Computation of the vertex Folkman numbers

$F(2,2,2,4 ; 6)$ and $F(2,3,4 ; 6)$
Evgeni Nedialkov
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, MOI
8 Acad. G. Bonchev Str., 1113 Sofia, BULGARIA
nedialkov@fmi.uni-sofia.bg
Nedyalko Nenov
Faculty of Mathematics and Informatics, Sofia University
5 James Baurchier str., Sofia, BULGARIA
nenov@fmi.uni-sofia.bg

Submitted: August 30, 2001; Accepted: February 26, 2002.
MR Subject Classifications: 05C55

Abstract

In this note we show that the exact value of the vertex Folkman numbers $F(2,2,2,4 ; 6)$ and $F(2,3,4 ; 6)$ is 14 .

1 Notations

We consider only finite, non-oriented graphs, without loops and multiple edges. The vertex set and the edge set of a graph G will be denoted by $V(G)$ and $E(G)$, respectively. We call p-clique of G any set of p vertices, each two of which are adjacent. The largest natural number p, such that the graph G contains a p-clique, is denoted by $\operatorname{cl}(G)$ (the clique number of G). A set of vertices of a graph G is said to be independent if every two of them are not adjacent. The cardinality of any largest independent set of vertices in G is denoted by $\alpha(G)$ (the independence number of G).

If $W \subseteq V(G)$ then $G[W]$ is the subgraph of G induced by W and $G-W$ is the subgraph induced by $V(G) \backslash W$. We shall use also the following notation:
\bar{G} - the complement of graph G;
K_{n} - complete graph of n vertices;
C_{n} - simple cycle of n vertices;
$N(v)$ - the set of all vertices adjacent to v;
$\chi(G)$ - the chromatic number of G;
$K_{n}-C_{m}, m \leq n$ - the graph obtained from K_{n} by deleting all edges of some cycle C_{m}.
Let G_{1} and G_{2} be two graphs without common vertices. We denote by $G_{1}+G_{2}$, the graph G, for which $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E^{\prime}$, where $E^{\prime}=\left\{[x, y]: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.

2 Vertex Folkman numbers.

Definition 1. Let G be a graph, and let a_{1}, \ldots, a_{r} be positive integers, $r \geq 2$. An r-coloring

$$
V(G)=V_{1} \cup \ldots \cup V_{r}, V_{i} \cap V_{j}=\emptyset, i \neq j
$$

of the vertices of G is said to be $\left(a_{1}, \ldots, a_{r}\right)$-free if for all $i \in\{1, \ldots, r\}$ the graph G does not contain a monochromatic a_{i}-clique of color i. The symbol $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ means that every r-coloring of $V(G)$ is not $\left(a_{1}, \ldots, a_{r}\right)$-free.

A graph G such that $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ is called a vertex Folkman graph. We define $F\left(a_{1}, \ldots, a_{r} ; q\right)=\min \left\{|V(G)|: G \rightarrow\left(a_{1}, \ldots, a_{r}\right)\right.$ and $\left.\operatorname{cl}(G)<q\right\}$. Clearly $G \rightarrow$ $\left(a_{1}, \ldots, a_{r}\right)$ implies that $\operatorname{cl}(G) \geq \max \left\{a_{1}, \ldots, a_{r}\right\}$. Folkman [2] proved that there exists a graph G, such that $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{cl}(G)=\max \left\{a_{1}, \ldots, a_{r}\right\}$. Therefore, if $q>\max \left\{a_{1}, \ldots, a_{r}\right\}$ then the numbers $F\left(a_{1}, \ldots, a_{r} ; q\right)$ exist and they are called vertex Folkman numbers.

Let a_{1}, \ldots, a_{r} be positive integers, $r \geq 2$. Define

$$
\begin{equation*}
m=\sum_{i=1}^{r}\left(a_{i}-1\right)+1 \text { and } p=\max \left\{a_{1}, \ldots, a_{r}\right\} . \tag{1}
\end{equation*}
$$

Obviously $K_{m} \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $K_{m-1} \nrightarrow\left(a_{1}, \ldots, a_{r}\right)$. Hence, if $q \geq m+1$, $F\left(a_{1}, \ldots, a_{r} ; q\right)=m$. For the numbers $F\left(a_{1}, \ldots, a_{r} ; m\right)$, the following theorem is known:

Theorem $\mathbf{A}([4])$. Let a_{1}, \ldots, a_{r} be positive integers, $r \geq 2$ and let m and p satisfy (1), where $m \geq p+1$. Then $F\left(a_{1}, \ldots, a_{r} ; m\right)=m+p$. If $G \rightarrow\left(a_{1}, \ldots, a_{r}\right), \operatorname{cl}(G)<m$ and $|V(G)|=m+p$, then $G=K_{m+p}-C_{2 p+1}$.

Another proof of Theorem A is given in [13]. It is true that:
Theorem $\mathbf{B}([13])$. Let a_{1}, \ldots, a_{r} be positive integers, $r \geq 2$. Let p and m satisfy (1) and $m \geq p+2$. Then

$$
F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geq m+p+2 .
$$

Observe that for each permutation φ of the symmetric group $S_{r}, G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \Longleftrightarrow$ $G \rightarrow\left(a_{\varphi(1)}, \ldots, a_{\varphi(r)}\right)$. Therefore, we can assume that $a_{1} \leq \ldots \leq a_{r}$. Note that if $a_{1}=1$, then $F\left(a_{1}, \ldots, a_{r} ; q\right)=F\left(a_{2}, \ldots, a_{r} ; q\right)$. So, we will consider only Folkman numbers for which $a_{i} \geq 2, i=1, \ldots, r$.

The next theorem implies that, in the special situation where $a_{1}=\ldots=a_{r}=2$ and $r \geq 5$, the inequality from Theorem B is exact.

Theorem C.

$$
F(\underbrace{2, \ldots, 2}_{r} ; r)= \begin{cases}11, & r=3 \text { or } r=4 \\ r+5, & r \geq 5\end{cases}
$$

Obviously $G \rightarrow(\underbrace{2, \ldots, 2}_{r}) \Leftrightarrow \chi(G) \geq r+1$.
Mycielski in [5] presented an 11-vertex graph G, such that $G \rightarrow(2,2,2)$ and $\operatorname{cl}(G)=2$, proving that $F(2,2,2 ; 3) \leq 11$. Chvátal [1], proved that the Mycielski graph is the smallest such graph and hence $F(2,2,2 ; 3)=11$. The inequality $F(2,2,2,2 ; 4) \geq 11$ was proved in [8] and inequality $F(2,2,2,2 ; 4) \leq 11$ was proved in [7] and [12] (see also [9]). The equality

$$
F(\underbrace{2, \ldots, 2}_{r} ; r)=r+5, r \geq 5
$$

was proved in [7], [12] and later in [4]. Only a few more numbers of the type $F\left(a_{1}, \ldots, a_{r} ; m-\right.$ 1) are known, namely: $F(3,3 ; 4)=14$ (the inequality $F(3,3 ; 4) \leq 14$ was proved in [6] and the opposite inequality $F(3,3 ; 4) \geq 14$ was verified by means of computers in [15]); $F(3,4 ; 5)=13[10] ; F(2,2,4 ; 5)=13[11] ; F(4,4 ; 6)=14[14]$.

In this note we determine two additional numbers of this type.
Theorem D. $F(2,2,2,4 ; 6)=F(2,3,4 ; 6)=14$.
These two numbers are known to be less than 36 (see [4], Remark after Proposition 5).

We will need the following
Lemma. Let $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and let for some $i, a_{i} \geq 2$. Then

$$
G \rightarrow\left(a_{1}, \ldots, a_{i-1}, 2, a_{i}-1, a_{i+1} \ldots, a_{r}\right) .
$$

Proof. Consider an $\left(a_{1}, \ldots, a_{i-1}, 2, a_{i}-1, a_{i+1} \ldots, a_{r}\right)$-free $(r+1)$-coloring $V(G)=$ $V_{1} \cup \ldots \cup V_{r+1}$. If we color the vertices of V_{i} with the same color as the vertices of V_{i+1}, we obtain an $\left(a_{1}, \ldots, a_{r}\right)$-free coloring of $V(G)$, a contradiction.

3 Proof of Theorem D.

According to the lemma, it follows from $G \rightarrow(2,3,4)$ that $G \rightarrow(2,2,2,4)$. Therefore $F(2,2,2,4 ; 6) \leq F(2,3,4 ; 6)$ and hence it is sufficient to prove that $F(2,3,4 ; 6) \leq 14$ and $F(2,2,2,4 ; 6) \geq 14$.

1. Proof of the inequality $F(2,3,4 ; 6) \leq 14$.

We consider the graph Q, whose complementary graph \bar{Q} is given in Fig.1.

Fig. 1. Graph \bar{Q}
This is the well known construction of Greenwood and Gleason [3], which shows that the Ramsey number $R(3,5) \geq 14$. It is proved in [10] that $K_{1}+Q \rightarrow(4,4)$. Together with the lemma, this implies that $K_{1}+Q \rightarrow(2,3,4)$. Since $\mathrm{cl}\left(K_{1}+Q\right)=5$ and $\left|V\left(K_{1}+Q\right)\right|=14$, then $F(2,3,4 ; 6) \leq 14$.
2. Proof of the inequality $F(2,2,2,4 ; 6) \geq 14$.

Let $G \rightarrow(2,2,2,4)$ and $\operatorname{cl}(G)<6$. We need to prove that $|V(G)| \geq 14$. It is clear from $G \rightarrow(2,2,2,4)$ that

$$
\begin{equation*}
G-A \rightarrow(2,2,4) \text { for any independent set } A \subseteq V(G) \tag{2}
\end{equation*}
$$

First we will consider some cases where the proof of the inequality $|V(G)| \geq 14$ is easy.
Suppose that $\operatorname{cl}(G-A)<5$ for some nonempty independent set $A \subseteq V(G)$. According to (2) and the equality $F(2,2,4 ; 5)=13[11],|V(G-A)| \geq 13$. Therefore, $|V(G)| \geq 14$. Hence in the sequel, without loss of generality, we will assume that

$$
\begin{equation*}
\operatorname{cl}(G-A)=\operatorname{cl}(G)=5 \text { for any independent set } A \subseteq V(G) \tag{3}
\end{equation*}
$$

Next assume that there exist $u, v \in V(G)$, such that $N(u) \supseteq N(v)$. Observe that $[u, v] \notin E(G)$. Assume that $G-v \nrightarrow(2,2,2,4)$ and let $V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ be a $(2,2,2,4)$-free 4 -coloring of $G-v$. If we color the vertex v with the same color as the vertex u, we obtain a $(2,2,2,4)$-free 4 -coloring of the graph G, a contradiction. Therefore $G-v \rightarrow(2,2,2,4)$ and, according to Theorem B (with $m=7$ and $p=4$), $|V(G-v)| \geq 13$. Therefore, $|V(G)| \geq 14$. So:

$$
\begin{equation*}
N(v) \nsubseteq N(u), \forall u, v \in V(G) \tag{4}
\end{equation*}
$$

From (3) it follows that $|N(v)| \neq|V(G)|-1, \forall v \in V(G)$ and, according to (4), $|N(v)| \neq|V(G)|-2, \forall v \in V(G)$. Hence

$$
\begin{equation*}
|N(v)| \leq|V(G)|-3, \forall v \in V(G) \tag{5}
\end{equation*}
$$

Since G cannot be complete we know that $\alpha(G) \geq 2$. Assume that $\alpha(G) \geq 3$ and let $\{a, b, c\} \subseteq V(G)$ be an independent set. We put $\widetilde{G}=G-\{a, b, c\}$. Assume that $|V(G)| \leq 13$. Then $|V(\widetilde{G})| \leq 10$. According to (2) and Theorem A (with $m=6$ and $p=4), \widetilde{G}=K_{10}-C_{9}=K_{1}+\overline{C_{9}}$. Let $V\left(K_{1}\right)=\{w\}$. From (5) it follows that w is not adjacent to at least one of the vertices a, b, c. Let, for example, a and w be not adjacent. Then $N(w) \supseteq N(a)$, which contradicts (4). Therefore, we obtain that if $\alpha(G) \geq 3$, then $|V(G)| \geq 14$. So, we can assume that

$$
\begin{equation*}
\alpha(G)=2 . \tag{6}
\end{equation*}
$$

Hence, we need to consider only the case where the graph G satisfies conditions (3), (4), (5) and (6). According to Theorem B, $|V(G)| \geq 13$. Therefore, it is sufficient to prove, that $|V(G)| \neq 13$. Assume the contrary. Let a and b be two non-adjacent vertices of the graph G, and let $G_{1}=G-\{a, b\}$.

Case 1. $G_{1} \rightarrow(2,5)$. According to $(3), \operatorname{cl}\left(G_{1}\right)=5$. Since $\left|V\left(G_{1}\right)\right|=11$, it follows from Theorem A that $G_{1}=\overline{C_{11}}$. Let $V\left(C_{11}\right)=\left\{v_{1}, \ldots, v_{11}\right\}$ and $E\left(C_{11}\right)=\left\{\left[v_{i}, v_{i+1}\right]\right.$: $i=1, \ldots, 10\} \cup\left\{\left[v_{1}, v_{11}\right]\right\}$. From $\operatorname{cl}(G)=5$ it follows that the vertex a is not adjacent to at least one of the vertices v_{1}, \ldots, v_{11}, say $\left[a, v_{1}\right] \notin E(G)$. Consider a 4 -coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{6}, v_{7}\right\}, V_{2}=\left\{v_{8}, v_{9}\right\}, V_{3}=\left\{v_{10}, v_{11}\right\}$. Since V_{1}, V_{2}, V_{3} are independent sets, then it follows from $G \rightarrow(2,2,2,4)$ that V_{4} contains a 4-clique. Since the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ contains a unique 3 -clique $\left\{v_{1}, v_{3}, v_{5}\right\}$ and the vertex a is not adjacent to v_{1}, the 4 -clique containing in V_{4} can be only $\left\{v_{1}, v_{3}, v_{5}, b\right\}$. Similarly, $\left\{v_{1}, v_{8}, v_{10}, b\right\}$ is a 4 -clique too. Therfore $\left\{v_{1}, v_{3}, v_{5}, v_{8}, v_{10}, b\right\}$ is a 6 -clique, a contradiction.

Case 2. $\quad G_{1} \nrightarrow(2,5)$. Let $V\left(G_{1}\right)=X \cup Y$ be a $(2,5)$-free 2-coloring. According to (6), $|X| \leq 2$. From (5) and (6) it follows that we may assume that $|X|=2$. Let $X=\{c, d\}, G_{2}=G_{1}-\{c, d\}=G[Y]$. According to (2), $G_{1} \rightarrow(2,2,4)$ and therefore $G_{2} \rightarrow(2,4)$. Since Y contains no 5 -cliques, then $\operatorname{cl}\left(G_{2}\right)<5$. From Theorem A (with $m=5$ and $p=4$) it follows that $G_{2}=\overline{C_{9}}$. Let $V\left(C_{9}\right)=\left\{v_{1}, \ldots, v_{9}\right\}$ and $E\left(C_{9}\right)=$ $\left\{\left[v_{i}, v_{i+1}\right]: i=1, \ldots, 8\right\} \cup\left\{\left[v_{1}, v_{9}\right]\right\}$. Denote $G_{3}=G[a, b, c, d]$. From (6) it follows that $E\left(G_{3}\right)$ contains two independent edges. Without loss of generality we can assume that $[a, c],[b, d] \in E\left(G_{3}\right)$. It is sufficient to consider next three subcases:

Subcase 2.a. $E\left(G_{3}\right)=\{[a, c],[b, d]\}$. From $\operatorname{cl}(G)=5$ it follows that one of the vertices a, c is not adjacent to at least one of the vertices v_{1}, \ldots, v_{9}, say $\left[a, v_{1}\right] \notin E(G)$. Consider a 4-coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{6}, v_{7}\right\}, V_{2}=\left\{v_{8}, v_{9}\right\}$ and $V_{3}=\{c, d\}$. Since the sets V_{1}, V_{2}, V_{3} are independent sets, it follows from $G \rightarrow(2,2,2,4)$ that V_{4} contains a 4 -clique. Since $\left\{v_{1}, v_{3}, v_{5}\right\}$ is the unique 3 -clique in $V_{4}-\{a, b\}$ and $a \notin N\left(v_{1}\right)$, then this 4 -clique can be only $\left\{v_{1}, v_{3}, v_{5}, b\right\}$. Similarly we obtain also that $\left\{v_{1}, v_{6}, v_{8}, b\right\}$ is a 4 -clique. Hence, we may conclude that

$$
\begin{equation*}
v_{1}, v_{3}, v_{5}, v_{6}, v_{8} \in N(b) \tag{7}
\end{equation*}
$$

In the same way we can prove that $v_{1}, v_{3}, v_{5}, v_{6}, v_{8} \in N(d)$ which, together with (7), implies that $\left\{v_{1}, v_{3}, v_{5}, v_{8}, b, d\right\}$ is a 6 -clique, contradicting $\operatorname{cl}(G)<6$.

Subcase 2.b. $E\left(G_{3}\right)=\{[a, c],[b, d],[a, d]\}$. From $\operatorname{cl}(G)=5$ it follows that one of the vertices a, d is not adjacent to at least one of the vertices v_{1}, \ldots, v_{9}. Without loss of generality we may assume that v_{1} and a are not adjacent. In the same way as in the Subcase 2.a. we can prove (7). Consider a 4-coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{4}, v_{5}\right\}, V_{2}=\left\{v_{6}, v_{7}\right\}, V_{3}=\left\{v_{8}, v_{9}\right\}$. Since V_{1}, V_{2}, V_{3} are independent sets, it follows from $G \rightarrow(2,2,2,4)$ that V_{4} contains a 4 -clique L. It is clear that $v_{1}, v_{3} \in L$. From $a \notin N\left(v_{1}\right)$ it follows that $a \notin L$. Therefore $d \in L$ and $L=\left\{v_{1}, v_{3}, b, d\right\}$. Similarly $\left\{v_{1}, v_{8}, b, d\right\}$ is a 4 -clique. Therefore, $\left\{v_{1}, v_{3}, v_{8}, b, d\right\}$ is a 5 -clique. This, together with (7) and $\operatorname{cl}(G)<6$, implies that the vertex d is not adjacent to vertices v_{5} and v_{6}, contradicting equality (6).

Subcase 2.c. $E\left(G_{3}\right)=\{[a, c],[b, d],[a, d],[c, b]\}$. As in the previous two subcases, we may assume that a and v_{1} are not adjacent and also that (7) holds. Consider a 4 -coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{4}, v_{5}\right\}, V_{2}=\left\{v_{6}, v_{7}\right\}, V_{3}=\{a, b\} . V_{1}, V_{2}, V_{3}$ are independent sets, which implies that V_{4} contains a 4 -clique L. Since $\left\{v_{1}, v_{3}, v_{8}\right\}$ is the unique 3-clique containing in $V_{4}-\{c, d\}$, either $L=\left\{v_{1}, v_{3}, v_{8}, c\right\}$ or $L=\left\{v_{1}, v_{3}, v_{8}, d\right\}$. If $L=\left\{v_{1}, v_{3}, v_{8}, c\right\}$, then from (7) and $\operatorname{cl}(G)=5$ it follows that the vertex c is not adjacent to vertices v_{5} and v_{6}, which contradicts (6). The case $L=\left\{v_{1}, v_{3}, v_{8}, d\right\}$ similarly leads to a contradiction. The Theorem D is proved.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for numerous comments that improved and clarified the presentation a lot.

References

[1] V. Chvátal, The minimality of the Mycielski graph. Lecture Notes Math., 406, 1974, 243-246.
[2] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM. J. Appl. Math. 18, 1970, 19-24.
[3] R. Greenwood, A. Gleason, Combinatorial relations and chromatic graphs, Can. J. Math., 7, 1955, 1-7.
[4] T. Łuczak, A. Ruciński, S. Urbański, On minimal vertex Folkman graphs. Discrete Math., 236, 2001, 245-262.
[5] J. Mycielski, Sur le coloriage des graphes. Colloq. Math., 3, 1955, 161-162.
[6] N. Nenov, An example of a 15 -vertex (3,3)-Ramsey graph with clique number 4, C. R. Acad. Bulg. Sci. 34, 1981, 1487-1489 (in Russian).
[7] N. Nenov, On the Zykov numbers and some its applications to Ramsey theory, Serdica Bulgaricae math. publicationes 9, 1983, 161-167 (in Russian).
[8] N. Nenov, The chromatic number of any 10-vertex graph without 4-cliques is at most 4. C.R. Acad. Bulg. Sci., 37 ,1984, 301-304 (in Russian)
[9] N. Nenov, On the small graphs with chromatic number 5 without 4-cliques. Discrete Math., 188, 1998, 297-298.
[10] N. Nenov, On the vertex Folkman number F(3, 4), C. R. Acad. Bulg. Sci. 54, 2001, No 2, 23-26.
[11] N. Nenov, On the 3-colouring vertex Folkman number $F(2,2,4)$, Serdica Math. J., 27, 2001, 131-136.
[12] N. Nenov, Ramsey graphs and some constants related to them. Ph.D. Thesis, University of Sofia, Sofia, 1980.
[13] N. Nenov, On a class of vertex Folkman graphs, Annuaire Univ. Sofia Fac. Math. Inform. 94, 2000, 15-25.
[14] E. Nedialkov, N. Nenov, Computation of the vertex Folkman number $F(4,4 ; 6)$. Proceedings of the Third Euro Workshop on Optimal Codes and related topics, Sunny Beach, Bulgaria, 10-16 June, 2001, 123-128.
[15] K. Piwakowski, S. Radziszowski, S. Urbański, Computation of the Folkman number $F_{e}(3,3 ; 5)$. J. Graph Theory 32, 1999, 41-49.

