar if and only if it is both K_{4}-minor-free and $K_{2,3}$-minor-free. By a near-outerplanar graph we mean one that is either K_{4}-minorfree or $K_{2,3}$-minor-free. In fact, in the following theorem we will replace the class of $K_{2,3}$-minor-free graphs by the slightly larger class of $\left(\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)\right)$-minor-free graphs, where $\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)$ is the graph obtained from $K_{2,3}$ by adding an edge joining two vertices of degree 2 , or, equivalently, it is the graph obtained from K_{4} by adding a vertex of degree 2 subdividing an edge. We will prove the following result in Section 3.

Theorem 1.2. The LECC and LTCC hold for all $\left(\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)\right)$-minor-free graphs. In fact, if G is a $\left(\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)\right)$-minor-free graph with maximum degree Δ, then $\operatorname{ch}^{\prime}(G)=$ $\chi^{\prime}(G)=\Delta$ and $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)=\Delta+1$, apart from the following exceptions: (i)-(iii) as in Theorem 1.1, and
(iv) if $\Delta=3$ and G has K_{4} as a component, then $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)=5=\Delta+2$.

We will make use of the following simple results. Theorem 1.3 is a slight extension of a theorem of Dirac [2]. Part (a) of Theorem 1.4 is contained in Theorem 1.1, and follows from the well-known result [4] that a cycle of even length is 2 -choosable (or, equivalently, edge-2-choosable). Part (b) is an easy exercise (using part (a)), but it also follows from the result of Ellingham and Goddyn [3] that a d-regular edge- d-colourable planar graph is edge- d-choosable.

Theorem 1.3. [10] A K_{4}-minor-free graph G with $|V(G)| \geqslant 4$ has at least two nonadjacent vertices with degree at most 2. Hence a K_{4}-minor-free graph with no vertices of degree 0 or 1 has at least two vertices with degree (exactly) 2.

Theorem 1.4. (a) $\operatorname{ch}^{\prime}\left(C_{4}\right)=\chi^{\prime}\left(C_{4}\right)=2$.
(b) $\operatorname{ch}^{\prime}\left(K_{4}\right)=\chi^{\prime}\left(K_{4}\right)=3$.

For brevity, when considering total colourings of a graph G, we will sometimes say that a vertex and an edge incident to it are adjacent or neighbours, since they correspond to adjacent or neighbouring vertices of the total graph $T(G)$ of G. As usual, $d(v)=d_{G}(v)$ will denote the degree of the vertex v in the graph G.

$2 K_{4}$-minor-free graphs with $\Delta \geqslant 4$

In this section we prove the following theorem. Our method of proof follows that outlined by Zhou, Matsuo and Nishizeki [13], which in turn is based on the proof of Juvan, Mohar and Thomas [7] for edge-choosability.

Theorem 2.1. Let G be a K_{4}-minor-free graph with maximum degree $\Delta \geqslant 4$. Then $\operatorname{ch}^{\prime \prime}(G)=\chi^{\prime \prime}(G)=\Delta+1$.

Proof. Clearly $\operatorname{ch}^{\prime \prime}(G) \geqslant \chi^{\prime \prime}(G) \geqslant \Delta+1$, and so it suffices to prove that $\operatorname{ch}^{\prime \prime}(G) \leqslant \Delta+1$. Fix the value of $\Delta \geqslant 4$, and suppose if possible that G is a minimal K_{4}-minor-free graph with maximum degree at most Δ such that $\operatorname{ch}^{\prime \prime}(G)>\Delta+1$. Assume that every edge e and vertex v of G is given a list $L(e)$ or $L(v)$ of $\Delta+1$ colours such that G has no proper total colouring from these lists. We will prove various statements about G. Clearly G is connected.

Claim 2.1. There is no vertex of degree 1 in G.
Proof. Suppose u is a vertex of G with only one neighbour, v. By the definition of G, $G-u$ has a proper total colouring from its lists. The edge $u v$ has at most Δ coloured neighbours, and so it can be given a colour from its list that is used on none of its neighbours; the vertex u is now easily coloured. These contradictions prove Claim 2.1.

Claim 2.2. G does not contain two adjacent vertices of degree 2 .
Proof. Suppose $x u v y$ is a path (or cycle, if $x=y$), where u and v both have degree 2. Then $G-\{u, v\}$ has a proper total colouring from its lists. The edges $x u$ and $v y$ can now be coloured as in Claim 2.1, followed by $u v$; and the vertices u and v now have only 3 coloured neighbours each and $\Delta+1 \geqslant 5$ colours in their lists, and so they can both be coloured. These contradictions prove Claim 2.2.

Claim 2.3. G does not contain a 4-cycle with two opposite vertices of degree 2 in G.

Fig. 1

Proof. Suppose $x u y v x$ is a 4 -cycle such that u and v have degree 2 in G. Then $G-\{u, v\}$ has a proper total colouring from its lists. The edges $x u, u y, y v, v x$ each have at least two usable colours (i.e., colours not already used on any neighbour) in their lists, and so can be coloured by Theorem 1.4(a). The vertices u and v now each have 4 coloured neighbours and $\Delta+1 \geqslant 5$ colours in their lists, and so they can be coloured.

Claim 2.4. G does not contain the configuration in Fig. 1(a), in which only x and y are incident with edges not shown.

Proof. Suppose it does. Then $G-w$ has a proper total colouring from its lists. The edge $w y$ can now be coloured, since it has at least one usable colour in its list. Now we can colour $u w$ and then w, since each of them has 4 coloured neighbours at the time of its colouring and a list of $\Delta+1 \geqslant 5$ colours.

Claim 2.5. G does not contain the configuration in Fig. 1(b), in which only x and y are incident with edges not shown.

Proof. Suppose it does. Then $G-\{u, v, w\}$ has a proper total colouring from its lists. For each uncoloured element z, let $L^{\prime}(z)$ denote the residual list of usable colours for z, comprising the colours in $L(z)$ that are not used on any neighbour of z in the colouring of $G-\{u, v, w\}$. The elements

$$
\begin{equation*}
v x, u x, u y, w y, u, u w, u v \tag{1}
\end{equation*}
$$

have usable lists of at least $2,2,2,2,3,5$ and 5 colours, respectively, since $\Delta+1 \geqslant 5$. (The vertices v and w can be coloured last, since each has four neighbours and a list of $\Delta+1 \geqslant 5$ colours.) If we try to colour the elements in the order given in (1), we will succeed except possibly with $u v$. If $L^{\prime}(u v) \cap L^{\prime}(u y)=\emptyset$ then we will succeed with $u v$ as well; so we may suppose that $L^{\prime}(u v) \cap L^{\prime}(u y) \neq \emptyset$, and similarly (by symmetry) that there exists some colour $c_{1} \in L^{\prime}(u x) \cap L^{\prime}(u w)$. If $v x$ and $u y$ can be given the same colour, then the remaining elements can be coloured in the order (1); so we may suppose that $L^{\prime}(v x) \cap L^{\prime}(u y)=\emptyset$. If $u x$ can be given a colour that is not in the list of $v x$, then we can colour the elements in the order (1) except that $v x$ is coloured last; so we may suppose that $L^{\prime}(u x) \subseteq L^{\prime}(v x)$, which means that $L^{\prime}(u x) \cap L^{\prime}(u y)=\emptyset$, and also that $c_{1} \in L^{\prime}(v x) \cap L^{\prime}(u w)$. If $c_{1} \in L^{\prime}(u)$, then give colour c_{1} to $v x$ and u, and then colour the remaining elements in the order (1), which is possible since $c_{1} \notin L^{\prime}(u y)$ and $u v$ has two
neighbours with the same colour. If however $c_{1} \notin L^{\prime}(u)$, then give colour c_{1} to $v x$ and $u w$, and then colour $w y$, $u y$ (which is possible since $c_{1} \notin L^{\prime}(u y)$), then $u x$ (since the colour of $u y$ is not in its list), then u (since $c_{1} \notin L^{\prime}(u)$), and finally $u v$. In all cases the colouring can be completed, which is a contradiction. This completes the proof of Claim 2.5.

However, Claims 2.1-2.5 give a contradiction, since Juvan, Mohar and Thomas [7] proved that every K_{4}-minor-free graph contains at least one of the configurations that is proved to be impossible in these Claims (and we will prove a slightly stronger result than this at the end of the proof of Theorem 1.2 in the next section). This completes the proof of Theorem 2.1.

3 Extension to ($\left.\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)\right)$-minor-free graphs

In this section we use Theorem 1.1 to prove Theorem 1.2. We will need the following two simple lemmas.

Lemma 3.1. Let G be a $\left(\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)\right)$-minor-free graph. Then each block of G is either K_{4}-minor-free or isomorphic to K_{4}.

Proof. If some block B of G is not K_{4}-minor-free then it has a K_{4} minor. Since K_{4} has maximum degree 3 , it follows that B has a subgraph H homeomorphic to K_{4}. Since any graph obtained by subdividing an edge of K_{4}, or by adding a path joining two vertices of K_{4}, has a $\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)$ minor, it follows that $H \cong K_{4}$ and $B=H$.

Lemma 3.2. $\operatorname{ch}^{\prime \prime}\left(K_{4}\right)=\chi^{\prime \prime}\left(K_{4}\right)=5$. In fact, if one vertex z_{0} of K_{4} is precoloured, each edge incident with z_{0} is given a list of three colours not including the colour of z_{0}, and every other vertex and edge of K_{4} is given a list of five colours, then the given colouring of z_{0} can be extended to all the remaining vertices and edges.

Proof. It is clear that $\operatorname{ch}^{\prime \prime}\left(K_{4}\right) \geqslant \chi^{\prime \prime}\left(K_{4}\right) \geqslant 5$, since there are ten elements (four vertices and six edges) to be coloured, and no colour can be used on more than two of them. We must prove that $\mathrm{ch}^{\prime \prime}\left(K_{4}\right) \leqslant 5$. To do this, suppose that z_{0} is coloured, and lists are assigned, as in the second part of the lemma. Then the edges incident with z_{0} can be coloured from their lists. The remaining uncoloured vertices and edges form a K_{3}, and each of them has a residual list of at least three usable colours. Since $\operatorname{ch}^{\prime \prime}\left(K_{3}\right)=3$ by Theorem 1.1, these elements can all be coloured from their lists. (This argument is taken from the proof of Theorem 3.1 in [6].)

We can now prove Theorem 1.2.
Proof of Theorem 1.2. Let G be a $\left(\bar{K}_{2}+\left(K_{1} \cup K_{2}\right)\right)$-minor-free graph with maximum degree Δ. If $\Delta \leqslant 2$ then the result follows from Theorem 1.1, since every graph with maximum degree $\leqslant 2$ is K_{4}-minor-free. If $\Delta=3$ then the result again follows from Theorem 1.1, since by Lemma 3.1 and the value of Δ every component of G is either K_{4}-minor-free or isomorphic to K_{4}, and $\operatorname{ch}^{\prime}\left(K_{4}\right)=\chi^{\prime}\left(K_{4}\right)=3$ by Theorem 1.4(b), and $\operatorname{ch}^{\prime \prime}\left(K_{4}\right)=\chi^{\prime \prime}\left(K_{4}\right)=5$ by Lemma 3.2. So we may assume that $\Delta \geqslant 4$.

Clearly $\operatorname{ch}^{\prime}(G) \geqslant \chi^{\prime}(G) \geqslant \Delta$ and $\operatorname{ch}^{\prime \prime}(G) \geqslant \chi^{\prime \prime}(G) \geqslant \Delta+1$, and so it suffices to prove that $\operatorname{ch}^{\prime}(G) \leqslant \Delta$ and $\operatorname{ch}^{\prime \prime}(G) \leqslant \Delta+1$. Let G be a minimal counterexample to either of these results. Clearly G is connected. By Lemma 3.1, every block of G is either K_{4}-minor-free or isomorphic to K_{4}. If G is 2-connected, then G is K_{4}-minor-free, since its maximum degree is too large for it to be isomorphic to K_{4}, and so the result follows from Theorem 1.1. So we may suppose that G is not 2 -connected. Let B be an end-block of G with cut-vertex z_{0}.

Claim 3.1. $B \not \neq K_{4}$.
Proof. Suppose $B \cong K_{4}$. Suppose first that G is a minimal counterexample to the statement that $\operatorname{ch}^{\prime}(G) \leqslant \Delta$, and suppose that every edge of G is given a list of Δ colours. Then the edges of $G-\left(B-z_{0}\right)$ can be properly coloured from these lists. Since each edge of B still has a residual list of at least 3 usable colours, and since $\operatorname{ch}^{\prime}\left(K_{4}\right)=3$ by Theorem 1.4(b), this colouring can be extended to the edges of B. This shows that $\operatorname{ch}^{\prime}(G) \leqslant \Delta$, contradicting the choice of G.

So suppose now that G is a minimal counterexample to the statement that $\operatorname{ch}^{\prime \prime}(G) \leqslant$ $\Delta+1$, and suppose that every vertex and edge of G is given a list of $\Delta+1$ colours. Then the vertices and edges of $G-\left(B-z_{0}\right)$ can be properly coloured from these lists. Each edge of B incident with z_{0} has a residual list of at least $(\Delta+1)-(\Delta-3)-1=3$ usable colours, not including the colour of z_{0}, and each other vertex and edge of B has a list of at least 5 colours. By Lemma 3.2 this colouring can be extended to all the remaining vertices and edges of B. This shows that $\operatorname{ch}^{\prime \prime}(G) \leqslant \Delta+1$, again contradicting the choice of G. This completes the proof of Claim 3.1.

In view of Claim 3.1 and Lemma 3.1, B must be K_{4}-minor-free. By the proof of Claim 2.1, $B \not \not K_{2}$, so that B is 2 -connected and $d_{G}\left(z_{0}\right) \geqslant 3$. (Note that Claims 2.12.5 were proved in [7] in the edge-colouring case, in which G is a minimal K_{4}-minor-free graph such that $\operatorname{ch}^{\prime}(G)>\Delta$; the proofs are essentially easier versions of the proofs in Theorem 2.1.) Let B_{1} be the graph whose vertices consist of all vertices of B with degree at least 3 in G, where two vertices are adjacent in B_{1} if and only if they are connected in G by an edge or a path whose internal vertices all have degree 2. By the proofs of Claims 2.2 and $2.3, B$ does not contain two adjacent vertices of degree 2 that are both different from z_{0}, nor a 4-cycle xuyvx such that u and v both have degree 2 and are different from z_{0}. It follows that B_{1} has no vertex with degree 0 or 1 . Moreover, any vertex with degree 2 in B_{1}, other than z_{0}, must occur in B as vertex u in Fig. 1(a) or 1 (b), where only x and y are incident with edges of G that are not shown (so that w, and v if present, have degree 2 in G and not just in B; that is, $z_{0} \notin\{u, w\}$ in Fig. 1(a) and $z_{0} \notin\{u, v, w\}$ in Fig. 1(b)). However, this is impossible by the proof of Claim 2.4 or Claim 2.5. This means that B_{1} has no vertex of degree 2 other than z_{0}. But clearly B_{1} is a minor of B, and so is K_{4}-minor-free, and this means that B_{1} contains at least two vertices of degree 2, by Theorem 1.3. This contradiction completes the proof of Theorem 1.2.

References

[1] O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997), 184-204.
[2] G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85-92.
[3] M. N. Ellingham and L. Goddyn, List edge colourings of some 1-factorable multigraphs, Combinatorica 16 (1996), 343-352.
[4] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr. Numer. 26 (1980), 125-157.
[5] A. J. W. Hilton and P. D. Johnson, The Hall number, the Hall index, and the total Hall number of a graph, Discrete Applied Math. 94 (1999), 227-245.
[6] M. Juvan, B. Mohar and R. Škrekovski, List total colourings of graphs, Combin. Probab. Comput. 7 (1998), 181-188.
[7] M. Juvan, B. Mohar and R. Thomas, List edge-colorings of series-parallel graphs, Electron. J. Combin. 6 (1999), \#R42, 6pp.
[8] A. V. Kostochka and D. R. Woodall, Choosability conjectures and multicircuits, Discrete Math. 240 (2001), 123-143.
[9] W. Wang and K.-W. Lih, Choosability, edge choosability, and total choosability of outerplane graphs, European J. Combin 22 (2001), 71-78.
[10] D. R. Woodall, A short proof of a theorem of Dirac's about Hadwiger's conjecture, J. Graph Theory 16 (1992), 79-80.
[11] D. R. Woodall, List colourings of graphs, Surveys in Combinatorics, 2001 (ed. J. W. P. Hirschfeld), London Math. Soc. Lecture Note Series 288, Cambridge University Press, Cambridge, 2001, 269-301.
[12] D. R. Woodall, Total 4-choosability of series-parallel graphs, Electron. J. Combin. 13 (2006), \#R97, 36pp.
[13] X. Zhou, Y. Matsuo and T. Nishizeki, List total colorings of series-parallel graphs, Computing and Combinatorics, Lecture Notes in Comput. Sci., 2697, Springer, Berlin, 2003, 172-181.

