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Abstract

Let G = (V,E) be an undirected graph. Let C be a subset of vertices that
we shall call a code. For any vertex v ∈ V , the neighbouring set N(v,C) is
the set of vertices of C at distance at most one from v. We say that the code
C identifies the vertices of G if the neighbouring sets N(v,C), v ∈ V, are all
nonempty and different. What is the smallest size of an identifying code C ?
We focus on the case when G is the two-dimensional square lattice and improve
previous upper and lower bounds on the minimum size of such a code.
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1 Introduction

In this paper, we investigate a problem initiated in [3]: given an undirected graph

G = (V,E), we define B(v), the ball of radius one centered at a vertex v ∈ V , by

B(v) = {x ∈ V : d(x, v) ≤ 1},

where d(x, v) represents the number of edges in a shortest path between v and x.

The vertex v is then said to cover all the elements of B(v). We often refer to a

distinguished subset C of V as a code, and to its elements as codewords.

A code C is called a covering if the sets B(v) ∩ C, v ∈ V , are all nonempty; if

furthermore they are all different, C is called an identifying code. The set of codewords

covering a vertex v is called the identifying set (I-set) of v.

Now, what is the minimum cardinality of an identifying code ? This problem

originates in [3] and is also taken up in [1].

Let us mention an application. A processor network can be modeled by an undi-

rected graph G = (V,E), where V is the set of processors and E the set of their links.

A selected subset C of the processors constitutes the code. Its codewords report to

a central controler the state of their neighbourhoods (typically, balls of radius one)

by sending one bit of information (e.g., 1 if it does not contain a faulty processor, 0

otherwise). Based on these |C| bits, the controler must locate the faulty processor.

Common network architectures are the n-cube or the two-dimensional mesh or grid.

In this paper we focus on the case when G is a square grid drawn on a torus, that

is G is the graph �nm with vertex set V = �/n�×�/m� and edge set E = {{u, v} :

u− v = (±1, 0) or u− v = (0,±1)}. We shall also consider the limiting infinite case,

i.e. when G is the graph � with vertex set � × �. The density D(C) of C ⊆ V is

defined as |C|/|V | for �nm and for the infinite graph � as

D(C) = lim sup
n→∞

|C ∩Qn|
|Qn|

where Qn is the set of vertices (x, y) ∈ V such that |x| ≤ n and |y| ≤ n.

An example of an identifying code of � is given in figure 1. It is taken from [3]

and its density is 3/8. Our purpose is to determine the minimum density D of an

identifying code of �. It is proved in [3] that 1/3 ≤ D ≤ 3/8. We shall improve

this to
23

66
≤ D ≤ 5

14
.
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Figure 1: The pattern is periodic and extends to �
2 with density 3/8.

2 Lower bounds

For a given finite regular graph G = (V,E), let B = |B(v)| denote the size (indepen-

dent of its centre) of a ball of radius one; let C be an identifying code. Since C is a

covering of V , the sphere-covering bound holds:

|C| ·B ≥ |V |.

But the identifying property implies a strictly better bound : let L1 denote the set

of vertices identified by singletons; now |V | − |L1| vertices have I-sets of size at least

two. In other words, C is a double covering (see [2, Ch. 14]) of these vertices; thus,

using the fact that |L1| ≤ |C|, we have:

|C| ·B ≥ 2(|V | − |L1|) + |L1| = 2|V | − |L1| ≥ 2|V | − |C|.

We obtain, [3]

|C| · B + 1

2
≥ |V |. (2.1)

Bound (2.1) can be tight in some graphs, for example the triangular lattice, see [3].

2.1 The graphs �nm

Until the end of this section G will be a finite torus �nm with n,m ≥ 30, say. All balls

of radius one have cardinality five. For i = 1, 2, 3, 4, 5, let Li be the set of vertices

identified by a set of exactly i codewords. Set `i = |Li|, L≥3 = L3 ∪ L4 ∪ L5 and
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Figure 2: An element of C ′.

`≥3 = |L≥3|. Counting in two ways the number of couples (c, x) such that c ∈ C,

x ∈ V and d(c, x) ≤ 1, we get:

5|C| =
∑

1≤i≤5

i`i. (2.2)

From (2.2), we infer that 5|C| = `1 + 2(|V | − `1 − `≥3) + 3`≥3 + `4 + 2`5. Since

`1 ≤ |C|, we obtain:

6|C| ≥ 2|V |+ `≥3 + `4 + 2`5. (2.3)

If it were possible that `≥3 = 0 then the bound (2.3) would collapse to (2.1). But this

is not the case for the square grids and for the rest of this section we shall bound `≥3

from below as tightly as we can.

2.2 Partitioning C

We partition the code C into two subcodes C ′ and C ′′, with C ′′ consisting of all

codewords belonging to at least one I-set of cardinality at least three. Thus, C ′ is the

set of all codewords belonging only to I-sets of size one or two. Our strategy will be

to bound `≥3 from below by a function of |C ′|. First, some facts about C ′ and C ′′.

In G, any vertex c′ ∈ C ′ has the neighbouring configuration of figure 2, where the

black square represents c′, a white square represents an element of C, and a cross

represents a vertex not in C.
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Figure 3: Forbidden configurations of two elements of C ′.

Indeed, suppose that a codeword c ∈ C is on e3; then, in order to give c′ and c

distinct I-sets, c′ should belong to an I-set of size at least three. If c ∈ C is on e2,

then, in order to give e3 and f2 distinct I-sets, again c′ must belong to an I-set of

size at least three. This contradicts the definition of C ′. Finally, d3, f1, f5 and h3

belong to C because e3, f2, f4 and g3 must have an I-set which is not reduced to

{c′}. Actually, using similar arguments, it is easy to check (see figure 3) that two

elements of C ′ cannot be at Euclidean distance 3 (e.g., on d1 and g1),
√

5 (on d1 and

f2),
√

10 (on d1 and g2), 2
√

2 (on d1 and f3), and even 3
√

2 (on d1 and g4) from

one another.

Obviously, we have 3`3 + 4`4 + 5`5 ≥ |C ′′|, i.e.,

3`≥3 + `4 + 2`5 ≥ |C ′′|. (2.4)

Let `4 = α`≥3, `5 = β`≥3 (with α, β, α+ β ∈ [0, 1]). Then

`≥3 ≥
|C ′′|

3 + α+ 2β
.

Combining with (2.3), this leads to

6|C| ≥ 2|V |+ |C ′′|(1− 2

3 + α+ 2β
).

The right hand side is smallest when α = β = 0, hence
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Figure 4: An element of C ′ with degree two in Γ.

Lemma 2.1 6|C| ≥ 2|V |+ |C ′′|/3. 4

2.3 An incidence relation between C ′ and L≥3

For any vertex v, let R(v) be the set of points at Euclidean distance either 2 or
√

5

from v. Now let us consider the bipartite graph Γ whose set of vertices is C ′ ∪ L≥3,

and whose set of edges is included in C ′ × L≥3, with an edge between c′ ∈ C ′ and

x ∈ L≥3 if and only if x ∈ C ∩R(c′). We now study possible degrees in Γ.

Lemma 2.2 Any element of C ′ has degree at least two in Γ.

Proof. Consider again figure 2. To identify e4, we can assume, without loss of

generality, that there is a codeword in e5. Since e5 and f5 must have distinct I-sets,

at least one of them must have at least a third element in its I-set. The same is true

for f1 and g1, or h2 and h3, according to which place you choose for covering g2.

Actually, the only way for c′ ∈ C ′ to have degree exactly two is given by figure 4 (or

its rotation). 4

Lemma 2.3 Any element of L≥3 has degree at most three in Γ.

Proof. Assume that a codeword x in L≥3 has degree four: four distinct codewords

c′1, c′2, c′3, and c′4 of C ′ are adjacent to x in Γ. For each i, c′i ∈ R(x), because x ∈ R(c′i),

and figure 5 shows, with black squares, the twelve possible locations for the four c′i’s

around x; figure 5 also gives the two possible ways of identifying the vertex x on f3



the electronic journal of combinatorics 6 (1999), #R19 7

Figure 5: R(x), the set of possible locations for elements of C ′.

with three codewords, represented as white squares (more elements in the I-set of x

would only mean more restrictions on the c′i’s). Now, keeping in mind figure 2 and

the forbidden configurations of figure 3 it is not difficult to check that choosing four

c′i’s among these twelve positions is impossible, and furthermore that figure 6 gives

the only possible configurations with three elements of C ′ in R(x) (this will help in

proving our following lemma). 4

Lemma 2.4 If an element of L≥3 has degree three in Γ, then at least two of its

neighbours in Γ have degree at least four.

Proof. Let us consider Configuration (b) of figure 6. There is necessarily a codeword

on f7, in order to identify f6. The points f2 and f4 have different I-sets, so there

is a codeword on e2. So in Γ we have the edges (e5, f7), (e5, f3), (e5, e3); (g5, f7),

(g5, f3); (g1, f3), (g1, e2). Now in order to cover d6 and d4, we must increase the

degree of e5, and this will do nothing for the covering of h6, h4, h2, f0 and h0. For

h4 and h6 we have two possibilities. Either we do not take h3 as a codeword: this

allows the degree of g5 to increase by one only (if we take i4 and i6 as codewords).

But then the covering of h2, f0 and h0 requires an increase of the degree of g1 of at

least two, and in the best case we end up with degrees four, three and four for e5, g5

and g1, respectively. Or we take h3 in C: now g3 is in L≥3 ∩C and the degrees of g5

and g1 both increase. The covering of h6, f0 and h0 will necessarily lead to another

increase, and we end up with degrees at least four in Γ.
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Figure 6: Possible locations for three elements of C ′ in R(x).
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In Configuration (a) of figure 6, there must also be a codeword on f7, so the two

elements of C ′, e5 and g5, have f7 and f3 as neighbours in Γ. We now prove that g5

has at least two more edges in Γ; by symmetry, the same will be true for e5, proving

our lemma.

Because h6 must be covered, h7 or i6 are in C. If h7 ∈ C, then the fact that h4

has to be covered gives the claim. Assume that i6 ∈ C. Since h4 must be covered,

h3 or i4 belong to C. If h3 ∈ C, we are done. If i4 ∈ C and h3 /∈ C, then i3 ∈ C,

because h3 and g2 must have distinct I-sets.

In all cases, g5 has degree at least four in Γ. 4

Corollary 2.5 `≥3 ≥ |C ′|.

Proof. We partition L≥3 into two sets, A and B: A is the set of vertices with degree

exactly three in Γ and B is the set of vertices with degree at most two in Γ. We

partition C ′ into two sets, X and Y : X contains the vertices having degree two or

three in Γ and Y contains the vertices having degree at least four in Γ. Let a, b,

c and d be the number of edges between X and A, X and B, Y and A, Y and B,

respectively. Counting in different ways the edges of Γ, we obtain:

c+ d ≥ 4|Y |, a+ b ≥ 2|X|, a+ c = 3|A|, b+ d ≤ 2|B|,

or

4|Y | − d ≤ c = 3|A| − a (2.5)

and

2|X| − a ≤ b ≤ 2|B| − d. (2.6)

This leads to 4|C ′| ≤ 3|A|+ 4|B|+ a− d. But Lemma 2.4 implies

a ≤ |A|. (2.7)

Therefore, 4|C ′| ≤ 4`≥3 − d ≤ 4`≥3. 4
We will now improve on this last result by showing that X and B cannot be both

made up only of vertices of degree two in Γ.

2.4 A refined analysis of the degrees in Γ

Let us further partition the sets X and B: let C ′2 and C ′3 be the subsets of X with

vertices of degree two and three in Γ, respectively; let B0, B1, and B2 be the subsets

of B containing vertices of degree zero, one, and two in Γ, respectively.

We study the elements of C ′2 and start from figure 4. Because d2, d3 and d4 must

have distinct I-sets, we see that at least one of c2 and c4 must belong to C: we can

assume, by symmetry, that c4 ∈ C. Then c3 or c2 are in C, and c3 ∈ L≥3.
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Case A: c3 /∈ C. It implies that c2 ∈ C and c3 has degree zero in Γ.

Case B: c3 ∈ C. What degree can c3 have in Γ? There are only four possible places for

elements of C ′ around c3: a2, a3, a4 and c1. Keeping in mind the forbidden distances

between two elements of C ′, it is easy to check that there are three possibilities: 1)

c3 has degree zero in Γ; 2) c3 has degree one in Γ, and any of these four places is

possible; 3) c3 has degree two in Γ and necessarily a4 ∈ C ′ (the other neighbour of

c3 in Γ being a2 or c1).

Case B1: c3 has degree zero in Γ.

Case B2: c3 has degree one in Γ.

Case B3: c3 has degree two in Γ. This implies that a4 ∈ C ′ (and c1 or a2 is in C ′).

Case B3a: c5 ∈ C. This implies that c4 ∈ L≥3∩C; moreover, c4 has degree one in Γ,

a4 being its only neighbour.

Case B3b: c5 /∈ C. This implies that b6 ∈ C (to cover b5) and d6 ∈ C (because e4

and d5 have distinct I-sets). The vertex e6 is not a codeword, and, since its I-set is

different from that of d5, e6 ∈ L≥3, with degree zero in Γ.

In these five cases, we have exhibited a vertex with degree zero or one in Γ. Of

course, each time, a second one exists in a symmetric position, on column g or i.

Now we gather Cases A and B3b, which generated elements of L≥3 \C (of degree

zero in Γ); and Cases B2 and B3a, which generated codewords of degree one in Γ.

Case B1 has produced a codeword with degree zero in Γ. The point is to see how

many elements of C ′2 could produce the same vertex. Then we can have an estimate

on the number of elements which have degree zero or one in Γ, thus improving the

inequality linking |C ′| and `≥3.

We give a sketch only for Cases A and B3b. The other cases are very similar. The

following remark will be useful: two elements of C ′2 cannot be at distance two from

each other.

In Case A (resp., B3b), we produced an element of L≥3 \ C, c3 (resp., e6), at

Euclidean distance 3 (resp.,
√

10) from our starting point f3 ∈ C ′2. In Case A, apart

from f3, the only possible location for an element of C ′2 at Euclidean distance 3 from

c3 is z3. In Case B3b, apart from f3, the only possible locations for an element of C ′2
at Euclidean distance

√
10 from e6 are d9 and f9, but, using our preliminary remark,

at most one is possible. One “crossing” between Case A and Case B3b can occur only

when there is an element of C ′2 on e9, which excludes d9 and f9. So in this case, one

vertex with degree zero in Γ is shared by at most two elements of C ′2.

In Cases B2 and B3a, one vertex with degree one is shared by at most two elements

of C ′2. In case B1, at most two elements of C ′2 generate the same vertex of degree

zero.

Since, by symmetry, one element in C ′2 produces two vertices with degree zero or
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one in Γ, we have shown:

Lemma 2.6 |B0|+ |B1| ≥ |C ′2|. 4

Now, following (2.6), we have 2|C ′2|+3|C ′3|−a = b ≤ 2|B2|+ |B1|−d, or 3|X|−|C ′2| ≤
2|B2|+ |B1|+ a− d. By the previous lemma, this implies that

3|X| ≤ 2|B2|+ 2|B1|+ |B0|+ a− d = 2|B| − |B0|+ a− d.

Thus

3|X| ≤ 2|B|+ a− d, (2.8)

which improves on (2.6) and, together with (2.5) and (2.7), leads to

4|C ′| ≤ 3|A|+ 8

3
|B|+ 1

3
a− 1

3
d ≤ 10

3
|A|+ 8

3
|B| − 1

3
d ≤ 10

3
`≥3,

and we have just proved:

Lemma 2.7 `≥3 ≥ 6|C ′|/5. 4

Corollary 2.8 6|C| ≥ 2|V |+ 6|C ′|/5.

Proof. By (2.3), 6|C| ≥ 2|V |+ `≥3 ≥ 2|V |+ 6|C ′|/5. 4
Since |C ′|+ |C ′′| = |C|, Lemma 2.1 and the above corollary yield:

66|C| ≥ 23|V |. (2.9)

By letting the two dimensions of �mn grow to infinity, we obtain

Theorem 2.9 The minimum density of an identifying code of the infinite square

lattice � satisfies D ≥ 23/66. 4

Remark : more detailed study of the possible degrees in Γ can lead to small improve-

ments in the lower bound. For example, further refining the above argument can lead

to the condition d ≥ a which gives `≥3 ≥ 4|C ′|/3 and D ≥ 15/43 ≈ 23/66 + 0.00035

(see [4]). But analysis of the above type tends to become more and more intricate

and the improvements to the lower bound less and less significant.
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3 A new construction

Consider the pattern of figure 7. This is an alternative construction to figure 1. One

readily checks that it makes up an identifying code of density 3/8. Notice that it

can be modified to yield the construction of figure 8 with the same density. But

this identifying code is not optimal. Codewords can be deleted without losing the

identifying property. We obtain the code of figure 9. Hence :

Theorem 3.1 The minimum density of an identifying code of the infinite square

lattice � satisfies D ≤ 5/14. 4
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Figure 7: An alternative periodic identifying code of density 3/8.
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Figure 8: Another periodic identifying code of density 3/8.
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The eight white codewords in the picture can be deleted

without losing the identifying property. We obtain a

periodic tiling of �2 by the tile below.
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x
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Figure 9: The improved identifying code : the tile is of size 112 and contains 40

codewords. Hence the density 40/112 = 5/14.


