An Inequality Related to Vizing's Conjecture

W. Edwin Clark and Stephen Suen
Department of Mathematics, University of South Florida, Tampa, FL 33620-5700, USA
eclark@math.usf.edu suen@math.usf.edu

Submitted November 29, 1999; Accepted May 24, 2000

Abstract

Let $\gamma(G)$ denote the domination number of a graph G and let $G \square H$ denote the Cartesian product of graphs G and H. We prove that $\gamma(G) \gamma(H) \leq 2 \gamma(G \square H)$ for all simple graphs G and H.

2000 Mathematics Subject Classifications: Primary 05C69, Secondary 05C35

We use $V(G), E(G), \gamma(G)$, respectively, to denote the vertex set, edge set and domination number of the (simple) graph G. For a pair of graphs G and H, the Cartesian product $G \square H$ of G and H is the graph with vertex set $V(G) \times V(H)$ and where two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. In 1963, V. G. Vizing [2] conjectured that for any graphs G and H,

$$
\begin{equation*}
\gamma(G) \gamma(H) \leq \gamma(G \square H) \tag{1}
\end{equation*}
$$

The reader is referred to Hartnell and Rall [1] for a summary of recent progress on Vizing's conjecture. We note that there are graphs G and H for which equality holds in (1). However, it was previously unknown [1] whether there exists a constant c such that

$$
\gamma(G) \gamma(H) \leq c \gamma(G \square H)
$$

We shall show in this note that $\gamma(G) \gamma(H) \leq 2 \gamma(G \square H)$.
For $S \subseteq V(G)$ we let $N_{G}[S]$ denote the set of vertices in $V(G)$ that are in S or adjacent to a vertex in S, i.e., the set of vertices in $V(G)$ dominated by vertices in S.

Theorem 1 For any graphs G and H,

$$
\gamma(G) \gamma(H) \leq 2 \gamma(G \square H)
$$

Proof. Let D be a dominating set of $G \square H$. It is sufficient to show that

$$
\begin{equation*}
\gamma(G) \gamma(H) \leq 2|D| \tag{2}
\end{equation*}
$$

Let $\left\{u_{1}, u_{2}, \ldots, u_{\gamma(G)}\right\}$ be a dominating set of G. Form a partition $\left\{\Pi_{1}, \Pi_{2}, \ldots, \Pi_{\gamma(G)}\right\}$ of $V(G)$ so that for all i : (i) $u_{i} \in \Pi_{i}$, and (ii) $u \in \Pi_{i}$ implies $u=u_{i}$ or u is adjacent to u_{i}. This partition of $V(G)$ induces a partition $\left\{D_{1}, D_{2}, \ldots, D_{\gamma(G)}\right\}$ of D where

$$
D_{i}=\left(\Pi_{i} \times V(H)\right) \cap D
$$

Let P_{i} be the projection of D_{i} onto H. That is,

$$
P_{i}=\left\{v \mid(u, v) \in D_{i} \text { for some } u \in \Pi_{i}\right\}
$$

Observe that for any $i, P_{i} \cup\left(V(H)-N_{H}\left[P_{i}\right]\right)$ is a dominating set of H, and hence the number of vertices in $V(H)$ not dominated by P_{i} satisfies the inequality

$$
\begin{equation*}
\left|V(H)-N_{H}\left[P_{i}\right]\right| \geq \gamma(H)-\left|P_{i}\right| \tag{3}
\end{equation*}
$$

For $v \in V(H)$, let

$$
Q_{v}=D \cap(V(G) \times\{v\})=\{(u, v) \in D \mid u \in V(G)\}
$$

and C be the subset of $\{1,2, \ldots, \gamma(G)\} \times V(H)$ given by

$$
C=\left\{(i, v) \mid \Pi_{i} \times\{v\} \subseteq N_{G \square H}\left[Q_{v}\right]\right\} .
$$

Let $N=|C|$. By counting in two different ways we shall find upper and lower bounds for N. Let

$$
\begin{aligned}
L_{i} & =\{(i, v) \in C \mid v \in V(H)\}, \text { and } \\
R_{v} & =\{(i, v) \in C \mid 1 \leq i \leq \gamma(G)\}
\end{aligned}
$$

Clearly

$$
N=\sum_{i=1}^{\gamma(G)}\left|L_{i}\right|=\sum_{v \in V(H)}\left|R_{v}\right|
$$

Note that if $v \in V(H)-N_{H}\left[P_{i}\right]$, then the vertices in $\Pi_{i} \times\{v\}$ must be dominated by vertices in Q_{v} and therefore $(i, v) \in L_{i}$. This implies that $\left|L_{i}\right| \geq\left|V(H)-N_{H}\left[P_{i}\right]\right|$. Hence

$$
N \geq \sum_{i=1}^{\gamma(G)}\left|V(H)-N_{H}\left[P_{i}\right]\right|
$$

and it follows from (3) that

$$
\begin{aligned}
N & \geq \gamma(G) \gamma(H)-\sum_{i=1}^{\gamma(G)}\left|P_{i}\right| \\
& \geq \gamma(G) \gamma(H)-\sum_{i=1}^{\gamma(G)}\left|D_{i}\right|
\end{aligned}
$$

So we obtain the following lower bound for N.

$$
\begin{equation*}
N \geq \gamma(G) \gamma(H)-|D| \tag{4}
\end{equation*}
$$

For each $v \in V(H),\left|R_{v}\right| \leq\left|Q_{v}\right|$. If not,

$$
\left\{u \mid(u, v) \in Q_{v}\right\} \cup\left\{u_{j} \mid(j, v) \notin R_{v}\right\}
$$

is a dominating set of G with cardinality

$$
\left|Q_{v}\right|+\left(\gamma(G)-\left|R_{v}\right|\right)=\gamma(G)-\left(\left|R_{v}\right|-\left|Q_{v}\right|\right)<\gamma(G)
$$

and we have a contradiction. This observation shows that

$$
\begin{equation*}
N=\sum_{v \in V(H)}\left|R_{v}\right| \leq \sum_{v \in V(H)}\left|Q_{v}\right|=|D| \tag{5}
\end{equation*}
$$

It follows from (4) and (5) that

$$
\gamma(G) \gamma(H)-|D| \leq N \leq|D|
$$

and the desired inequality (2) follows.

References

[1] Bert Hartnell and Douglas F. Rall, Domination in Cartesian Products: Vizing's Conjecture, in Domination in Graphs - Advanced Topics edited by Haynes, et al, Marcel Dekker, Inc, New York, 1998, 163-189.
[2] V. G. Vizing, The cartesian product of graphs, Vyčisl. Sistemy 9, 1963, 30-43.

