On Mixed Codes with Covering Radius 1 and Minimum Distance 2

Wolfgang Haas
Albert-Ludwigs-Universität
Mathematisches Institut
Eckerstr. 1
79104 Freiburg, Germany
wolfganghaas@gmx.net
Jörn Quistorff
Department 4
FHTW Berlin (University of Applied Sciences)
10313 Berlin, Germany
J.Quistorff@fhtw-berlin.de

Submitted: Mar 13, 2007; Accepted: Jul 4, 2007; Published: Jul 19, 2007
Mathematics Subject Classifications: 94B60, 94B65, 05B15

Abstract

Let R, S and T be finite sets with $|R|=r,|S|=s$ and $|T|=t$. A code $C \subset R \times S \times T$ with covering radius 1 and minimum distance 2 is closely connected to a certain generalized partial Latin rectangle. We present various constructions of such codes and some lower bounds on their minimal cardinality $K(r, s, t ; 2)$. These bounds turn out to be best possible in many instances. Focussing on the special case $t=s$ we determine $K(r, s, s ; 2)$ when r divides s, when $r=s-1$, when s is large, relative to r, when r is large, relative to s, as well as $K(3 r, 2 r, 2 r ; 2)$. Some open problems are posed. Finally, a table with bounds on $K(r, s, s ; 2)$ is given.

1 Introduction

Let Q denote a finite alphabet with $|Q|=q \geq 2$. The Hamming distance $d\left(y, y^{\prime}\right)$ between $y, y^{\prime} \in Q^{n}$ denotes the number of coordinates in which y and y^{\prime} differ. For $y \in Q^{n}$ and $C \subset Q^{n}$ with $C \neq \emptyset$ we set $d(y, C)=\min _{x \in C} d(y, x)$. We say that y is R-covered by C if $d(y, C) \leq R$ and that $C^{\prime} \subset Q^{n}$ is R-covered by C, if every $y \in C^{\prime}$ is R-covered by C. A code $C \subset Q^{n}$ of length n has covering radius (at most) R, if Q^{n} is R-covered by C. C has minimum distance (at least) d, when any two distinct codewords have Hamming distance at least d. Combinatorial coding theory deals with $A_{q}(n, d)$, the maximal cardinality of a
code $C \subset Q^{n}$ with minimum distance d, and $K_{q}(n, R)$, the minimal cardinality of a code $C \subset Q^{n}$ with covering radius R, see [2].
q-ary codes with covering radius (at most) 1 and minimum distance (at least) 2 as well as the corresponding non-extendable partial multiquasigroups have been studied in $[9,7,8,1,6]$. Equivalent objects are pairwise non-attacking rooks which cover all cells of a generalized chessboard and non-extendable partial Latin hypercubes. Denote by $K_{q}(n, 1,2)$ the minimal cardinality of a code $C \subset Q^{n}$ with covering radius 1 and minimum distance 2. Well-known results are $K_{q}(2,1,2)=q$ and $K_{q}(3,1,2)=\left\lceil q^{2} / 2\right\rceil$ as well as $K_{2}(4,1,2)=4, K_{2}(5,1,2)=8, K_{2}(6,1,2)=12, K_{3}(4,1,2)=9, K_{4}(4,1,2)=28$ and $K_{q}(n+1,1,2) \leq q \cdot K_{q}(n, 1,2)$, see $[4,3,8,6]$.

A natural generalization is to consider mixed codes with covering radius 1 and minimum distance 2. In the whole paper r, s, t denote positive integers and $R=\{1,2, \ldots, r\}$, $S=\{1,2, \ldots, s\}$ as well as $T=\{1,2, \ldots, t\}$. The minimal cardinality $K(r, s, t)$ of a code $C \subset R \times S \times T$ with covering radius 1 was studied by Numata [5], see also [2, Section 3.7]. Let $K(r, s ; 2)$ and $K(r, s, t ; 2)$ denote the minimal cardinality of a code $C \subset R \times S$ and of a code $C \subset R \times S \times T$, both with covering radius 1 and minimum distance 2, respectively. In case of codes of length $2, K(r, s ; 2)=\min \{r, s\}$ is obvious. The present paper deals with codes of length 3. Note that $K(r, s, t ; 2)$ as well as $K(r, s, t)$ are invariant under permutation of the parameters r, s and t.

There is an interesting connection between $K(r, s, t ; 2)$ and certain generalized partial Latin rectangles. A Latin square of order r is an $r \times r$ matrix with entries from a r-set R such that every element of R appears exactly once in every row and every column.

Definition 1. A generalized partial Latin rectangle of order $s \times t$ and size m with entries from a r-set R is an $s \times t$ matrix with m filled and st $-m$ empty cells such that every element of R appears at most once in every row and every column. In case of $s=t$, we call it generalized partial Latin square.

Clearly, such an object corresponds to a code $C \subset R \times S \times T$ with minimum distance 2 , and vice versa.

Definition 2. A generalized partial Latin rectangle with entries from R is called nonextendable if for each empty cell every element of R appears in the row or the column of that cell.

Clearly, a non-extendable generalized partial Latin rectangle of order $s \times t$ and size m with entries from R corresponds to a code $C \subset R \times S \times T$ of cardinality m with covering radius 1 and minimum distance 2, and vice versa. Hence, the existence of such an object yields $K(r, s, t ; 2) \leq m$.

Figure I. A non-extendable generalized partial Latin square of order 3 and size 7 with entries from $\{1,2,3,4\}$ and the corresponding code.

1	2	3
2	1	
3		4

$$
\begin{array}{rll}
\{(1,1,1), & (2,1,2), & (3,1,3) \\
(2,2,1), & (1,2,2), & \\
(3,3,1), & & (4,3,3)\} \tag{4,3,3}
\end{array}
$$

The paper is organized as follows: In Section 2 we give upper bounds for $K(r, s, t ; 2)$ by presenting various constructions of such codes (or the corresponding partial Latin rectangles). Our focus will be on the special case $t=s$. In Section 3 we give lower bounds for $K(r, s, t ; 2)$, which will be used in Section 4, to prove the optimality of some of the constructions of Section 2. In this way we determine $K(r, s, s ; 2)$ when r divides s (Theorem 22), when $r=s-1$ (Theorem 27), when $s \geq r^{2}$ (Theorem 23), when $r \geq 2 s-2$ (Theorem 26) as well as $K(3 r, 2 r, 2 r ; 2)$ (Theorem 24). In Section 5 open problems are posed. Finally, a table with bounds on $K(r, s, s ; 2)$ is given.

For technical reasons we set $K(a, b, c ; 2)=0$ if at least one of the variables equals zero.

2 Constructions

We often deal with the special case $t=s$. A trivial upper bound is

$$
\begin{equation*}
K(r, s, s ; 2) \leq s \cdot \min \{r, s\} . \tag{1}
\end{equation*}
$$

We start with our basic construction:
Theorem 3. Let n, s_{1}, \ldots, s_{n} be positive integers satisfying $s=\sum_{i=1}^{n} s_{i}$. Let R_{i} be an s_{i}-subset of R for every $i \in\{1, \ldots, n\}$ such that $R_{i} \cup R_{j} \cup R_{k}=R$ for all $i \neq j \neq k \neq i$. Set $R_{i j}=R \backslash\left(R_{i} \cup R_{j}\right)$ and $r_{i j}=\left|R_{i j}\right|$ for all $i \neq j$. Then

$$
K(r, s, s ; 2) \leq \sum_{i=1}^{n} s_{i}^{2}+2 \sum_{1 \leq i<j \leq n} K\left(r_{i j}, s_{i}, s_{j} ; 2\right)
$$

Proof. Let $A_{i i}$ be a Latin square of order s_{i} with entries from $R_{i}=: R_{i i}$. If $i<j$ then let $A_{i j}$ be a non-extendable generalized partial Latin rectangle of order $s_{i} \times s_{j}$ and size $K\left(r_{i j}, s_{i}, s_{j} ; 2\right)$ with entries from $R_{i j}$. Set $A_{j i}=A_{i j}^{T}$. Since $R_{i j} \cap R_{i k}=R_{j i} \cap R_{k i}=\emptyset$ if $j \neq k$, the matrix

$$
\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \tag{2}\\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right)
$$

is the desired non-extendable generalized partial Latin square of order s and size $\sum_{i=1}^{n} s_{i}^{2}+$ $2 \sum_{i<j} K\left(r_{i j}, s_{i}, s_{j} ; 2\right)$ with entries from R.

The following corollary is a generalization of Kalbfleisch and Stanton's [4] construction which proved $K_{q}(3,1,2)=K(q, q, q ; 2) \leq\lceil q / 2\rceil^{2}+\lfloor q / 2\rfloor^{2}=\left\lceil q^{2} / 2\right\rceil$.

Corollary 4. Let n, s_{1}, \ldots, s_{n} be positive integers satisfying $s=\sum_{i=1}^{n} s_{i}$. Let R_{i} be an s_{i}-subset of R for every $i \in\{1, \ldots, n\}$ such that $R_{i} \cup R_{j}=R$ for all $i \neq j$. Then

$$
\begin{equation*}
K(r, s, s ; 2) \leq \sum_{i=1}^{n} s_{i}^{2} \tag{3}
\end{equation*}
$$

Proof. Apply Theorem 3. Since $R_{i j}=\emptyset$ if $i \neq j$, all matrices $A_{i j}$ are empty in that case.

Corollary 5. Assume r divides s. Set $n=s / r+1$ and write $s=(n-1) r=q n+c$ with $0 \leq c<n$. Then $K(r, s, s ; 2) \leq s q+c(q+1)$.
Proof. If $r=1$ then $q=0$ and $c=s$. Hence, the desired bound follows by (1). Let $r \geq 2$, implying $q>0$. For $i \in\{1, \ldots, n\}$ we set

$$
s_{i}=\lfloor(s+i-1) / n\rfloor=\left\{\begin{array}{lll}
q & \text { if } \quad i \leq n-c \tag{4}\\
q+1 & \text { if } \quad n-c<i .
\end{array}\right.
$$

Then $\sum_{i=1}^{n} s_{i}=q(n-c)+(q+1) c=q n+c=s$ implying $\sum_{i=1}^{n}\left(r-s_{i}\right)=r n-s=r$. Since $1 \leq q \leq s_{i} \leq q+1 \leq r$ we thus may partition $R=\bigcup_{i=1}^{n} R_{i}^{\prime}$ into pairwise disjoint subsets of cardinality $\left|R_{i}^{\prime}\right|=r-s_{i}$. Then $R_{i}=R \backslash R_{i}^{\prime}$ is an s_{i}-subset of R for every $i \in\{1, \ldots, n\}$ such that $R_{i} \cup R_{j}=R$ for all $i \neq j$. By (3) and (4) we now get

$$
K(r, s, s ; 2) \leq \sum_{i=1}^{n} s_{i}^{2}=q^{2}(n-c)+(q+1)^{2} c=s q+c(q+1)
$$

Corollary 6. $K(r, s, s ; 2) \leq r s-r^{2}+r$ if $s \geq r^{2}$.
Proof. If $r=1$ then the bound follows from (1), so assume $r \geq 2$. We modify Corollary 4 (with $n=r+1$): Let $A_{i i}$ be a Latin square of order $r-1$ with entries from $R \backslash\{i\}$ if $1 \leq i \leq r$. Let $A_{r+1, r+1}$ be a non-extendable generalized partial Latin square of order $s-r(r-1) \geq r$ and size $r(s-r(r-1))$ with entries from R, which is easy to construct from a Latin square of the same order. Then a matrix of type (2), where all matrices $A_{i j}$ are empty if $i \neq j$, is the desired object and, hence, $K(r, s, s ; 2) \leq(r-1)^{2} r+r(s-r(r-1))=$ $r s-r^{2}+r$.

Corollary 7. $K(r+s+t, s+t, s+t ; 2) \leq s^{2}+t^{2}+2 K(r, s, t ; 2)$.
Proof. Apply Theorem 3 with (r, s) replaced by $(r+s+t, s+t)$, R replaced by $\{1, \ldots, r+$ $s+t\}, n=2$ and $R_{1}=\{1, \ldots, s\}$ as well as $R_{2}=\{s+1, \ldots, s+t\}$.
Corollary 8. $K(r+s, r+2 s, r+2 s ; 2) \leq r^{2}+2 s^{2}+2 K(r, s, s ; 2)$ holds true. Especially $K(2 r, 3 r, 3 r ; 2) \leq 3 r^{2}+2\left\lceil r^{2} / 2\right\rceil$.

Proof. Apply Theorem 3 with (r, s) replaced by $(r+s, r+2 s), R$ replaced by $\{1, \ldots, r+s\}$, $n=3$ and $R_{1}=\{1, \ldots, r\}$ as well as $R_{2}=R_{3}=\{r+1, \ldots, r+s\}$.

The following technical theorem has important consequences.
Theorem 9. Assume $R^{\prime} \subset R, S^{\prime} \subset S$ and $T^{\prime} \subset T$. Let $C \subset R \times S \times T$ be a code with covering radius 1 and minimum distance 2. Then there is a code $C^{\prime} \subset R^{\prime} \times S^{\prime} \times T^{\prime}$ of cardinality

$$
\left|C^{\prime}\right| \leq\left|\left\{x \in C \mid d\left(x, R^{\prime} \times S^{\prime} \times T^{\prime}\right) \leq 1\right\}\right| \leq|C|
$$

with covering radius 1 and minimum distance 2 .

Proof. Set $\mathcal{W}=R^{\prime} \times S^{\prime} \times T^{\prime}$ and $n=|C \backslash \mathcal{W}|$. We recursively define a sequence $C_{0}, \ldots, C_{n} \subset R \times S \times T$ of codes by the following procedure. Let $C_{0}=C$. Assume $i \in\{1, \ldots, n\}$ and fix $x \in C_{i-1} \backslash \mathcal{W}$. If there exists a $y \in \mathcal{W}$ with $d(x, y)=1$, which is not covered by $C_{i-1} \cap \mathcal{W}$ then set $C_{i}=\{y\} \cup C_{i-1} \backslash\{x\}$, otherwise set $C_{i}=C_{i-1} \backslash\{x\}$ (the latter surely is the case if $d(x, \mathcal{W})>1$). Clearly, we have $C_{n} \subset \mathcal{W}$. Moreover by induction one easily sees, that $C_{i} \cap \mathcal{W}$ has minimum distance 2 for all i and \mathcal{W} is covered by C_{i}. Hence $C^{\prime}=C_{n}$ is the desired code.

Corollary 10. $r^{\prime} \leq r, s^{\prime} \leq s$ and $t^{\prime} \leq t$ imply $K\left(r^{\prime}, s^{\prime}, t^{\prime} ; 2\right) \leq K(r, s, t ; 2)$.
Corollary 11. $K\left(r_{1}, s_{1}, t_{1} ; 2\right)+K\left(r_{2}, s_{2}, t_{2} ; 2\right) \leq K\left(r_{1}+r_{2}, s_{1}+s_{2}, t_{1}+t_{2} ; 2\right)$.
Proof. Let $R_{1} \cup R_{2}, S_{1} \cup S_{2}$ and $T_{1} \cup T_{2}$ be decompositions of R, S and T respectively with $\left|R_{i}\right|=r_{i},\left|S_{i}\right|=s_{i}$ and $\left|T_{i}\right|=t_{i}$ for $i \in\{1,2\}$. Let $C \subset R \times S \times T$ be a code with covering radius 1 and minimum distance 2 satisfying $|C|=K\left(r_{1}+r_{2}, s_{1}+s_{2}, t_{1}+t_{2} ; 2\right)$. Then the codes $C^{(1)}$ and $C^{(2)}$ defined by $C^{(i)}=\left\{x \in C \mid d\left(x, R_{i} \times S_{i} \times T_{i}\right) \leq 1\right\}$ are disjoint. Now Theorem 9 guarantees the existence of codes $C_{i} \subset R_{i} \times S_{i} \times T_{i}$ with covering radius 1 , minimum distance 2 and $\left|C_{i}\right| \leq\left|C^{(i)}\right|$ for both i. This implies $K\left(r_{1}, s_{1}, t_{1} ; 2\right)+$ $K\left(r_{2}, s_{2}, t_{2} ; 2\right) \leq\left|C_{1}\right|+\left|C_{2}\right| \leq\left|C^{(1)}\right|+\left|C^{(2)}\right| \leq|C|=K\left(r_{1}+r_{2}, s_{1}+s_{2}, t_{1}+t_{2} ; 2\right)$.

We now give a construction, which combines Theorem 3 with Theorem 9.
Theorem 12. Let $n, a, s_{1}, \ldots, s_{n}$ be positive integers satisfying $a<s=\sum_{i=1}^{n} s_{i}$ and $a \leq s_{1}$. Let R_{i} be an s_{i}-subset of R for every $i \in\{1, \ldots, n\}$ such that $R_{i} \cup R_{j} \cup R_{k}=R$ for all $i \neq j \neq k \neq i$. Set $R_{i j}=R \backslash\left(R_{i} \cup R_{j}\right)$ and $r_{i j}=\left|R_{i j}\right|$ for all $i \neq j$. Then

$$
K(r, s-a, s-a ; 2) \leq\left(\sum_{i=1}^{n} s_{i}^{2}+2 \sum_{1 \leq i<j \leq n} K\left(r_{i j}, s_{i}, s_{j} ; 2\right)\right)-a^{2}
$$

Proof. Let $C \subset R \times S \times S$ be a code of cardinality $m=\sum_{i=1}^{n} s_{i}^{2}+2 \sum_{1 \leq i<j \leq n} K\left(r_{i j}, s_{i}, s_{j} ; 2\right)$ with covering radius 1 and minimum distance 2 according to the proof of Theorem 3. Set $S^{\prime}=S \backslash\{1, \ldots, a\}$. Since $\left|C \cap\left(R \times\left(S \backslash S^{\prime}\right) \times\left(S \backslash S^{\prime}\right)\right)\right|=a^{2}$, Theorem 9 guarantees the existence of a code $C^{\prime} \subset R \times S^{\prime} \times S^{\prime}$ of cardinality $\left|C^{\prime}\right| \leq m-a^{2}$ with covering radius 1 and minimum distance 2 .

The application of Theorem 12 to $K(r, r, r ; 2)=\left\lceil r^{2} / 2\right\rceil$ shows
Corollary 13. If $a \leq\lceil r / 2\rceil$ then $K(r, r-a, r-a ; 2) \leq\left\lceil r^{2} / 2\right\rceil-a^{2}$.
We give another variant of Corollary 4.
Theorem 14. Let $n \geq 3, s_{1}, \ldots, s_{n}$ be positive integers satisfying $s=\sum_{i=1}^{n} s_{i}$. Let R_{i} be an s_{i}-subset of R for every $i \in\{1, \ldots, n\}$ such that $R_{i} \cup R_{j}=R$ for all $i \neq j$. For $i \leq\lfloor n / 2\rfloor$ set $t_{i}=\max \left\{s_{i}, s_{n+1-i}\right\}$. If $r^{\prime} \leq t_{i}$ for all $i \leq\lfloor n / 2\rfloor$ then

$$
K\left(r+r^{\prime}, s, s ; 2\right) \leq \sum_{i=1}^{n} s_{i}^{2}+2 r^{\prime} \sum_{i=1}^{\lfloor n / 2\rfloor} t_{i}
$$

Proof. Set $I=\{1, \ldots,\lfloor n / 2\rfloor\}$ and $R^{\prime}:=\left\{r+1, \ldots, r+r^{\prime}\right\}$. W.l.o.g. let $s_{i} \geq s_{n+1-i}$ for all $i \in I$, implying $t_{i}=s_{i}$. Let $A_{i i}$ be a Latin square of order s_{i} with entries from R_{i} for all $i \in\{1, \ldots, n\}$. For every $i \in I$ let $A_{i, n+1-i}$ be a partial Latin rectangle of order $s_{i} \times s_{n+1-i}$ and size $r^{\prime} \cdot s_{n+1-i}$ with entries from R^{\prime}, which exists since $r^{\prime} \leq s_{i}$. Clearly, every element of R^{\prime} appears exactly once in every column and exactly once in s_{n+1-i} of the s_{i} rows, while it does not appear in the remaining $s_{i}-s_{n+1-i}$ rows of $A_{i, n+1-i}$. Set $A_{n+1-i, i}=A_{i, n+1-i}^{T}$. Let $A_{i j}$ be an empty $s_{i} \times s_{j}$ matrix if $i \neq j \neq n+1-i$. Let $A^{(0)}$ be the matrix of type (2). By construction, it is a generalized partial Latin square of order s and size $\sum_{i=1}^{n} s_{i}^{2}+2 r^{\prime} \sum_{i=1}^{\lfloor n / 2\rfloor} s_{n+1-i}$ with entries from $R \cup R^{\prime}$. Set

$$
M^{(0)}=\left\{\left(x, i, i^{\prime}\right) \in R^{\prime} \times I \times \mathbb{N} \mid \text { there is no } x \text { in row } i^{\prime} \leq s_{i} \text { of } A_{i, n+1-i}\right\}
$$

and $m=\left|M^{(0)}\right|=r^{\prime} \sum_{i=1}^{\lfloor n / 2\rfloor}\left(s_{i}-s_{n+1-i}\right)$. We recursively define a sequence $A^{(1)}, \ldots, A^{(m)}$ of generalized partial Latin squares of order s and a sequence $M^{(1)}, \ldots, M^{(m)}$ of sets by the following procedure. Assume $k \in\{1, \ldots, m\}$ and choose $\left(x, i, i^{\prime}\right) \in M^{(k-1)}$. Denote by a the row of $A^{(k-1)}$ corresponding to row i^{\prime} of $A_{i, n+1-i}$, i.e. $a=i^{\prime}+\sum_{j=1}^{i-1} s_{j}$. If there is an empty cell (a, b) in $A^{(k-1)}$ with $a<b \leq n$, such that neither the row a nor the column b has entry x, then construct $A^{(k)}$ from $A^{(k-1)}$ by adding entry x in both, position (a, b) and position (b, a). Otherwise let $A^{(k)}=A^{(k-1)}$. In any case set $M^{(k)}=M^{(k-1)} \backslash\left\{\left(x, i, i^{\prime}\right)\right\}$. By induction, one easily sees that $\left|M^{(k)}\right|=\left|M^{(0)}\right|-k$ and $A^{(m)}$ is the desired non-extendable generalized partial Latin square.

Theorem 14 as well as Theorem 12 are often applied in combination with Corollary 5 , where the numbers s_{i} are defined by (4), see for instance the tables in Section 5 . It is possible to modify Theorem 14 by using Theorem 9, similar to the proof of Theorem 12.

The next theorem is a modification of [7, Theorem 4].
Theorem 15. $K(t r, t s, t s ; 2) \leq t^{2} K(r, s, s ; 2)$.
Proof. Let B denote a non-extendable generalized partial Latin square of order s and size $K(r, s, s ; 2)$ with entries from R. Replace every entry x in B by a Latin square of order t with entries from $T \times\{x\}$ and every empty cell in B by an empty $t \times t$ matrix. The resulting matrix is a non-extendable generalized partial Latin square of order $t s$ and size $t^{2} K(r, s, s ; 2)$ with entries from the $t r$-set $T \times R$.

Theorem 16. If $s \geq 2$ then

$$
K(2 s-2, s, s ; 2) \leq \begin{cases}s(s-1) & \text { if } s \text { is even } \\ s(s-1)+1 & \text { if } s \text { is odd. }\end{cases}
$$

Proof. First assume that $s \geq 3$ is odd. We have to construct a non-extendable generalized partial Latin square of order s and size $s(s-1)+1$ with entries from $R^{*}=\{1, \ldots, 2 s-2\}$.

For $i, j \in S$ set

$$
a_{i j}= \begin{cases}i+j-1 & \text { if } i \leq j \text { and } i+j \leq s+1 \\ i+j-s-1 & \text { if } i \leq j<s \leq i+j-2 \\ 2 i-2 & \text { if } j=s \text { and } 1<i \leq(s+1) / 2 \\ 2 i-s-2 & \text { if } j=s \text { and }(s+1) / 2<i \\ i+j+s-3 & \text { if } j+1<i \text { and } i+j \leq s+1 \\ i+j-1 & \text { if } j+1<i<s<i+j-1 \\ 2 j+s-2 & \text { if } i=s \text { and } 1<j \leq(s-1) / 2 \\ 2 j & \text { if } i=s \text { and }(s-1) / 2<j \leq s-2\end{cases}
$$

and let $a_{i j}$ be empty if $i=j+1$. It is easy to see that $A=\left(a_{i j}\right)$ is a generalized partial Latin square of the desired order and size with entries from R^{*}. For $j \in S \backslash\{s\}$ consider the empty cell in position $(j+1, j)$. Every element of R^{*} appears exactly once in the union of row $j+1$ and column j. Hence, A is non-extendable.

Now assume that $s \geq 2$ is even. Set

$$
a_{i j}= \begin{cases}i+j-2 & \text { if } i<j \text { and } i+j \leq s+1 \\ i+j-s-1 & \text { if } i<j<s \leq i+j-2 \\ 2 i-2 & \text { if } j=s \text { and } 1<i \leq s / 2 \\ 2 i-s-1 & \text { if } j=s \text { and } s / 2<i<s \\ i+j+s-3 & \text { if } j<i \text { and } i+j \leq s+1 \\ i+j-2 & \text { if } j<i<s<i+j-1 \\ 2 j+s-3 & \text { if } i=s \text { and } 1<j \leq s / 2 \\ 2 j-2 & \text { if } i=s \text { and } s / 2<j<s\end{cases}
$$

and let $a_{i i}$ be empty. Analogously, $A=\left(a_{i j}\right)$ is the desired non-extendable generalized partial Latin square.

Corollary 17. If $s \leq r<2 s$ with even r and $2 s-r$ divides s, then $K(r, s, s ; 2) \leq r s / 2$.
Proof. Set $m=s /(2 s-r)$ and $t=(2 s-r) / 2$. From Theorem 15 and Theorem 16 follows $K(r, s, s ; 2)=K(t(4 m-2), 2 t m, 2 t m ; 2) \leq t^{2} K(4 m-2,2 m, 2 m) \leq t^{2} 2 m(2 m-1)=$ $r s / 2$.

3 Lower bounds

For technical reasons we define the minimal cardinality $K^{\prime}(r, s, t ; 2)$ of a code $C \subset R \times S \times T$ with covering radius 1 and minimum distance 2 which satisfies $|C \cap(\{1\} \times S \times T)|=$ $\min \{s, t\}$. Again let $K^{\prime}(a, b, c ; 2)$ equal zero, if one of the variables equals zero.

The following lemma is from [7].
Lemma 18. Let x_{i}, y_{i} with $i \in\{1, \ldots, n\}$ be integers satisfying $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$ and $\left|y_{i}-y_{j}\right| \leq 1$ for all i, j. Then $\sum_{i=1}^{n} x_{i}^{2} \geq \sum_{i=1}^{n} y_{i}^{2}$.

Now, we generalize [7, Theorem 1].

Theorem 19. Let B be an $s \times t$ matrix with entries from $\{0,1\}$. Assume for every 0 -entry in B the number of 1's together in the row and the column of that entry is at least r. Let m denote the total number of 1's in B. If $m=a_{1} s+b_{1}=a_{2} t+b_{2}$ with $0 \leq b_{1}<s$ and $0 \leq b_{2}<t$, then

$$
\begin{equation*}
(r+s+t) m \geq r s t+s a_{1}^{2}+\left(2 a_{1}+1\right) b_{1}+t a_{2}^{2}+\left(2 a_{2}+1\right) b_{2} . \tag{5}
\end{equation*}
$$

Proof. Let $B=\left(b_{i j}\right)$ and denote by $D=\left\{(i, j) \in S \times T \mid b_{i j}=1\right\}$ the set of all positions of 1-entries. Clearly, $|D|=m$. For $i \in S, j \in T$ let $\varphi(j)=|\{k \in S \mid(k, j) \in D\}|$ and $\psi(i)=|\{k \in T \mid(i, k) \in D\}|$. It is easy to see that $\sum_{j \in T} \varphi(j)=\sum_{i \in S} \psi(i)=m$. Let $E=\{(i, j, k) \in S \times T \times S \mid(k, j) \in D\}$ and $F=\{(i, j, k) \in S \times T \times T \mid(i, k) \in D\}$. Clearly, $|E|=\sum_{(i, j) \in S \times T} \varphi(j)=s m$ and $|F|=\sum_{(i, j) \in S \times T} \psi(i)=t m$. Let $E^{\prime}=\{(i, j, k) \in$ $E \mid(i, j) \in D\}$ and $F^{\prime}=\{(i, j, k) \in F \mid(i, j) \in D\}$. Lemma 18 implies

$$
\left|E^{\prime}\right|=\sum_{(i, j) \in D} \varphi(j)=\sum_{j \in T} \varphi^{2}(j) \geq b_{2}\left(a_{2}+1\right)^{2}+\left(t-b_{2}\right) a_{2}^{2}
$$

and, analogously,

$$
\left|F^{\prime}\right|=\sum_{(i, j) \in D} \psi(i)=\sum_{i \in S} \psi^{2}(i) \geq b_{1}\left(a_{1}+1\right)^{2}+\left(s-b_{1}\right) a_{1}^{2} .
$$

Combining these results shows

$$
\begin{aligned}
(s t-m) r & \leq \sum_{(i, j) \in(S \times T) \backslash D}(\varphi(j)+\psi(i))=|E|-\left|E^{\prime}\right|+|F|-\left|F^{\prime}\right| \\
& \leq(s+t) m-b_{2}\left(a_{2}+1\right)^{2}-\left(t-b_{2}\right) a_{2}^{2}-b_{1}\left(a_{1}+1\right)^{2}-\left(s-b_{1}\right) a_{1}^{2}
\end{aligned}
$$

and (5) follows.
From this we deduce
Theorem 20. Let $m \leq$ st be an integer satisfying $m=a_{1} s+b_{1}=a_{2} t+b_{2}$ with $0 \leq b_{1}<s$ and $0 \leq b_{2}<t$. If

$$
\begin{equation*}
(r+s+t) m<r s t+s a_{1}^{2}+\left(2 a_{1}+1\right) b_{1}+t a_{2}^{2}+\left(2 a_{2}+1\right) b_{2} \tag{6}
\end{equation*}
$$

holds, then $K(r, s, t ; 2)>m$ as well as $K^{\prime}(r-1, s, t ; 2)>m($ when $r \geq 2)$.
Proof. Assume to the contrary, that $C \subset R \times S \times T$ is a code with covering radius 1, minimum distance 2 and $|C|=K(r, s, t ; 2)=m^{\prime} \leq m$. Let $A=\left(a_{i j}\right)$ be the corresponding non-extendable generalized partial Latin rectangle of size m^{\prime}, where we assume $a_{i j}=0$ if the corresponding cell is empty. Let $B^{\prime}=\left(b_{i j}\right)$ be the matrix of the same order with $b_{i j}=\min \left\{a_{i j}, 1\right\} \in\{0,1\}$. If necessary, replace some 0 's in B^{\prime} by 1 's until the total number of 1's in the new matrix B is m. Since A is non-extendable, every element of R appears in the row and the column of an 0 -entry in A. Thus for every 0 -entry in B the number of 1 's
together in the row and the column of that entry is at least r. Therefore the propositions of Theorem 19 are satisfied and (5) holds, contradicting (6). Hence $K(r, s, t ; 2)>m$. An easy modification yields the bound $K^{\prime}(r-1, s, t ; 2)>m$ for $r \geq 2$. Use the fact, that if $C \subset((R \backslash\{r\}) \times S \times T)$ additionally satisfies $|C \cap(\{1\} \times S \times T)|=\min \{s, t\}$, then the entry 1 in the partial Latin rectangle A occurs twice in the row and the column corresponding to a 0 -entry in A.

Theorem 21. Let a, b be nonnegative integers. Let $C \subset R \times S \times T$ be a code with $|C|=K(r, s, t ; 2)$, covering radius 1 and minimum distance 2 , such that $\mid C \cap(\{1\} \times S \times$ $T) \mid=a \leq b \leq \min \{s, t\}$. Then

$$
K(r, s, t ; 2) \geq K(r, b, b ; 2)+(s-b)(t-b)
$$

and

$$
\begin{equation*}
K(r, s, t ; 2) \geq K^{\prime}(r, a, a ; 2)+(s-a)(t-a) \tag{7}
\end{equation*}
$$

hold true.
Proof. There is a $(s-b)$-set $S^{*} \subset S$ and a $(t-b)$-set $T^{*} \subset T$ such that $C \cap((\{1\} \times$ $\left.\left.S^{*} \times T\right) \cup\left(\{1\} \times S \times T^{*}\right)\right)=\emptyset$ holds. Thus for $v^{*} \in S^{*}, w^{*} \in T^{*}$ the word $\left(1, v^{*}, w^{*}\right)$ can only be covered by a codeword $\left(u, v^{*}, w^{*}\right) \in C$ with a suitable $u \in R$. Hence, $\left|C \cap\left(R \times S^{*} \times T^{*}\right)\right|=\left|S^{*}\right| \cdot\left|T^{*}\right|=(s-b)(t-b)$. An application of Theorem 9 with $R^{\prime}=R, S^{\prime}=S \backslash S^{*}$ and $T^{\prime}=T \backslash T^{*}$ yields the existence of a code $C^{\prime} \subset R \times S^{\prime} \times T^{\prime}$ with covering radius 1 , minimum distance 2 and cardinality $\left|C^{\prime}\right| \leq|C|-\left|C \cap\left(R \times S^{*} \times T^{*}\right)\right|$, proving the first inequality. If a is used instead of b, the obtained code C^{\prime} satisfies $\left|C^{\prime} \cap\left(\{1\} \times S^{\prime} \times T^{\prime}\right)\right|=a=\min \left\{\left|S^{\prime}\right|,\left|T^{\prime}\right|\right\} \quad$ (as can be seen by the proof of Theorem 9) and (7) follows.

Theorem 21 is usually used in combination with Theorem 20. Use (7) to lower-bound $K(r, s, t ; 2)$ and use Theorem 20 to lower-bound the occurring expression $K^{\prime}(r, a, a ; 2)$, see for instance the proof of Theorem 27 or the table in Section 5 .

4 Some optimal codes

In this section we use the lower bounds of Section 3 to prove the optimality of some codes constructed in Section 2.

Theorem 22. Assume r divides s. Set $n=s / r+1$. We write

$$
\begin{equation*}
(n-1) r=q n+c \quad \text { with } \quad 0 \leq c<n \text {. } \tag{8}
\end{equation*}
$$

Then $K(r, s, s ; 2)=s q+c(q+1)$.
Proof. The upper bound $K(r, s, s ; 2) \leq s q+c(q+1)$ is stated in Corollary 5. Concerning the lower bound we apply Theorem 20 with (r, s, t) replaced by (s, r, s) and $m=s q+$ $c(q+1)-1$. We set $u=n-1=s / r$ and distinguish between two cases.

Case I. $\quad c>0$.
By $0 \leq q=\lfloor u r /(u+1)\rfloor<r$ and $1 \leq c \leq u$ we have

$$
\begin{equation*}
0 \leq c(q+1)-1<c r \leq u r=s \tag{9}
\end{equation*}
$$

Moreover $1 \leq c \leq u$ implies $(c-u-1) r \leq-1 \leq(c-1)(u-c)-1$, which is equivalent to

$$
\begin{equation*}
(c-1) r \leq c\left(\frac{u r-c}{u+1}+1\right)-1=c(q+1)-1 \tag{10}
\end{equation*}
$$

We set

$$
\begin{aligned}
a_{1} & =u q+c-1 \\
b_{1} & =c(q+1)-(c-1) r-1 \\
a_{2} & =q \\
b_{2} & =c(q+1)-1
\end{aligned}
$$

From (9) and (10) it follows that $m=a_{1} r+b_{1}=a_{2} s+b_{2}$ with $0 \leq b_{1}<r$ and $0 \leq b_{2}<s$. Making frequent use of (8) we now get

$$
\begin{aligned}
& (r+2 s) m+2 u r+r \\
= & r(1+2 u)(u r q+c(q+1)-1)+2 u r+r \\
= & r((c-1)(2 u(q+1)-c)+2 u(q+1)+(1+2 u) u r q+c(c+q)) \\
= & r((c-1)(2 u(q+1)-c)+2 u(q+1)+(1+2 u) u r q+c u(r-q)) \\
= & r((c-1)(2 u(q+1)-c)+2 u(q+1)+u r(q(u+1)+c)+u q(u r-c)) \\
= & r\left((c-1)(2 u(q+1)-c)+2 u(q+1)+u^{2} r^{2}+u(u+1) q^{2}\right) \\
= & r\left(u^{2} r^{2}+(u q+c-1)^{2}+2 u c(q+1)-(2 u q+2 c-1)(c-1)+u q^{2}\right) \\
= & u^{2} r^{3}+r(u q+c-1)^{2}+2(q(u+1)+c) c(q+1)-(2 u q+2 c-1)(c-1) r+u r q^{2} \\
= & u^{2} r^{3}+r(u q+c-1)^{2}+(2 u q+2 c-1)(c(q+1)-(c-1) r-1) \\
& +u r q^{2}+(2 q+1)(c(q+1)-1)+2(q(u+1)+c) \\
= & r s^{2}+r a_{1}^{2}+\left(2 a_{1}+1\right) b_{1}+s a_{2}^{2}+\left(2 a_{2}+1\right) b_{2}+2 u r .
\end{aligned}
$$

Therefore (6) is satisfied (remember that (r, s, t) is replaced by (s, r, s)). Moreover $m \leq r s$ by (9) and $q<r$. An application of Theorem 20 now yields the bound $K(s, r, s ; 2)=$ $K(r, s, s ; 2) \geq m+1=s q+c(q+1)$.

Case II. $\quad c=0$.
In this case $m=s q-1=a_{1} r+b_{1}=a_{2} s+b_{2}\left(0 \leq b_{1}<r, 0 \leq b_{2}<s\right)$ with

$$
\begin{aligned}
a_{1} & =u q-1 \\
b_{1} & =r-1 \\
a_{2} & =q-1 \\
b_{2} & =s-1
\end{aligned}
$$

Making use of (8) with $c=0$ for eliminating q we get

$$
\begin{aligned}
(r+2 s) m & =u^{2} r^{3}-r+u^{3} r^{3} /(u+1)-2 u r \\
& =r s^{2}+r a_{1}^{2}+\left(2 a_{1}+1\right) b_{1}+s a_{2}^{2}+\left(2 a_{2}+1\right) b_{2}-r-2 \\
& <r s^{2}+r a_{1}^{2}+\left(2 a_{1}+1\right) b_{1}+s a_{2}^{2}+\left(2 a_{2}+1\right) b_{2}
\end{aligned}
$$

Like in Case I we get the bound $K(r, s, s ; 2) \geq s q+c(q+1)$.
Theorem 23. If $s \geq r^{2}-r+1$ then

$$
\begin{equation*}
K(r, s, s ; 2) \geq r s-r^{2}+r \tag{11}
\end{equation*}
$$

If $s \geq r^{2}$ then equality holds in (11).
Proof. We apply Theorem 20 with (r, s, t) replaced by (s, r, s) and $m=r s-r^{2}+r-1 \leq r s$. By $s \geq r^{2}-r+1$ we have $m=a_{1} r+b_{1}=a_{2} s+b_{2}\left(0 \leq b_{1}<r, 0 \leq b_{2}<s\right)$ with

$$
\begin{aligned}
a_{1} & =s-r, \\
b_{1} & =r-1, \\
a_{2} & =r-1, \\
b_{2} & =s-r^{2}+r-1
\end{aligned}
$$

We get

$$
\begin{aligned}
(r+2 s) m & =(r+2 s)\left(r s-r^{2}+r-1\right) \\
& =r s^{2}+r a_{1}^{2}+\left(2 a_{1}+1\right) b_{1}+s a_{2}^{2}+\left(2 a_{2}+1\right) b_{2}-r \\
& <r s^{2}+r a_{1}^{2}+\left(2 a_{1}+1\right) b_{1}+s a_{2}^{2}+\left(2 a_{2}+1\right) b_{2} .
\end{aligned}
$$

Thus (6) is satisfied. Now (11) follows by an application of Theorem 20.
If $s \geq r^{2}$ then $K(r, s, s ; 2)=r s-r^{2}+r$ now follows by Corollary 6 .

Theorem 24.

$$
K(3 r, 2 r, 2 r ; 2)=2 r^{2}+2\left\lceil r^{2} / 2\right\rceil= \begin{cases}3 r^{2} & \text { if } r \text { is even } \tag{12}\\ 3 r^{2}+1 & \text { if } r \text { is odd. }\end{cases}
$$

Proof. For the upper bound, use Corollary 7 with $t=s=r$. For the lower bound we apply Theorem 20 with (r, s, t) replaced by $(3 r, 2 r, 2 r)$ and distinguish between two cases. If r is even then set $m=3 r^{2}-1 \leq 2 r \cdot 2 r$. We have $m=a_{1} \cdot 2 r+b_{1}=a_{2} \cdot 2 r+b_{2}$ $\left(0 \leq b_{1}, b_{2}<2 r\right)$ with

$$
\begin{gathered}
a_{1}=a_{2}=3 r / 2-1, \\
b_{1}=b_{2}=2 r-1 .
\end{gathered}
$$

We now get

$$
7 r\left(3 r^{2}-1\right)=21 r^{3}-7 r=12 r^{3}+2 \cdot 2 r a_{1}^{2}+2\left(2 a_{1}+1\right) b_{1}-(r+2)
$$

If r is odd then set $m=3 r^{2} \leq 2 r \cdot 2 r$. We have $m=a_{1} \cdot 2 r+b_{1}=a_{2} \cdot 2 r+b_{2}\left(0 \leq b_{1}, b_{2}<2 r\right)$ with

$$
\begin{gathered}
a_{1}=a_{2}=r+\lfloor r / 2\rfloor, \\
b_{1}=b_{2}=r .
\end{gathered}
$$

We now get

$$
7 r \cdot 3 r^{2}=21 r^{3}=12 r^{3}+2 \cdot 2 r a_{1}^{2}+2\left(2 a_{1}+1\right) b_{1}-r
$$

Therefore inequality (6) is satisfied in both cases and the lower bound of (12) follows.
We now show that Corollary 17 yields another infinite family of exact values for $K(r, s, s ; 2)$.

Theorem 25. If $s \leq r<2 s$ with even r, then

$$
\begin{equation*}
K(r, s, s ; 2) \geq r s / 2 \tag{13}
\end{equation*}
$$

If additionally $2 s-r$ divides s then equality holds in (13).
Proof. We apply Theorem 20 with $t=s$. Set $m=r s / 2-1 \leq s^{2}$. We have $m=a_{1} s+b_{1}=$ $a_{2} s+b_{2}\left(0 \leq b_{1}, b_{2}<s\right)$ with

$$
\begin{gathered}
a_{1}=a_{2}=r / 2-1 \\
b_{1}=b_{2}=s-1
\end{gathered}
$$

We now get

$$
\begin{aligned}
(r+2 s)(r s / 2-1)+(2 s+2-r) & =r s^{2}+2 s(r / 2-1)^{2}+2(r-1)(s-1) \\
& =r s^{2}+2 \cdot s a_{1}^{2}+2 \cdot\left(2 a_{1}+1\right) b_{1}
\end{aligned}
$$

Therefore inequality (6) is satisfied and (13) follows by an application of Theorem 20. Corollary 17 completes the proof.

In the next theorem we determine $K(r, s, s ; 2)$ for $r \geq 2 s-2$.
Theorem 26. $K(r, s, s ; 2)=s^{2}$ holds true, when $r \geq 2 s-1$. Moreover if $s \geq 2$ then

$$
K(2 s-2, s, s ; 2)= \begin{cases}s(s-1) & \text { if } s \text { is even } \\ s(s-1)+1 & \text { if } s \text { is odd. }\end{cases}
$$

Proof. First assume, $|R|=r \geq 2 s-1 . K(r, s, s ; 2) \leq s^{2}$ follows by (1). Equality holds, since it is easily seen, that a generalized partial Latin square of order s and size $m<s^{2}$ with entries from R cannot be non-extendable.

Now assume $r=2 s-2$. The upper bound holds by Theorem 16. The bound $K(2 s-$ $2, s, s ; 2) \geq s(s-1)$ follows from (13). Assume $K(2 s-2, s, s ; 2)=s(s-1)$. It suffices to show that s must be even. By our assumption there exists a non-extendable generalized partial Latin square A of order s and size $s(s-1)$ with entries from $\{1, \ldots, 2 s-2\}$. Especially there are exactly s empty cells in A. Since A is non-extendable, every row
and every column of A contains exactly one empty cell. Thus every cell in A with entry 1 corresponds to exactly two distinct empty cells in A lying in the row and column of that cell with entry 1 . In the other direction, every empty cell corresponds to exactly one cell in A with entry 1 either in the row or in the column of that empty cell, since A is non-extendable. Now it is clear, that the number of empty cells, i.e. s must be even.

A slight modification of the first statement of Theorem 26 gives

$$
\begin{equation*}
K^{\prime}(r, s, s ; 2)=s^{2} \tag{14}
\end{equation*}
$$

if $r \geq 2 s-2$.
Theorem 27. If $s \geq 2$ then $K(s-1, s, s ; 2)=K(s, s, s ; 2)$.
Proof. Corollary 10 proves $K(s-1, s, s ; 2) \leq K(s, s, s ; 2)=\left\lceil s^{2} / 2\right\rceil$. Suppose there is a code $C \subset(S \backslash\{s\}) \times S \times S$ of cardinality $|C|<\left\lceil s^{2} / 2\right\rceil$ with covering radius 1 and minimum distance 2. There exists $x \in S \backslash\{s\}$ such that

$$
a:=|C \cap(\{x\} \times S \times S)| \leq\lfloor|C| /(s-1)\rfloor \leq\lceil s / 2\rceil
$$

W.l.o.g. let $x=1$. If s is even, then Theorem 26 and Theorem 21 (with $r=s-1, t=s$ and $b=s / 2$) imply the contradiction $(s / 2)^{2}=K(s-1, s / 2, s / 2 ; 2) \leq|C|-(s / 2)^{2}<(s / 2)^{2}$. If s is odd and $a=(s+1) / 2$, equation (14) and (7) imply the contradiction $a^{2}=$ $K^{\prime}(s-1, a, a ; 2) \leq|C|-((s-1) / 2)^{2}<a^{2}$. If s is odd and $a \leq b:=(s-1) / 2$, Theorem 26 and Theorem 21 imply the contradiction $b^{2}=K(s-1, b, b ; 2) \leq|C|-((s+1) / 2)^{2}<b^{2}$.

5 Open problems and a table

In general, very little is known about the mathematical differences of the quantities $K_{q}(n, 1)$ and $K_{q}(n, 1,2)$, so it might be interesting to compare the properties of $K(r, s, t ; 2)$ considered in this paper with the properties of $K(r, s, t)$ considered by Numata [5]. Both quantities appear to have their own flavor. In some cases the first quantity is known while the second is not, and vice versa. For instance, when $s<r$ then Numata determined $K(r, s, s)$ (see also [2], Theorem 3.7.4), whereas most of the values of $K(r, s, s ; 2)$ remain an open problem in the case $s<r<2 s-2$. On the other hand, if $r<s$ and r divides s, then $K(r, s, s ; 2)$ is known, whereas $K(r, s, s)$ is unknown!

Trivially

$$
\begin{equation*}
K(r, s, s) \leq K(r, s, s ; 2) \tag{15}
\end{equation*}
$$

is valid, but we do not know in general, when equality holds. This surely is the case if $r=s$ or $r \geq 3 s-2$, since then both values equal $\left\lceil s^{2} / 2\right\rceil$ (see Kalbfleisch and Stanton [4]) and s^{2} (see Theorem 26 and Numata [5]), respectively. The inequality is strict however, when $2 s-1 \leq r \leq 3 s-3$ (see Numata [5]). Let us have a look on the case $r<s$. Here we propose the following conjecture:

Conjecture 28. If r divides s, then equality holds in (15).

In many cases however inequality (15) is strict. So Numata showed

$$
\begin{equation*}
K(r, s, s) \leq r s-\left\lfloor r^{2} / 2\right\rfloor \tag{16}
\end{equation*}
$$

whenever $r<s$. Especially

$$
K(s-1, s, s) \leq \begin{cases}K(s, s, s) & \text { if } s \text { is even } \tag{17}\\ K(s, s, s)-1 & \text { if } s \text { is odd }\end{cases}
$$

So by Theorem 27 we have $K(s-1, s, s)<K(s-1, s, s ; 2)$ whenever s is odd.
Numata conjectured, that equality always holds in (16). This conjecture in general is incorrect however. So for instance by (15) and Corollary 5 we get $K(3,6,6) \leq 12$, whereas (16) only yields $K(3,6,6) \leq 14$. In the case $r=s-1$ however we support Numata's conjecture:

Conjecture 29. In (17) equality always holds.
We conjecture that Theorem 27 can be generalized as follows.
Conjecture 30. For every nonnegative integer a there exists an integer $s(a)$, such that $K(s-a, s, s ; 2)=K(s, s, s ; 2)$ holds whenever $s>s(a)$.

As a counterpart to Theorem 27 we have $K(s, s-1, s-1 ; 2) \leq K(s, s, s ; 2)-1$ by Corollary 13. We do not know however, whether equality always holds. Another question is, whether the code constructed in Corollary 8 is optimal for $s=r$, i.e. if $K(2 r, 3 r, 3 r ; 2)=3 r^{2}+2\left\lceil r^{2} / 2\right\rceil$ holds.

Finally, we give a table with exact values of and bounds on $K(r, s, s ; 2)$ in case of $r, s \leq 16$. Upper bounds: unmarked upper bounds refer to (1), A to Corollary $5, B$ to Corollary 6, C to Corollary $7, D$ to Corollary $8, E$ to Corollary $10, F$ to Theorem $12, G$ to Theorem 14 and H to Theorem 16. Lower bounds: unmarked lower bounds refer to Theorem 20, a refers to a combination of Theorem 20 and 21 (see the end of Section 3), and b to Theorem 26 .

Table I. Bounds on $K(r, s, s ; 2)$ for $r \leq 16$ and $s \leq 8$.

	$s=1$	$s=2$	$s=3$	$s=4$	$s=5$	$s=6$	$s=7$	$s=8$
$r=1$	1	2	3	4	5	6	7	8
$r=2$	1	$2 A$	$a 5 F$	$6 B$	$8 B$	$10 B$	$12 B$	$14 B$
$r=3$	1	4	$5 A$	$8 F$	$10-11 F$	$12 A$	$15-17 F$	$18-20 F$
$r=4$	1	4	$b 7 H$	$8 A$	$a 13 F$	$a 16 D$	$a 20-21 F$	$22 A$
$r=5$	1	4	9	$11-12 C$	$13 A$	$a 18 F$	$21-25 F$	$25-28 G$
$r=6$	1	4	9	$12 C$	$15-17 F$	$18 A$	$a 25 E$	$a 30-32 F$
$r=7$	1	4	9	16	$19-21 C$	$22-24 C$	$25 A$	$a 32 E$
$r=8$	1	4	9	16	$b 21 H$	$24-28 C$	$28-31 F$	$32 A$
$r=9$	1	4	9	16	25	$28 C$	$33-37 F$	$37-40 C$
$r=10$	1	4	9	16	25	$30 H$	$35-39 C$	$40-44 C$
$r=11$	1	4	9	16	25	36	$40-41 C$	$45-48 C$
$r=12$	1	4	9	16	25	36	$b 43 H$	$48 C$
$r=13$	1	4	9	16	25	36	49	$54-56 C$
$r=14$	1	4	9	16	25	36	49	$56 C$
$r=15$	1	4	9	16	25	36	49	64
$r=16$	1	4	9	16	25	36	49	64

Table II. Bounds on $K(r, s, s ; 2)$ for $r \leq 16$ and $9 \leq s \leq 16$.

	$s=9$	$s=10$	$s=11$	$s=12$	$s=13$	$s=14$	$s=15$	$s=16$
$r=1$	9	10	11	12	13	14	15	$30 B$
$r=2$	$16 B$	$18 B$	$20 B$	$22 B$	$24 B$	$26 B$	$28 B$	$42 B$
$r=3$	$21 B$	$24 B$	$27 B$	$30 B$	$33 B$	$36 B$	$39 B$	$52 B$
$r=4$	$26-27 F$	$29-32 F$	$33-35 F$	$36 A$	$40-43 F$	$44-48 F$	$48-51 F$	$62-64 F$
$r=5$	$30-33 F$	$34 A$	$39-41 F$	$44-48 F$	$48-53 F$	$53-56 F$	$57 A$	$71-78 F$
$r=6$	$a 35-37 D$	$38-40 G$	$43-47 F$	$48 A$	$54-57 F$	$60-66 F$	$65-73 F$	$79-86 F$
$r=7$	$36-41 F$	$42-46 G$	$a 49-56 E$	$54-56 G$	$60-65 F$	$66 A$	$73-75 F$	$86 A$
$r=8$	$a 41 E$	$a 48-50 F$	$a 53-61 F$	$58-64 D$	$65-76 E$	$72-76 G$	$79-85 F$	$93-96 G$
$r=9$	$41 F$	$a 50 E$	$55-61 E$	$a 63-72 F$	$a 71-81 D$	$78-86 G$	$85-96 E$	$a 100-106 G$
$r=10$	$45-49 F$	$50 F$	$a 61 E$	$a 70-72 E$	$a 76-85 F$	$82-92 D$	$90-101 D$	$a-98-105-116 G$
$r=11$	$51-57 F$	$56-60 C$	$61 F$	$a 72 E$	$78-85 E$	$a 88-98 F$	$a 97-113 F$	105
$r=12$	$54-63 F$	$60-66 C$	$66-71 F$	$72 F$	$a 85 E$	$a 96-98 E$	$a 103-113 E$	$110-126 G$
$r=13$	$60-65 C$	$66-72 C$	$73-81 F$	$79-84 C$	$85 F$	$a 98 E$	$105-113 E$	$a 117-128 E$
$r=14$	$63-67 C$	$70-76 C$	$77-89 F$	$84-92 C$	$91-97 F$	$98 F$	$a 113 E$	$a 126-128 E$
$r=15$	$69-73 E$	$76 C$	$84-95 E$	$91-96 C$	$99-109 F$	$106-112 C$	$113 F$	$a 128 E$
$r=16$	$b 73 H$	$80-84 C$	$88-95 C$	$96-104 C$	$104-119 F$	$112-122 C$	$120-127 F$	$128 F$

References

[1] Blokhuis, A. / Egner, S. / Hollmann, H.D.L. / van Lint, J.H.: On Codes with Covering Radius 1 and Minimum Distance 2, Indag. Math. (N.S.), 12 (2001), 449-452.
[2] Cohen, G. / Honkala, I. / Litsyn, S. / Lobstein, A.: Covering Codes, North-Holland, Amsterdam, 1997.
[3] Harary, F. / Livingston, M.: Independent Domination in Hypercubes, Appl. Math. Lett., 6 (1993), 27-28.
[4] Kalbfleisch, J.G. / Stanton, R.G.: A Combinatorial Problem in Matching, J. London Math. Soc., 44 (1969), 60-64; Corrigendum, J. London Math. Soc., Second Ser., 1 (1969), 398.
[5] Numata, M.: On the Minimal Covering of 3-dimensional Hamming Scheme, Ann. Rep. Fac. Educ. Iwate University, 52 (1992), 73-84.
[6] Östergård, P.R.J. / Quistorff, J. / Wassermann, A.: New Results on Codes with Covering Radius 1 and Minimum Distance 2, Des. Codes Cryptogr., 35 (2005), 241250.
[7] Quistorff, J.: On Full Partial Quasigroups of Finite Order and Local Cardinal Maximum Codes, Beiträge Algebra Geom., 40 (1999), 495-502.
[8] Quistorff, J.: On Codes with Given Minimum Distance and Covering Radius, Beiträge Algebra Geom., 42 (2001), 601-611.
[9] Stojaković, Z. / Ušan, J.: A Classification of Finite Partial Quasigroups, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 9 (1979), 185-190.

