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Abstract: A quality control manufacturing process is designed to produce 
certain types of components (i.e. mechanical, electrical or chemical). The 
process is defined to be under control if the fraction of the items manufactured 
that are defective is reasonably small. The fraction of items defective varies 
from lot to lot, which is the main assumption that we will use in the 
mathematical development of our reliability model. It is logical to assume in 
this case that the mean of the lot is a random variable and so is the fraction 
defective. A relationship between the two quantities is the subject of this 
paper.   
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1. Introduction.  

When contemplating the application of this work it is best to describe an actual 

industrial process such as is producing items for commercial use in quantity. The items 

are tested relative to a certain property. Based on the information provided by testing a 

sample a decision can be made to accept, reject, scrap or rework these defective items [1-

5]. Due to the similarity of these items produced, the upper and lower limits of the quality 

characteristic (X) are supposed to be the same. Another valuable assumption that can be 

made here is that if the items fail to meet the lower specification limit of X they will be 

rejected. However, if they fail to meet the upper specifications of X then they can be 

reworked. In this report, we shall not discuss the possibility of reworking items. By 

knowing the observations ( ) in the lot, the mean values of each lot can be 

easily estimated. Assuming that the distribution of the lot means 

nxxx ,......,, 21

)(µ  is normal then the 

areas at the ends of the normal curve can allow us to start with an expression of p )(µ . A 

novel mathematical model is presented to generalize the problem of identifying the value 

of the fraction defective of many samples based on the mean of the lots )(µ . This is an 

extremely important concept in reliability engineering and the applications range from 

chemical mechanisms [6] all the way to the design of any mechanical or electrical 

components that are commercially distributed.  

2. Mathematical Model.  

 Define z  as the difference of the lot mean µ and the lower specification limit of 

the quality characteristic 

L

X . The general approach in this work is to derive a distribution 

for the fraction defective p  as a function of the lot mean µ . In this work is the 

variance of the quality characteristic (X), and  is variance of the lot mean 

2σ

µσ 2 )(µ .  
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The fraction of items defective is given by previously derived work (see 

Dudewicz and Mishra [1]) as: 

.exp
2
1)(

2

dxxp
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πσ
µ   .                 (2.1) 

Translating parameters about the origin can be performed by defining the following terms 

for simplification of the derivation (see Mitra and Amitava [2]):   

       Lz −= µ  
2
1)( −= µυ p .                  (2.2) 

Expression (2.2) and (2.1), yields the following: 

2
1)()()( +=−Φ=+= υ

σ
µ zLzpp    .       (2.3) 

Where is the cumulative probability distribution function and allowing 

: 

Φ
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For  equation (4) yields: 1≥k

.
2
1)0(

2
)( )1(

/
)1(

22

πσπσ

σ

−=−=
−

hwhereezh
z

        (2.6) 

The expression for is then: )()2( zh

      0)0(
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Similarly the expressions of are: )(,)(,)(,)( )6()5()4()3( zhzhzhzh
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Expressions for  that contain any positive integer value of can be derived. This 

provides for a general expression to any moment. In table 1 all the values of  for 

 all the way to  are shown. Thus, from equation (2.2) we can write: 

)()( zh k

=k

k

)()( zh k

0=z 12

2
1)()( −== zhzfυ    ,                 (2.12) 

expression (2.12) yields: 

       .                  (2.13) )(1 zfz −=

Employing expressions (2.12) and (2.13) it is possible to write: 

       
)(

1
)1( zhd

dz =
υ

  .       (2.14) 

An equation for similar to expression (2.4) can be defined as follows: )()( υkz

        k

k
k

d
zdz

υ
υ )()(

)(
)( = ,                  (2.15)  

where: 

)()(0 υυ zz =  ,                  (2.16) 
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k zk(v)|v=0 h(k)(v)|v=0 
0 0 ½  
1 -2√πσ -(-2√πσ)-1 
2 0 0 
3 -(2π) 3/2σ (2√πσ3)-1 
4 0 0 
5 -7(2π) 5/2σ -3(2√πσ5)-1 
6 0 0 
7 -127(2π) 7/2σ 15(2√πσ7)-1 
8 0 0 
9 -4369(2π) 9/2σ -105(2√πσ9)-1 
10 0 0 
11 -318493(2π) 11/2σ 945(2√πσ11)-1 
12 0 0 

 
 

TABLE 1. Values of and for . )0()(kz )0()(kh 12,....1,0=k

Note: zk(v)|v=0 and  h(k)(v)|v=0 are zero for all even values of k. 

           ,                            (2.17) 0)0()0(0 == zz

if: 

0=υ   then 
2
1=p   and  .       (2.18) 0=z

Employing expression (15), can be written as: )()2( υz
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To simplify these equations we will define the following: 

                 ,      (2.20) )()( zhE kk =

               
)(
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By using (2.18)-(2.20), and can be written as: )()1( υz )()2( υz

Ez =)()1( υ  ,        (2.22) 

               ,      (2.23) ')( 3
2

)2( EEEz =−=υ

where 'E is the derivative of E relative to υ . Thus taking the derivative of relative to kE

υ  yields: 
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Then it can be derived that: 

    πσ2
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By applying equation (2.23) we can derive an expression for as follows: )()3( υz

2
24

3
)3( 3)( EEEz +−=υ   .      (2.26) 

The following are the equations of , , derived in the same way as 

: 

)()4( υz )()5( υz )()6( υz
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Thus equation (2.27) can be simplified continuously to the following form: 

7
2

36
234

5 1510 EEEEEEE −+−=  .        (2.28) 

We can solve for by using the previously mentioned equations: )()5( υz
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The above equation can be further simplified: 
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From these equations an expression for is given by: )()6( υz
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Expressions of and are listed again in table 1. By developing )0()(kz )0()(kh )(υz by a 

Maclaurin Series of the following form: 

k

k

k

k
zz υυ ∑=

∞

=0 !
)0()(  ,       (2.32)  

After expanding the series we get the following result: 
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where )(υR is the remainder defined by the series. Expression (2.33) can be therefore 

written as:  
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Using equation (2.2), equation (2.34) can be written in terms of )(µp as: 
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Finally, the distribution for )( pµ , ))((, php µ and )( pω are given by the following two 

expressions, respectively:  
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, and are terms resulting from the expansion in equation 

(2.35).  Then if 
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3. Concluding Remarks.  

The primary objective of this work has been described to derive a distribution of 

the fraction defective based on the lot mean ( )µ . From our analysis of this model we 

were also able to verify that )( pω is in fact a probability distribution function (p.d.f.). An 

intensive use of )( pω is made in order to derive the expected value of the fraction 

defective given multiple observations in the lot, the variance of the fraction defect and 

many other components that are of use in the industry (Jalbout [5]). An operational 

control (O.C.) curve can be constructed based on this model presented and by adjusting 

the parameters one may also be able to construct a chart based on 

)( p

p to dispose of the lot. 

Applications of this work are numerous and among the most interesting are investigations 

into more chemically involved processes. [6].   
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