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Abstract: The transition of a homogeneous system into a heterogeneous one may occur 
spontaneously in a labile region of supersaturations; in the metastable region of supersaturations it is 
realized as an energy barrier-determined process. The limit that separates  the labile region from the 
metastable one  is the boundary supersaturation sm>>scr,  where scr is the critical supersaturation. 
The Ω-potential thermodynamic formalism, Ω = F - G, where F and G are the Helmholtz and the 
Gibbs free energies, respectively, allows a straightforward derivation of the formula of Tohmfor and 
Volmer (1938) for a nucleus formation on an ion. For the case of charged liquid drops, expressions 
for the capillary pressure, the vapor pressure,  the work of formation of  equilibrium drops from 
vapors, and the drop surface tension, are obtained as well. The stability conditions for the charged 
equilibrium drops are also examined. 
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1.  Introduction 

The theory of phase formation in supersaturated systems is developed by Gibbs [1]. The 

transition of a homogeneous system into a heterogeneous one may occur spontaneously (in a labile 
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region); in a metastable (fluctuational) region, it takes place as an energy barrier-determined process. 

In the latter case, using the well-known Volmer’s procedure [2], a critical supersaturation scr can be 

determined. A boundary supersaturation sm should represent the limit between the  metastable and 

labile regions and, as a rule, sm » scr. The water nucleation on ions, e.g., in the cloud Wilson chamber 

[3], seems to be a special case when sm and scr are relatively close to each other. 

Despite of the statement, e.g., in  [4,5], that the Ω-potential expressed as 

∑−=Ω
i

ii NF µ  (1)

(F is the Helmholtz free energy, µi and Ni are the chemical potential and mass of the i-th component, 

respectively) is irrelevant for thermodynamics, this extensive thermodynamic function, rather than the 

Gibbs free energy G, seems to be the most convenient for presenting the results of Gibbs’ theory of 

capillarity  (cf. [6]). The metastable state of the capillary system includes the nucleus of the new 

phase. It is a small but macroscopic particle, which is in unstable equilibrium with its surroundings. 

At constant total volume V, temperature T  and chemical potentials µi, ( )
iVT µ,,∆Ω  would have a 

meaning of a reversible work, and this provides a straightforward approach to the determination of 

the work W of formation of a nucleus in supersaturated systems. 

2.  Work of  Drop Formation 

The Ω-potential of the homogeneous gas phase g containing an ion with charge e and  radius a 

is   

a

e
Vp g

I

2

2
1+−=Ω  

(2)

where p stands for pressure while the electrostatic part of ΩI, i.e., the free energy Ωe, is calculated by 

Ωe

V

E dV= ∫
ε
π8

2 ; E e r= / 2  where r is the radial distance from the ion and the dielectric constant of 

the vapors ε = 1. 

When a liquid drop l is formed around the ion,  

 



Electron. J. Math. Phys. Sci., 2002, 1, 1   122

 

( )
a

e

Re
eovpvVp lg

II ε
σ

2
2

2
1111

2
1 +






 −++−−−=Ω  

(3)

with 3

3
4

Rv π= , , where R is the radius of the spherical liquid drop and σ is the surface 

tension at the drop/gas interface. The free energy Ω

24 Ro π=

e is calculated again by Ωe

V

E dV= ∫
ε
π8

2  with 

E e r= / 2  for r>R and E=e/εr2 for r<R (ε is the dielectric constant of the liquid drop). 

Thus the work of formation of a drop will be 
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with ∆ . gl ppP −=

 

3.         Capillary Pressure of the Drop 

By making use of , one obtains for the capillary pressure of the drop 0/ =∆Ω dRd

4
2 111

8
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R
e

R
P 






 −−=∆

επ
σ . 

(5)

Eq. (5) is a generalization of the Laplace formula for the capillary pressure  

;/2 RP σ=∆  (6)

Eq. (6) follows from Eq. (5) when e=0.  It is known that the above procedure determines the radius of 

the dividing surface between the bulk liquid and the gas phase, for which Laplace’s law in the form of 

Eq. (6) is valid; it holds for the surface of tension [1]. The expression (5) exhibits an extremum at 

.11
4

2
3 






 −=

επσ
e

Rm  
(7)

 

4.        Work of Formation of Equilibrium Drops from Vapors 

The capillary pressure is the pressure difference between two bulk phases in equilibrium [1]. 

If Eq. (5) is inserted in Eq. (4), an expression for the work of formation W of an equilibrium drop is 

readily obtained 
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(8)

At e=0, Eq. (8) gives the well-known Gibbs’ result [1] 

W o= =1
3

1
2

σ ∆ .Pv  
(9)

 

5.   Gibbs-Thomson Equation 

Eq (5) determines the difference in the pressures within and outside the equilibrium drop, pl and 

and pg, respectively. Obviously,  at constant temperature and chemical potentials, both pressures are 

constant. These  pressures can be calculated separately provided that the starting equation is [6] 

µ µl l g gT p T p( , ) ( , ).=  (10)

Therefore, 

ggll dpvdpv =  (11)

( )  are molar volumes). As usual v,( gljv j = l « vg and g

p

RT
v g =

(0
gl pv

; R is the gas constant, k is the 

Boltzmann constant,  l
ov

p g

  is the  

∞

molecular volume, and, by integrating Eq. (11), using 

 (with Eq. (5) for ∆P), and neglecting , one obtains p pl l− = ∆P p g+ −∞ )gp∞−

kT
p

p
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R R
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The dependence of the vapor pressure on R (at R→∞, exhibits an extremum 

at R=R

p p pg g→ =∞ ∞ )l

m. The other charecterics of the Tohmfor and Volmer charged drops are as follow [7]: 

T=265K, σ=77 dyn/cm, sm= 4.63, e=4.8.10-10 CGSE, Rm= 6.5.10-8 cm, scr = 4.1 (experimental), 3.2 

(theoretical); at scr = 3.2, Rst= 4.8.10-8 cm and Run= 10.2.10-8 cm). The radius Rm is determined by the 

condition (7). The radius R0 is determined at  s = 1. Then,  from Eq. (5) at ∆P=0, and together with 

Eq. (7), it follows that 
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6.  Stability Conditions 

At s<sm, two equilibrium drops of different size should exist: a smaller one with a radius Rst , and a 

bigger one with a radius Run; Run> Rst.  By using  Eqs. (4) and (5), one readily obtains 
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This implies 
eq

R 







∂

Ω∂
2

2

 > 0 when R< Rm. Thus,  at s< sm the equilibrium drop with  radius Rst is 

in stable equilibrium with its surroundings (minimum of the Ω - potential).  

For the other equilibrium drop with Run > Rst, .02

2

〈







∂

Ω∂

eq
R

 Therefore, this drop is in unstable 

equilibrium with its surroundings (maximum of the Ω - potential). 

At , the condensation does not follow the fluctuational mechanism and nuclei of the 

new phase do not exist at all. Let us consider the special case of s = s

mss ≥

m. It is easily established that the 

first and the second derivatives of Ω at R = Rm are both zero. The third derivative is 

0/243
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On the other hand, 

( )3
3

3

!3
1)()( m

RR

m RR
R

RR
m

−







∂

Ω∂=Ω−Ω
=

 
(16)

i.e., the nonequilibrium drops with R < Rm will grow spontaneously, because  The same 

is valid for the nonequilibrium drops with R > R

).()( mRR Ω〉Ω

)mRm since in this case . ()(R Ω〈Ω
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7.   Work of Nucleus Formation: The Formula of Tohmfor and Volmer 

The drop which corresponds to the minimum of the Ω-potential is characterized by the radius Rst.  

Any other nonequilibrium drop, smaller or bigger than the equilibrium one, will spontaneously 

change its size until the equilibrium radius Rst is reached. Then the work of nucleus formation WTV  is 

obtained by applying Eq. (8): 

( )W W W o o e
R RTV un st un st

st un

= − = − − −
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ε

 
(17)

This is the formula of Tohmfor and Volmer obtained in 1938 in the framework of the method of 

Becker and Döring by considering the nucleus  formation in a medium containg ions  [7] (cf. also 

[2,8]). 

8.  Surface Tension of a Charged Drop 

Instead of Eq. (5), one can write 
R

P
∗

=∆ σ2  where  is the surface tension of the charged drop. 

Then 

∗σ

3

2 111
16 R

e






 −−=∗

επ
σσ  

(18)

The dielectric constant ε is expected to be ε >>1 (in the case of water at room temperature ε = 80), 

and the equation 

3

2 1
16 R

e

π
σσ −=∗  

(19)

is valid. As  shown by Scheludko [9], the above equation could be obtained by making use of the 

well-known Lippmann’s formula. 

At R=Rm, the expression (18) leads to σσ
4
3=∗ , so that  ;2

4
3)(

m
m R

RRP
σ==∆ at R = R0, 

 and  0=∗σ .0)( 0 ==∆ RRP
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9.        Conclusion 

A new thermodynamic derivation of the formula of Tohmfor and Volmer is presented together 

the adoption of  a teaching strategy that could facilitate the students’ conceptual understanding of the 

process of new phase formation. It seems to be generally accepted that Gibbs’ thermodynamic theory 

of capillarity is difficult for both teaching and learning. A rational reconstruction of this important 

theory could be realized by making use of the Ω-potential thermodynamic formalism. Only a detail of 

this new approach [10] is investigated here and a straightforward derivation of the formula of 

Tohmfor and Volmer for the work of formation of a charged water nucleus is presented. Some special 

problems such as the formation of nuclei on positive and negative charges as well as the distinction 

between the surface tension, defined as a work of stretching of a surface and the surface tension, 

reflecting the work of forming of a surface, are beyond the present consideration. These problems of 

the thermodynamic theory of nucleation on charged particles have been examined elsewhere [11]. 
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