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Abstract

Let An denote the number of objects of some type of “size” n, and let Cn denote
the number of these objects which are connected. It is often the case that
there is a relation between a generating function of the Cn’s and a generating
function of the An’s. Wright showed that if limn→∞Cn/An = 1, then the radius
of convergence of these generating functions must be zero. In this paper we
prove that if the radius of convergence of the generating functions is zero, then
lim supn→∞Cn/An = 1, proving a conjecture of Compton; moreover, we show
that lim infn→∞Cn/An can assume any value between 0 and 1.

1 Introduction

Let An count objects of some type by their “size” n and let Cn count those which are
connected. One frequently has either

A(x) = exp(C(x)) or A(x) = exp
(∑
k≥1

C(xk)

k

)
, (1.1)

for exponential generating functions of labeled objects and ordinary generating func-
tions of unlabeled objects, respectively. Let R be the radius of convergence of the
power series. Various authors have studied the limiting behavior of Cn/An. In par-
ticular, Wright [3] constructed a sequence {Cn}n≥1 such that lim supCn/An = 1 and
lim inf Cn/An < 2/3 in both the labeled and unlabeled case. Also, Wright [3], [4]
showed that if limn→∞Cn/An = 1, then R = 0. Compton [1] asked if the converse
were true, assuming the limit exists. The following theorem provides an affirmative
answer.

Theorem 1 Suppose that either of (1.1) holds then:

• If R = 0, then lim supn→∞Cn/An = 1.
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• For any 0 ≤ l ≤ 1, there exists both labeled and unlabeled objects satisfying (1.1)
with R = 0 and lim infn→∞Cn/An = l.

Combining the first part of the theorem with Wright’s result shows that, if
limn→∞Cn/An = ρ exists, then ρ = 1 if and only if R = 0.

The author would like to thank Ed Bender for helpful advice about the exposition of
this paper.

2 Proofs

We require the following simple lemma.

Lemma 1 Suppose p(x) =
∑∞

i=1 pix
i (p1 6= 0) is analytic at zero and suppose h(x) =∑∞

i=1 hix
i has the property that p(h(x)) = g(x) is a power series that is analytic at

zero. Then h(x) is analytic at zero.

Proof. Let p−1(x) be the formal inverse of p. Since p(x) is analytic at zero, we have
that p−1(x) is analytic at zero by [2] page 87, Theorem 4.5.1. Hence h(x) = p−1(g(x))
is analytic at zero as required.

We now prove a lemma that will be useful to us.

Lemma 2 Suppose C(x) =
∑∞

i=1 cix
i is a power series with non-negative coefficients

and

p(x) =
∞∑
i=1

pix
i (p1 6= 0)

is a power series that is analytic at zero satisfying

pn + αcn ≤ [xn]eC(x)

for some α > 1 and all n ≥ 1. Then C(x) is analytic at zero.

Proof. To prove this, let us first note that if D(x) =
∑∞

i=1 dix
i is a formal power

series that satisfies the equation

pn + αdn = [xn]eD(x) (2.2)
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for all n ≥ 1, then D(x) is analytic. To see this, let us note that equation (2.2) is
equivalent to stating that

1 + p(x) + αD(x) = eD(x) (2.3)

as formal power series. Notice that d1 = −p1/(α − 1) 6= 0 and hence D(x) has a
formal inverse D−1(x). Substituting x = D−1(u) into the equation (2.3), we find that

p(D−1(u)) = eu − αu− 1.

Thus by Lemma 1 we have that D−1(u) is analytic at zero. By Lemma 1 we have
that D(x) is analytic at zero. We now show that 0 ≤ cn ≤ dn for all n ≥ 1. We prove
this by induction on n. Note that for n = 1, we have that p1 + αc1 ≤ [x]eC(x) = c1

and so c1 ≤ −p1/(α − 1) = d1. Hence the claim is true when n = 1. Suppose the
claim is true for all values less than n. We have

pn + αcn ≤ [xn]eC(x)

= [xn] exp(c1x+ c2x
2 + · · ·+ cnx

n)

≤ [xn] exp(d1x+ d2x
2 + · · ·+ dnx

n + (cn − dn)xn),

since ck ≤ dk for k < n. Thus

pn + αcn ≤ [xn] exp(d1x+ · · ·+ dnx
n) exp((cn − dn)xn)

= [xn] exp(D(x))(1 + (cn − dn)xn)

= [xn] exp(D(x)) + cn − dn
= pn + αdn + cn − dn.

Hence (α− 1)cn ≤ (α− 1)dn and so 0 ≤ cn ≤ dn for all n ≥ 1. Since D(x) is analytic
at zero, it follows that C(x) is analytic at zero. This completes the proof.

The following theorem implies the first part of Theorem 1. To see this, it suffices to
note that

[xn] exp(C(x)) ≤ [xn] exp
(∑
k≥1

C(xk)

k

)
.

Theorem 2 Suppose ci ≥ 0 for all i and C(x) =
∑∞

i=1 cix
i has radius of convergence

zero. Let

A(x) =
∞∑
i=1

aix
i = exp

( ∞∑
j=1

C(xj)/j
)
.

Then
lim sup
n→∞

cn
an

= 1.
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Proof. Without loss of generality we may assume that c1 ≥ 1, as increasing the value
of c1 can only decrease the values of cn/an for large n. Suppose

lim sup
n→∞

cn
an
6= 1.

Then there exists λ > 1 and a positive integer N such that

an
cn

> λ for all n > N (2.4)

Let H(x) =
∑∞

i=1 hix
i be the power series

H(x) =
∞∑
k=1

C(xk)

k
so that cn =

∑
d|n

µ(d)hn/d
d

.

Define the two sets

S1 =

{
n > N

∣∣∣∣ anhn ≥ 1 + λ

2

}
(2.5)

and

S2 =

{
n > N

∣∣∣∣ anhn < 1 + λ

2

}
. (2.6)

If n ∈ S2, then by (2.4) we must have that cn/hn < (1 + λ)/2λ. Thus∑
d|n

µ(d)hn/d
d

<
(1 + λ)hn

2λ
. (2.7)

But ∑
d|n

µ(d)hn/d
d

= hn +
∑
d|n
d6=1

µ(d)hn/d
d

≥ hn −
∑
d|n
d6=1

hn/d
d
.

Combining this result with (2.7) we find that there exists some divisor d 6= 1 of n
such that hn/d/d > (λ− 1)hn/2d(n)λ. Hence

hn(1 + λ)/2 > an = [xn]eH(x)

≥ hn + hdn/d/d!

≥ hn +
((λ− 1)dhn)d

(2d(n)λ)dd!

≥ hn +
(λ− 1)dhdn

(2nλ)d
.
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Solving for hn we find that

hn <

(
2nλ

(
λ−1

2

)1/d

λ− 1

)d/(d−1)

= O(n2)

and so there exists C > 0 such that hn < Cn2 for all n ∈ S2 ∪ {1, 2, . . . , N}; that is,
all n 6∈ S1. Define

p(x) = −(1 + λ)

2

( N∑
j=1

Cj2xj +
∑
j∈S2

Cj2xj
)
.

Clearly p(x) has a radius of convergence of at least 1 and so it is analytic at zero.
Consider the power series p(x) + (1 + λ)H(x)/2. Notice if n 6∈ S1, then

[xn]

(
p(x) +

(1 + λ)

2
H(x)

)
=

(1 + λ)

2
(−Cn2 + hn)

≤ 0

≤ an

= [xn] exp(H(x)).

If n ∈ S1, then

[xn]

(
p(x) +

(1 + λ)

2
H(x)

)
= (1 + λ)hn/2 ≤ an = [xn] exp(H(x)).

Hence we have

[xn]

(
p(x) +

(1 + λ)

2
H(x)

)
≤ [xn] exp(H(x))

for all n ≥ 1. Moreover when n = 1, p′(0) + 1+λ
2
h1 ≤ h1, and so p′(0) < 0. Hence by

Lemma 2, H(x) is analytic at zero. Since 0 ≤ cn ≤ hn for all n, we see that C(x) is
also analytic at zero, a contradiction. This completes the proof of the theorem.

We now prove the second part of Theorem 1. The set of all graphs (labeled or
unlabeled) provides an example for l = 1 [5]. For l = 0, notice if C(x) =

∑
n≥1Cnx

n

is any power series of radius zero having positive integer coefficients and Cn = 1 for
infinitely many n, then in both the labeled and unlabeled cases we have that

An ≥ [xn] exp(C(x))

≥ [xn] exp(
x

1− x)

≥ [xn]
1

2!

x2

(1− x)2

= (n− 1)/2.
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Hence
inf

{n : Cn=1}
Cn/An = 0.

Hence to prove the second part of Theorem 1 it suffices to prove the following theorem.

Theorem 3 Given l with 0 < l < 1, there exist power series C(x) =
∑

i≥1 cix
i,

H(x) =
∑

i≥1 hix
i, and A(x) =

∑
i≥1 aix

i that satisfy the following:
1. C(x), H(x), and A(x) all have zero radius of convergence;
2. cn, an, and n!hn are positive integers;

3. A(x) = exp (H(x)) = exp
(∑

j≥1C(xj)/j
)

;

4. lim infn→∞ cn/an = lim infn→∞ hn/an = l.

Proof. We recursively define sequences {Nn}, and {cn} as follows. We define N1 = 0,
and c1 = 1. For n > 1, we define Nn = [xn]

∏n−1
j=1 (1− xj)−cj and

cn =

{
n!Nn if n is even
[ Nn
α−1

] + 1 if n is odd,

where α = 1/l. Notice Nn and cn are positive integers for all n > 1. Notice that if n
is even, then cn ≥ n! and so C(x) has zero radius of convergence. Since

[xn]
∞∏
j=1

(1− xj)−cj = [xn](1 + cnx
n)

n−1∏
j=1

(1− xj)−cj

= cn +Nn

= cn(1 +Nn/cn),

we have that

1 +
∞∑
j=1

(1 +Nj/cj)cjx
j =

∞∏
j=1

(1− xj)−cj

and so

1 +
∞∑
j=1

(1 +Nj/cj)cjx
j = exp

( ∞∑
k=1

C(xk)/k
)
.

Hence an = (1 +Nn/cn)cn. Notice that

Nn = [xn]
n−1∏
j=1

(1− xj)−cj

≥ [xn]
n−1∏
j=1

(1− xj)−1

≥ p(n− 1).
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Hence Nn tends to infinity as n tends to infinity, and so for odd n we have

an/cn = 1 +
Nn

[Nn/(α− 1)] + 1
→ α

as n tends to infinity. Moreover, we have that for n even, an/cn = 1 + 1/n! → 1
as n → ∞. Thus C(x) ∈ Z[[x]] is a power series satisfying the conditions of the
theorem.
Since H(x) =

∑∞
j=1C(xj)/j, we have that hn =

∑
d|n cn/d/d. Clearly n!hn is a

positive integer for all n ≥ 1. To complete the proof of the theorem, it suffices to
show that limn→∞ hn/cn = 1. To see this, notice that if n > 2, then

Nn = [xn]
n−1∏
j=1

(1− xj)−cj ≥ (1 + x)c1(1 + xn−1)cn−1 = cn−1c1.

Since c1 = 1, Nn ≥ cn−1 for all n > 1. Thus cn ≥ n!cn−1 for even n and cn ≥
cn−1/(α − 1) for odd n. It follows that cn ≥ (n− 1)!cn−2/(α − 1) for all n > 2, and
so there is a B > 0 such that cn ≥ B(n − 1)!ck for all k ≤ n/2. Hence we have that
for n > 2

hn = cn +
∑
d|n
d6=1

cn/d/d

≤ cn(1 +
∑
d|n
d6=1

1/B(n− 1)!)

= cn(1 + o(1)).

This completes the proof of the theorem.
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