NUMERICAL BLOW-UP SOLUTIONS FOR SOME SEMILINEAR HEAT EQUATIONS∗

FIRMIN K. N’GOHISSE1 AND THEODORE K. BONI1

Abstract. This paper concerns the study of the numerical approximation for the following initial-boundary value problem,

\[
\begin{align*}
 u_t &= u_{xx} + \frac{b}{x}u_x + u^p, & x \in (0, 1), & t \in (0, T), \\
 u_x(0, t) &= 0, & u(1, t) &= 0, & t \in (0, T), \\
 u(x, 0) &= u_0(x), & x \in [0, 1],
\end{align*}
\]

where \(b > 0 \) and \(p > 1 \). We give some conditions under which the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. Under some assumptions, we also show that the semidiscrete blow-up time converges to the continuous blow-up time when the mesh size goes to zero. Finally, we give some numerical results to illustrate our analysis.

Key words. semidiscretizations, discretizations, semilinear heat equations, semidiscrete blow-up time

AMS subject classifications. 35B40, 35K65, 65M06

∗Received January 8, 2008. Accepted for publication May 22, 2008. Published online on September 12, 2008. Recommended by O. Widlund.

1Université d’Abobo-Adjame, UFR-SFA, Département de Mathématiques et Informatiques, 02 BP 801 Abidjan 02, Côte d’Ivoire (firmingoh@yahoo.fr).

2Institut National Polytechnique Houphouet-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoire (theokboni@yahoo.fr).