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1 Introduction 

The problem of restoring a signal from a noisy version of its convolution with an unknown 

linear time-invariant nonminimum-phase system is a well-known problem in signal processing [5]. 

Traditionally, the channel identification can be done by using both known input and output signals. 

Once the channel coefficients are available, several linear or nonlinear methods can be used to 

estimate the input sequence, see Proakis [9] and the references therein. However, problems arise in 
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multi-point networks and multi-path fading channels, the receiver has to perform the channel 

identification or equalization without the knowledge of input sequence. 

Figure 1: 2-Channel Network. 

Higher-order statistics based algorithms (see Haykin [5] for references therein) have been 

developed for solving  blind channel identification and equalization problems. Since the time-average 

estimation of higher-order statistics requires a much larger sample size than that of the second-order 

statistics, the convergence rate of this algorithm is usually slow. Recently, Tong et al [11] and 

Moulines et al [8] have proposed blind channel identification methods using only the second-order 

statistics. Their method is to use signal and noise subspaces to extract the channel coefficients. 

The outline of this paper is as follows. In §2, we formulate the blind identification method 

based on the second-order statistics. The blind identification problem can be reduced to compute the 

minimum eigenvalue of the Toeplitz-block matrix and its corresponding eigenvector. In §3, we 

propose a fast algorithm to solve the numerical solution of the eigenvalue problem for Toeplitz-block 

matrices. Finally, experimental results are given in §4 to illustrate the effectiveness of our method. 

2 Problem Formulation 

Suppose that the communication channel can be described by moving average (MA) model, 

the structure of the network is shown as in Figure 1. Suppose {  is the common input signal 

sequence and [  and  are channel coefficients of two 

communication channels respectively. We assume that the higher order of the two channels has 
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already been known to be L. Let {  be the output sequence of the jth channel. The 

relationship between { and{  can be described as  
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respectively where  is the jth channel noise. In matrix form, we have  v
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or To proceed with a statistical characterization of the channel, we make the 

following assumptions [11, 8]. (i) The transmitted signal x(k) and channel noise v  originate from 

wide-sense stationary processes that are statistically independent. (ii) The (2L + 1)-by-1 transmitted 

signal vector x

.kkk vHxu +=

)(kj

k has zero mean and correlation matrix The (2L + 2)-by-1 noise vector 

v

).( t
kkx xxR E=

.) 2 Iσ=k  has zero mean and correlation matrix  It follows from (1) that t
kk v

∑ ∑∑
= =

−−
=

=−=
L L

t
kjkjk

L

hvhv
0 0

)2()1()1()2(

0 l l

ll

l

hvu          (3) 

where  If the correlation matrix of the vector u is denoted by 

, a direct of conclusion of (2) and (3) will be  
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where E  is the expection operator. We note that h is the eigenvector of the correlation matrix and 

 is the corresponding eigenvalue of R . The correlation matrix R  is then given by 
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eigenvalue and the corresponding eigenvector will be the normalized vector of h. In [11], Tong et 

al have proved that if the two channel transfer functions H  and 

 have no common zeros, then the matrix H has full column rank. Hence the 

channel coefficients can be given by finding the eigenvector of the minimum eigenvalue of the matrix 

: 
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In practice, we have to work the estimate of the correlation matrix R . In this case, the 

correlation matrix are estimated from finite number of data samples and 

 taken from the channel 1 and the channel 2 respectively. The usual approach is to 

estimate by .11
1 UUuu tt

kk
m
k mm

=∑ =

u

 In this paper, we consider the correlation windowing 

method to estimate R  by assuming that the data prior to k = 1 and after k = m are zero, i.e., 

 for k < 1 and k > m, see for instance [5]. 

We remark that the data matrix U has a special structure. Each row of Ut is a right-shifted 

version of the previous row. By utilizing this special displacement structure of the data matrix, the 

normal equations matrix  is a Toeplitz-block matrix and can be written in the form  UU t
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where  are (L + 1)-by-(L + 1) Toeplitz matrices and T  The first column and the first row of 

 is given by [  and [  respectively where  
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Next we consider applying an iterative method based on the displacement structure of the 

Toeplitz-block matrix for computing the minimum eigenvalue of and its corresponding 

eigenvector. 
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3 The Algorithm 

An n-by-n matrix A has displacement structure in the sense that 

,tBCZAAZ =−      (5) 

where Z is the n-by-n lower shift matrix, B and C are in C , and α is small compared to n. (For 

discussions of other types of displacement structure see Kailath and Sayed [7]). The smallest integer 

α for which (5) holds with some n-by-α matrices B and C, is called the {Z, Z}-displacement rank of  

A; we will call it simply the displacement rank of A. Henceforth we will say that a matrix which 

satisfies (5) with α small compared to n is a Toeplitz-like matrix. 

α×n

An n-by-n matrix which has displacement structure indicated in (5) is determined by only O(n) 

entries rather than n entries, therefore there are many efficient direct and iterative methods that 

exploit displacement structure to solve Toeplitz-like systems, see for instance Kailath and Sayed [7], 

and Chan and Ng [1] respectively. Efficient algorithms for the numerical solution of the Toeplitz 

eigenvalue problem have also been developed, see [2, 4, 6, 10]. In [10], Trench has presented an 

iterative method based on displacement structure for computing eigenvalues and eigenvectors of a 

class of Toeplitz matrices. The method obtains a specific individual eigenvalue (i.e., the i-th smallest, 

where i is a specified integer in [1, 2,…, n]) of an n-by-n matrix at a computational cost of O  

operations. An associated eigenvector is obtained as a byproduct. The method is more efficient than 

general purpose methods such as the QR algorithm for obtaining a small number (compared to n) of 

eigenvalues, see [10]. The main idea of the iterative method is given by the following theorem. 

2

)( 2n

Theorem 1 Let A  be an n-by-n symmetric matrix, and define A  for 1 ≤ m ≤ 

n. Let q  for 1 ≤ m ≤ n, where  and and 

 be the spectrum of A For each then (the number 

of eigenvalues of A  less than λ) equals the number of negative quantities in 
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).,,2()()(,)( 11111 nmaqaq m
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)(1 λ−mw  is the solution of the linear system 

,)()( 111 −−− =− mmmA rwI λλ      (6) 

and  i.e., the mth column of  with the first  entries.  ,][ ,1,2,11
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Theorem 1 provides a way to compute and the inertia of A)(/)( 1 λλ −nn pp .Iλ−  We note that 

if λ is an eigenvalue of A, then [  is an associated eigenvector. Therefore, it can be used 

in conjunction with a root-finding procedure to determine a given eigenvalue of A. Using Theorem 1, 

we can derive an efficient algorithm for computing the minimum eigenvalue and associated 

eigenvector of  the Toeplitz-block matrix in (4). We first note that  
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Here B and C are n-by-4 matrices with n = 2L + 2. 

 

Henceforth  and  (1 ≤ m ≤ n) are the mB mC α×m  matrices obtained by dropping rows 

nm ,,1K+  from B and C in (5); thus B  and where  is the  matrix 

obtained by dropping the same rows from I. We denote the jth column of B by  

and therefore 
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ALGORITHM: If then can be computed as follows: )( t

n UUS∉λ )(,),(1 λλ nqq K

,0;
)(

;0;
)(

1

,41,
)(

)(,
)(

)(,)(

)1(
4

1

)21(
0)1(

3
)1(

2
1

)1(
1

1

1)1(

1

)22(
1

1
)22(

01









=−===

≤≤==−=

f
q

ff
q

f

j
q
b

f
q

wq j
j

λ
γ

λ

λ
λ

λ
γλλγλ

 

and  where  ),,2()()( 1 nmaq m
t
mmmm K=−−= − λλλ wr

,41,
1

)(
)(

))((
0

)(
)( 1

)1(
1

)1(
1)( ≤≤








−

−
−








= −

−
−

−
− j

q
b m

m

m
j

t
mmj

m
jm

j

λ
λ

λλλ
wfrf

f    (8) 

and 

[ ] .
1

)(
)()()()(

)(
0

)( 1)(
4

)(
3

)(
2

)(
1

1








−

−







= −

−

λ
λλλλ

λ
λ mt

m
mmmm

m
m

w
Cffff

w
w  

Proof. For simplicity, we write A . If A satisfies (7) then  UU t= UU t=
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it follows that the solutions of (11) are given by (8).  

Let λ1 ≤ λ2 ≤ ⋅⋅⋅ ≤ λn be the eigenvalues of the Toeplitz-block matrix UtU, and suppose we 

wish to find its smallest eigenvalue λ1. We assume that λ1 is not an eigenvalue of any of the principal 

submatrices of UtU. We first find an interval (βs,βn) containing λ1 but not any other eigenvalues of 

UtU, or any eigenvalues of the principal submatrices of UtU. On such an interval the function qn(λ) in 

Theorem 1 is continuous.  It can be shown that βs and βe satisfy this requirement if and only if  

Negn(βs) = 0, Negn(βe) = 1, qn(βs) > 0 and  qn(βe) < 0 , 

and a strategy is given for obtaining (βs,βe) by means of bisection. After (βs,βe) is determined. We 

find λ1 as a root of the function qn(λ) by root-finding algorithms. For an n-by-n Toeplitz-block matrix, 

the computations in Algorithm 1 require approximately 4Nn2 floating point operations (flops) for its 

smallest eigenvalue and an associated eigenvector, where N is the number of iterative steps (function 

evaluations) required in the root-finding algorithm. By comparison, standard QR method requires 

approximately 2n3/3 flops for the preliminary tridiagonalization of the matrix, after which all the 

eigenvalues can be computed with O(n) flops [3]. On the basis of this count only, we see that the 

method presented here has a clear advantage over the QR method if only the smallest eigenvalue of 
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UtU is computed, provided that N is small compared to N < n. In the next section, we will see that this 

constant N in our numerical examples will be smaller than n and almost a constant independent of n. 

4 Simulation Results 

In this section, simulation results are given. All computations were done with Matlab in 

double precision. The channel coefficients are given below:   

,,,1,0,and|2|1.1
2|2|01.0)2()1( Lkeh

L
Lkh Lk

kk K==−−= −−  

with L = 64, 128, 256. The shapes of the channel coefficients are triangular and Gaussian respectively.  

White Gaussian noise is added to the output.  The output SNR is defined as ./log
2210 vu10  In the 

test, the numbers of data samples used to estimate Ru are also varied. We use the Matlab M-file 

“fzero” to find the smallest eigenvalue as a root of the function qn(λ). This root-finding algorithm was 

originated by T. Dekker and further improved by R. Brent; see Matlab on-line documentation.) We 

stop the iteration of the root-finding method for the minimum eigenvalue when the difference 

between successive iterates µk-1 and µk obtained by the root finder satisfies the inequality 

{ .1,max105 11
1 kkk µµµ ××≤− −

− }  To check the accuracy of the minimum eigenvalue µ of UtU and 

its corresponding eigenvector y, we compute the residual norm ./
22

yy-UyU µt=res  We also 

compute the mean-square errors err of the estimated channel coefficients, which are defined as the 

average, over all the unknown parameters, err = ||h – hc||2/(2L + 2) where h is the original channel 

coefficients vector and hc is the computed coefficients vector. 

Table 1 shows the residual norms (res) in the order of magnitude 10-7, the relative errors (err) 

in the order of magnitude 10-1, and the number (iter) of iterations (function evaluations) required in 

the root-finding algorithm averaged over 100 runs of the algorithm.  We find that the mean-square 

estimation error decreases when the number of data samples m increases since the estimate UtU tends 

to the correlation matrix Ru. From Table 1, we see that under various SNR, the average res was in the 

interval [10-8, 10-7) for the computed minimum eigenvalues of the UtU of 100 generated matrices of 
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order 66, 130 and 258 (2L+2). We also note that the average number of iterations is about 14 and is 

independent of L (the order of the channels) and SNR. These experimental results reported here show 

that our algorithm is an efficient and effective method for computing the minimum eigenvalue of the 

Toeplitz-block matrix and hence for solving the blind channel identification problem.   

In summary, we have presented a new algorithm for blind 2-channel identification problem 

based on the minimum eigenvalue of the Toeplitz-block matrix.  Proof and simulations show its high 

convergence rate and accuracy.   

Number    SNR 

 of data   ∞ 60 30 

 samples m   res err  iter  res err  iter  res err iter 

30L    0.523  1.12   13.23 3.41  1.34   13.85 6.72 1.78 13.49 

50L    2.81   0.95   13.56 6.19  1.02   13.81 4.56 1.24 13.79 

100L    4.92   0.61   13.19 5.46   0.79   13.47 9.01 0.94 13.83 

150L    0.834  0.29   13.34 2.23  0.40   13.52 4.51 0.56 13.50 

Table 1:  Average residual norms, relative errors and number of iterations required for the 

computation of the minimum eigenvalue of UtU when L = 32 

Number    SNR 

 of data   ∞ 60 30 

 samples m   res err  iter  res err  iter  res err iter 

30L    0.785  1.45   14.54 3.47  1.51   14.87 8.64   1.89   14.56 

50L    0.971  1.05   14.98 5.90  1.16   14.52 7.91   1.35   14.66 

100L    6.57   0.89   14.76 4.12  0.90   14.38 5.60   0.99   14.45 

150L    8.19   0.37   14.78 9.64  0.46   14.84 8.90   0.70   14.89 

Table 2:  Average residual norms, relative errors and number of iterations required for the 

computation of the minimum eigenvalue of UtU when L = 64 
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Number    SNR 

 of data   ∞ 60 30 

 samples m  res err  iter  res err  iter  res err iter 

30L    8.91   1.67   14.91 1.67  1.98   15.01 2.35   2.23   14.98 

50L    9.10   1.23   14.26 3.34  1.58   14.90 1.48   1.79   14.97 

100L    7.91   0.94   14.48 0.918 1.21   14.28 0.971  1.44   14.78 

150L    9.56   0.45   14.33 0.991 0.78   14.45 1.05   1.01   14.65 

 

Table 3:  Average residual norms, relative errors and number of iterations required for the 

computation of the minimum eigenvalue of UtU when L = 128. 
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