The approximation of a Polynomial's Measure, with Applications towards Jensen's Theorem¹

Alexe Călin Mureșan

Abstract

We introduce the notion of measure of a polynomial F(z) with complex coefficients, then we give an interpretation for it as an integral, using Jensen's theorem. By introducing a new polynomial F must be evaluated, depending on the measure of the new polynomial, according only to the expression of F, or to other integral expressions.

2000 Mathematical Subject Classification:65E05

Key words: Measure of a polynomial, Jensen's equality, Graeffe's method.

1 Introduction

For $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, $F(x) \in \mathbb{C}[x]$, $a_0 \neq 0$, $a_n \neq 0$, $n \geq 1$ with the roots $x_1, x_2, \ldots, x_n \in \mathbb{C}$; repeated according to their multiplicity, then we introduce the notion of measure of polynomial F(z) with complex coefficients.

¹Received 18 August, 2007

Accepted for publication (in revised form) 28 December, 2007

$$M(F) = M[F(x)] = |a_n| \cdot \prod_{j=1}^{n} max\{1, |x_j|\}$$

and there will be found an interpretation for it as an integral, by using Jensen's theorem:

$$ln[M(f)] = \frac{1}{2\pi} \int_0^{2\pi} ln|F(e^{i\theta})|d\theta.$$

We can determinate effectively the series $(F_m)_{m\geq 1}$ and then, M(F) which is a real number, from relations:

$$2^{-n \cdot 2^{-m}} \cdot ||F_m||^{2^{-m}} \le M(F) \le ||F_m||^{2^{-m}}.$$

$$\lim_{m \to \infty} ||F_m||^{2^{-m}} = M(F).$$

Now by anew polynomial which depends on F, and that has all the roots in D(0,1), the degree of the polynomials F must be evaluated, depending either on the edge of all the real roots $R = 1 + \sum_{k=0}^{n-1} \left| \frac{a_k}{a_n} \right| = \frac{L(F)}{|a_n|}$, on the maximum and minimum of F(z) when |z| = 1, or on the measure of a new polynomial or, least but not last, depending only the expression of F. For example:

$$\frac{\ln\{\min_{|z|=R}|F(z)|\} - \ln|a_n|}{\ln|L(F)| - \ln|a_n|} \le n \le \frac{\ln\{\max_{|z|=R}|F(z)|\} - \ln|a_n|}{\ln|L(F)| - \ln|a_n|},$$

$$n = \frac{\frac{1}{2\pi} \int_0^{2\pi} \ln|F[\frac{L(F)}{a_n} \cdot e^{i\theta}]|d\theta - \ln|a_n|}{\ln|L(F)| - \ln|a_n|}.$$

Also, other relation allowing the evaluation of maximum and minimum for F(z) when |z| = R has been deducted; depending on the edge R, and depending on the polynomial's coefficients and degree. Then we can compare the previous results with some basic results on Complex Analysis for $R = \frac{L(P)}{|a_n|}$ the edge of all the real roots, such as 'The Cauchy's integral formula for polynomials on R'-radius circles and 'Maximum Principle'.

2 Measure of a polynomial

Definition 2.1. Let $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, n \ge 1$, $a_n \ne 0, F(x) \in \mathbb{C}[x]$, with the roots $x_1, x_2, \ldots, x_n \in \mathbb{C}$; repeated according to their multiplicity, then by definition, the measure of the polynomials F, noted by M(F), is:

$$M(F) = M[F(x)] = |a_n| \cdot \prod_{j=1}^{n} \max\{1, |x_j|\}$$

Definition 2.2. Let $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, n \ge 1, a_n \ne 0$, Then the norm of the polynomial F, noted by ||F||, will be:

$$||F|| = \sqrt{a_0^2 + a_1^2 + a_2^2 + \ldots + a_n^2}$$

And the length of the polynomial F noted by L(F) is:

$$L(F) = \sum_{k=0}^{n} |a_k|.$$

Theorem 2.1. For $F(x) \in \mathbb{C}[x]$; $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, n \ge 1, a_n \ne 0$, with the toots $x_1, x_2, \ldots, x_n \in \mathbb{C}$; repeated according to their multiplicity, then we have:

$$a) \ M(F) = \frac{|a_0|}{\displaystyle\prod_{j=1}^n \min\{1, |x_j|\}}; \ b) \ M[x^n \cdot F(\frac{1}{x})] = M[F(x)];$$

$$c) M(P \cdot Q) = M(P) \cdot M(Q), \ for \ all \ P, Q \in \mathbb{C}[x]; \ d) \ M[F(x^k)] = M[F(x)]$$

$$e) \ M^2(F) + |a_o a_n|^2 \cdot M^{-2}(F) \leq ||F||^2.$$

Proof. a) From Viete's formulas we have $\prod_{j=1}^{n} |x_j| = \left| \frac{a_0}{a_n} \right|$.

$$\text{But, } \prod_{j=1}^n |x_j| = \prod_{j=1}^n \max\{1, |x_j|\} \cdot \prod_{j=1}^n \min\{1, |x_j|\} = \left|\frac{a_0}{a_n}\right|.$$
 where we have $|a_n| \cdot \prod_{j=1}^n \max\{1, |x_j|\} = \frac{|a_0|}{\prod_{j=1}^n \min\{1, |x_j|\}}.$

b)
$$H(x) = x^n \cdot F(\frac{1}{x}) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

$$M\left[x^n \cdot F\left(\frac{1}{x}\right)\right] = a_0 \cdot \prod_{j=1}^n \max\{1, |y_j|\} \text{ where } H(j_j) = 0 \text{ and } y_j = \frac{1}{x_j},$$
 $j = \overline{1, n}.$

Now
$$M\left[x^n \cdot F\left(\frac{1}{x}\right)\right] = \frac{|a_0|}{\prod\limits_{i=1}^n \min\{1, |x_i|\}}$$
 and from a) is obvious.

- c) and d) are easy to prove, also see [1] from References.
- e) see[1] or[2] from References.
- f)From (e) we have that: $M^2(F) \leq ||F||^2$ and $M(F) \leq ||F||$

Theorem 2.2. If
$$f(x) = a_n \cdot \prod_{j=1}^n (x - x_j), a_n \neq 0$$
, where $x_j \in \mathbb{C}$; $j = \overline{1, n}, n \geq 0$

1 are the polynomials roots, repeated according to their multiplicity, and the polynomials

$$F_m(x) = \pm a_n^{2m} \cdot \prod_{i=1}^n (x - x_i^{2m}); m \ge 0.$$

Then we can calculate $F_m(x)$ according to Graeffe's Method, that is:

- $i) F_0(x) = F(x)$
- ii) Then for $m = \overline{0, n-1}$, we can find $\{G_m(x), H_m(x), F_{m+1}(x)\} \in C[x]$ in order to have: $F_m(x) = G_m(x^2) x \cdot H_m^2(x)$. $F_{m+1}(x) = G_m^2(x) x \cdot H_m^2(x)$ iii) Finally, we find $F_m(x)$ for all $m \ge 0$.

Proof. See [3] from References.

Theorem 2.3. If $F(x) \in C[x]$; $gradF \ge 1$ and F_m , $m \ge 0$, the polynomial series associated through the Graeffe's Method, them:

$$2^{-n\cdot 2-m} \cdot ||F_m||^{2^{-m}} \neq ||F_m||^{2^{-m}}$$

and

$$\lim_{n \to \infty} ||F_m||^{2^{-m}} = M(F).$$

Proof. See [3] from References.

Remark 2.1. This theorem allows evaluating the polynomial's measure as many as exact decimals.

3 Jensen's Equality and its Applications

Theorem 3.1. Jensen's equality. Let F(x) an analytic function in a region which contains the closed disk $\overline{D}(0;R)$; R>0 in the complex plane, if $n \geq 1, x_1, x_2, \ldots, x_n \in C$, $|x_j| < R$, for all $i = \overline{1,n}$, are the zeros of F in the interior of D(0;R) repeated according to their multiplicity and if $F(0) \neq 0$, then:

$$\ln |F(0)| = -\sum_{j=1}^{n} \ln \left(\frac{R}{x_j}\right) + \frac{1}{2\pi} \int_0^{2\pi} \ln |F(R \cdot e^{i\theta})| d\theta \text{ or } :$$

$$n \ln R = \frac{1}{2\pi} \int_0^{2\pi} \ln |F(R \cdot e^{i\theta})| d\theta - \ln |F(0)| + \ln \left(\prod_{j=1}^n |x_j| \right).$$

Proof. See [2] or [5] from References.

Remark 3.1. This formula establishes a connection between the moduli of the zeros of the function F inside the disk |z| < R and the values of |F(z)| on the circle |z| = R, and can be seen as a generalization of the mean value property of harmonic functions.

Consequence 3.1. Let F(x) an analytic function in a region which contains the closed disk $\overline{D}(0;1)$ in the complex plane, $m \geq 1$ is the number of all zeros of F in the interior of D(0;1) repeated according to multiplicity, then:

$$0 = \frac{1}{2\pi} \int_0^{2\pi} \ln|F(e^{i\theta})| d\theta - \ln|F(0)| + \ln\left(\prod_{i=1}^n |x_i|\right).$$

Proof. Is obvious by Theorem 3.1 for R = 1.

Theorem 3.2. If $F(x) = a_m x^m + a_{m-1} x^{m-1} + ... + a_1 x + a_0, F(x) \in C[x], a_0 \neq 0, a_m \neq 0, m \geq 1$ then:

$$\ln[M(F)] = \frac{1}{2\pi} \int_0^{2\pi} \ln|F(e^{i\theta})| d\theta$$

and:

$$\min_{|z|=1} \{ |F(z)| \} \le M(F) \le \max_{|z|=1} \{ |F(z)| \}$$

Proof. Let be: $x_1, x_2, \ldots, x_m \in C$, for all $i = \overline{1, m}$ all the roots, repeated according to multiplicity of F(x) in the complex plane; and $x - 1, x_2, \ldots x_n$ the roots repeated according to multiplicity of F(x) in the interior of $D(0; 1)|x - j| < 1; j + \overline{1, n}$.

Because F(x) is a polynomial analytic function and $F(0) = a_0 \neq 0$ we are within the hypothesis of Consequence 3.1, and we have:

$$0 = \frac{1}{2\pi} \int_0^{2\pi} \ln|F(e^{i\theta})| d\theta - \ln|F(0)| + \ln\left(\prod_{j=1}^n |x_j|\right).$$

that is:

$$\frac{1}{2\pi} \int_0^{2\pi} \ln|F(e^{i\theta})| d\theta = \ln|F(0)| - \ln\left(\prod_{j=1}^n |x_j|\right).$$

In conclusion,

$$\frac{1}{2\pi} \int_0^{2\pi} \ln|F(e^{i\theta})| d\theta = \ln \frac{|a_0|}{\prod_{j=1}^n |x_j|}.$$

But
$$\prod_{j=1}^{n} |x_j| = \prod_{j=1}^{m} \min\{1, |x_j|\}$$
 and according to Theorem 2.1 a), we have:
$$\frac{1}{2\pi} \int_{0}^{2\pi} \ln |F(e^{i\theta})| d\theta = \ln(M(F)).$$

Next, by maximizing and minimizing, we obtain:

$$\frac{1}{2\pi} \int_0^{2\pi} \ln[\min_{|z|=1}(|F(z)|)] d\theta \leq \ln(M(F)) \leq \frac{1}{2\pi} \int_0^{2\pi} \ln[\max_{|z|=1}(|F(z)|)] d\theta.$$

that is:

$$\min_{|z|=1}\{|F(z)|\} \le M(F) \le \max_{|z|=1}\{|F(z)|\}.$$

Theorem 3.3. If $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, a_i \in C; i = \overline{1, n}, n \geq 1$, and $a_0 \neq 0, a_n \neq 0$ if x_1, x_2, \ldots, x_n are the roots repeated according to multiplicity of $F(x), F(x_j) = 0, = \overline{1, n}$ then exists R > 0;

$$R > \max \left\{ 1, \sum_{k=0}^{n-1} \left| \frac{a_k}{a_n} \right| \right\} \text{ or } R > 1 + \max_{0 \le k < n} \left\{ \left| \frac{a_k}{a_n} \right| \right\} \text{ or simply } R = 1 \sum_{k=0}^{n-1} \left| \frac{a_k}{a_n} \right|$$

$$= \frac{L(F)}{|a_n|}, \text{ with } |x_i| < R; i = \overline{1, n}.$$

Proof. See [1] or [4] from References.

Remark 3.2. We shall now give a few inequalities which resulted by combining the condition from Theorem 3.3., so that all the roots of a polynomial F(x) to be, within the moduli in interval (0,R), and the Jensen's equality. We have inferred these inequalities by using Theorem 3.2. where the author introduced the measure of a polynomial in the above equality.

Theorem 3.4. If $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, a_i \in C$; $i = \overline{1, n}, n \ge 1$ and $R \in R, R > 0$, so that $F(x_i) = 0, |x_i| < R$; $i = \overline{1, n}$, where x - 1, x - 2, dots, x_n are all the roots repeated according to multiplicity of F(x) and $a_0 \ne a_n \ne 0$, then:

a) If $G(y) = F(R \cdot y)$ and $G(y_i) = 0, i = \overline{1, n}$, that is y_1, y_2, \dots, y_n are the roots repeated according to multiplicity of G(y), then $y_i = \frac{x_i}{R}$ and $|y_i| < 1$.

b) Exists $\epsilon \in R$; $0 < \epsilon < 1$ so that $|a_0| \cdot (1 - \epsilon)^n \le \max_{|z| = R(1 - \epsilon)} \{|F(z)|\}$

and

$$c) \frac{\ln\{\min_{|z|=R}|F(z)|\} - \ln|a_n|}{\ln R} \le n \le \frac{\ln\{\max_{|z|=R}|F(z)|\} - \ln|a_n|}{\ln R}.$$

Proof. a) Let $y_i = \frac{x_i}{R}$; $i = \overline{1, n}$, then $G(y_i) = F(R \cdot y_i) = F(R \cdot \frac{x_i}{R}) = F(x_i) = 0$, for all $i = \overline{1, n}$.

In conclusion, $y_i = \frac{x_i}{R}$ are the zeros of G(y).

Moreover, $|y_i| = |x_y|R < \frac{R}{R} = 1$, that involves $|y_i| < 1$; $y = \overline{1, n}$.

b)Because $G(y) = F(R \cdot y)$, we have:

$$G(y) = a_n R^n \cdot y^n + a_{n-1} R^{n-1} \cdot y^{n-1} + \dots + a_1 R \cdot y + a_0, a_i \in \mathbb{C}; i = \overline{1, n}$$

We choose $\epsilon > 0$ so that $R_1 = 1 - \epsilon$ and $|y_i| < 1 - \epsilon < 1, i = \overline{1, n}$.

This choise was possible due to the fact that $|y_i| < 1, i = \overline{1, n}$.

From Jensen's equality for G(y), we have:

$$n \ln R_1 = \frac{1}{2\pi} \int_0^{2\pi} \ln |G(R_1 \cdot e^{i\theta})| d\theta - \ln |G(0)| + \ln \left(\prod_{j=1}^n |y_j| \right)$$

Because for $j = \overline{1, n}, |y_i| < R_1 < 1$, we have $0 \le \prod_{j=1}^n |y_j| < 1$ which implies $\ln \left(\prod_{j=1}^n |y_j| \right) < 0$.

And next $G(0) = a_0 \neq 0$ and $\int_0^{2\pi} \ln |G(R_1 \cdot e^{i\theta})| d\theta < \int_o^{2\pi} \ln [\max_{|z|=R_1} |G(z)|] d\theta$, Therefore, from the previous relation we have:

$$n \ln R_1 \le \frac{1}{2\pi} \cdot 2\pi \cdot \ln[\max_{|z|=R_1} |G(z)|] - \ln|a_0|$$

and because $R_1 = 1 - \epsilon, \epsilon > 0$, that is:

$$\ln(1 - \epsilon)^n \le \ln \frac{\max_{|z|=1-\epsilon} |G(z)|}{|a_0|}$$

or,

(3.1)
$$(1 - \epsilon)^n \le \frac{\max_{|z| = 1 - \epsilon} |G(z)|}{|a_0|}.$$

As $\max_{|z|=1-\epsilon} |G(z)| = \max_{|z|=1-\epsilon} |F(R\cdot z)|$, by nothing $R\cdot z=z_1$, implies that $z=\frac{z_1}{R}$, and then:

$$\max_{|z|=1-\epsilon} |G(z)| = \max_{|\frac{z_1}{R}|=1-\epsilon} |F(z_1)| = \max_{|z_1|=R(1-\epsilon)} |F(z_1)|.$$

As a result:

(3.2)
$$\max_{|z|=R_1=1-\epsilon} |G(z)| = \max_{|z|=R(1-\epsilon)} |F(z_1)| = \max_{|z|=R(1-\epsilon)} |F(z)|.$$

From relation (3.1) and relation (3.2) we have:

$$(1 - \epsilon)^n \le \frac{\max_{|z| = R(1 - \epsilon)} |F(z)|}{|a_0|}$$

which is equivalent with

$$|a_0| \cdot (1 - \epsilon)^n \le \max_{|z| = R(1 - \epsilon)} \{|F(z)|\},$$

with $\epsilon > 0$, conveniently chosen.

c) By applying Theorem 3.2. to the polynomial $G(z) = F(R \cdot z)$, is obtained, due to the fact that $|y_i| < 1$; $i = \overline{1, n}$:

$$\min_{|z|=1} \{G(z)\} \le M[G(z)] \le \max_{|z|=1} \{G(z)\},$$

that is:

$$\min_{|z|=1} \{ |F(R \cdot z)| \} \le M[G(z)] \le \max_{|z|=1} \{ |F(R \cdot z)| \}.$$

By nothing $R \cdot z = z_1$, we obtain:

$$\begin{aligned} |z| &= 1 \text{ is equivalent to } |z_1| = R; \min_{|z|=1} \{|F(R \cdot z)|\} = \min_{|z_1|=R} \{F(z_1)\} \\ \max_{|z|=1} \{|F(z_1)|\} &= \max_{|z_1|=1} \{|F(z_1)|\}. \end{aligned}$$

Then:

$$\min_{|z_1|=R} \{|F(z_1)|\} \le M[F(z_1)] \le M[G(z)] \le \max_{|z_1|=R} \{F(z_1)\}.$$

And afterwards nothing $z_1 = z$ we have:

(3.3)
$$\min_{|z|=R} \{|F(z)|\} \le M[G(z)] \le \max_{|z|=R} \{F(z)\}.$$

Still,
$$M[F(R \cdot z)] = M[G(z)] = M[a_n R^n z^n + a_{n-1} R^{n-1} y^{n-1} + \ldots + a_1 R y + a_0].$$

For $G(z) = a_n R^n \cdot \prod_{j=1}^n (z - y_j)$ we have from definition:

$$M[G(z)] = |a_n R^n| \cdot \prod_{j=1}^n \max\{1, |y_j|\}, \text{ that is: } M[G(z)] = M[F(R \cdot z)] =$$

$$= |a_n R^n| \prod_{j=1}^n \max\{1, |y_j|\}.$$

But due to the fact that $|y_j| < 1, j = \overline{1,n}$, we obtain

$$(3.4) M[F(R \cdot z)] = M[G(z)] = |a_n| \cdot R^n$$

Therefore, from relation (3.3) an (3.4), we obtain:

$$\min_{|z|=R} \{ |F(z)| \} \le M[G(z)] = |a_n| \cdot R^n \le \max_{|z|=R} \{ F(z) \}.$$

And that implies: $\ln[\min_{|z|=R} \{F(z)\}] \le \ln[|a_n| \cdot R^n] \le \ln[\max_{|z|=R} \{|F(z)|\}]$ which is equivalent with

$$\ln[\min_{|z|=R}\{|F(z)|\}] - \ln|a_n| \le n \ln R \le \ln[\max_{|z|=R}\{|F(z)|\}] - \ln|a_n|,$$

and because R > 1 we have:

$$\frac{\ln\{\min_{|z|=R}|F(z)|\} - \ln|a_n|}{\ln R} \le n \le \frac{\ln\{\max_{|z|=R}|F(z)|\} - \ln|a_n|}{\ln R}.$$

Consequence 3.2. If $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, a_i \in \mathbb{C}$; $i = \overline{1, n}, n \geq 1, F(x_i) = 0, i = \overline{1, n}$, where x_1, x_2, \ldots, x_n , are the roots repeated according to multiplicity of F(x) and $a_0 \neq 0, a_n \neq 0$, then:

a)

$$\frac{\ln\{\min\limits_{|z|=\frac{L(F)}{a_n}}|F(z)|\}-\ln|a_n|}{\ln L(F)-\ln|a_n|}\leq n\leq \frac{\ln\{\max\limits_{|z|=\frac{L(F)}{|a_n|}}|F(z)|\}-\ln|a_n|}{\ln L(F)-\ln|a_n|};$$

b) Moreover, if L(F) = 1 then:

$$\frac{\ln\{\min_{|z|=\frac{1}{a_n}}|F(z)|\} - \ln|a_n|}{\ln|a_n|} \ge n \ge \frac{\ln\{\max_{|z|=\frac{1}{|a_n|}}|F(z)|\} - \ln|a_n|}{\ln|a_n|};$$

c) Furthermore, if
$$a_n = 1$$
 then: $\frac{\ln\{\min_{|z|=L(F)} |F(z)|\}}{\ln L(F)} \le n \le \frac{\ln\{\max_{|z|=L(F)} |F(z)|\}}{\ln L(F)}$.

Proof. a) We can prove it by using Theorem 3.3 for $R = \frac{L(f)}{|a_n|}$ and from Theorem 3.4. c)

b),c) is obvious from a).

Theorem 3.5. The Maximum Principle. An analytic function on an open set $U \subset \mathbb{C}$ assumes its maximum modulus on the boundary. Moreover, if f is analytic and takes at least two distinct values on an open connected set $U \subset \mathbb{C}$, then

$$|F(z)| < \sup_{z \in U} |F(z)|, z \in U$$

Proof. See [5] to References.

Remark 3.3. If $F(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$, $a_1 \in \mathbb{C}$; $i = \overline{1, n}$, $n \ge 1$, $a_n \ne 0$, R > 0, then:

a)
$$|F(z)| \le \max_{|z|=R} \{F(z)\} \le |a_n|R^n + |a_{n-1}|R^{n-1} + \ldots + |a_1|R + a_0$$
, for each $z \in D(0;R) \subset \mathbb{C}$.

b) If $R \in R$, R > 0, so that $F(x_i) = 0$, $|x_i| < R$; $i = \overline{1, n}$, where x_1, x_2, \ldots, x_n are the roots repeated according to multiplicity of F(x) and $a_0 \neq 0$, $a_n \neq 0$, then:

 $|a_n|R^n \le \max_{|z|=R} \{|F(z)|\} \le |a_n|R^n + |a_n - 1|R^{n-1} + \ldots + |a_1|R + |a_o|, \text{ for each } z \in D(0;R) \subset \mathbb{C}.$

Proof. a) we are in conditions of the **Maximum Principle**. For $U = D(0; R) \subset \mathbb{C}$:

 $|F(z)| \le \max_{|z|=R} \{|F(z)|\}, \text{ for each } z \in D(0;R) \subset \mathbb{C}.$

But

$$\max_{|z=R|} \{|F(z)|\} = \max_{|z|=R} |a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0| \le |a_{n-1}| R^{n-1} + \dots + |a_1| R + |a_0| = a_n R^n + a_{n-1} R^{n-1} + \dots + a_1 R + a_0.$$

So we have the result

b) From Theorem 3.4 c) we have $|a_n|R^n \le \max_{|z|=R} \{|F(z)|\}$ and from a) of this Theorem we have:

 $|a_n|R^n \le \max_{|z|=R} \{|F(z)|\} \le |a_n|R^n + |a_{n-1}|R^{n-1} + \ldots + |a_1|R + a_0 \text{ for each } z \in D(0;R) \subset \mathbb{C}.$

Theorem 3.6. If $F(x) + a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, a_i \in \mathbb{C}$; $i = \overline{1, n}, n \ge 1$ and $R = \frac{L(F)}{|a_n|}, R > 1$ where x_1, x_2, \ldots, x_n are the roots repeated according to multiplicity of F(x) and $a_0 \ne 0, a_n \ne 0$, then:

$$n = \frac{\frac{1}{2\pi} \int_0^{2\pi} \ln \left| F\left[\frac{L(F)}{|a_n|} \cdot e^{i\theta}\right] \right| d\theta - \ln |a_n|}{\ln [L(F)] - \ln |a_n|}.$$

Proof. We are in condition of Theorem 3.2. and we have for $G(z) = F(R \cdot z)$

$$\ln[M(G)] = \frac{1}{2\pi} \int_0^{2\pi} \ln|G(e^{i\theta})| d\theta.$$

Also we have $M[G(z)] = |a_n|R^n$ from the Theorem 3.4.c) From these relation, we have: $\ln(|a_n|R^n) = \frac{1}{2\pi} \int_0^{2\pi} \ln|G(e^{i\theta})|d\theta$ where

$$n = \frac{\frac{1}{2\pi} \int_0^{2\pi} \ln|G(e^{i\theta})| d\theta - \ln|a_n|}{\ln(R)}.$$

Now we can take from hypothesis $R = 1 + \sum_{k=0}^{n-1} \left| \frac{a_k}{a_n} \right| = \frac{L(F)}{|a_n|}$ and from Theorem 3.3. $F(x_i) = 0, |x_i| < R; i = \overline{1, n}$.

Also because $G(e^{i\theta}) = F(R \cdot e^{i\theta})$ we obtain:

$$n = \frac{\frac{1}{2\pi} \int_0^{2\pi} \ln|F\left[\frac{L(F)}{|a_n|} \cdot e^{i\theta}\right]| d\theta - \ln|a_n|}{\ln\left[\frac{L(F)}{|a_n|}\right]}$$

or

$$n = \frac{\frac{1}{2\pi} \int_0^{2\pi} \ln \left| F\left[\frac{L(F)}{|a_n|} \cdot e^{i\theta}\right] \right| d\theta - \ln |a_n|}{\ln[L(F)] - \ln |a_n|}.$$

Theorem 3.7. The Cauchy's integral formula for polynomials on circles. If $F(z) = a_m \prod_{j=1}^m (x - x_j)$, then the number of indices j for which $|x_j| < R$ is "n":

$$n = \frac{1}{2\pi i} \int_{|z|=R} \frac{F'(z)}{F(z)} dz$$

provided no x_j lies on Fr(D): |z| = R.

$$\begin{aligned} & \textbf{Proof.} \ \ \frac{1}{2\pi i} \int_{|z|=R} \frac{F'(z)}{F(z)} dz = \frac{1}{2\pi i} \cdot \int_{|z|=R} \sum_{j=0}^m \frac{1}{z-x_j} dz = \\ & \frac{1}{2\pi i} \cdot \sum_{j=0}^m \int_{|z|=R} \frac{1}{z-x_j} dz = \frac{1}{2\pi i} \cdot \sum_{j=0}^n \int_{|z-x_j|=e} \frac{1}{z-x_j} dz = \frac{1}{2\pi i} \cdot \sum_{j=0}^n 2\pi i = n \\ & \text{See [5] to References.} \end{aligned}$$

Remark 3.4. If $F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, a_i \in \mathbb{C}$; $i = \overline{1, n}, n \geq n$, and $R = \frac{L(F)}{|a_n|}, R > 1$, where x_1, x_2, \ldots, x_n are the roots repeated according to multiplicity of F(x) and $a_0 \neq 0, a_n \neq 0$, then:

$$n = \frac{1}{2\pi i} \int_{|z| = \frac{L(F)}{|a_n|}} \frac{F'(x)}{F(z)} dz = \frac{\frac{1}{2\pi} \int_0^{2\pi} \ln \left| F\left[\frac{L(F)}{|a_n|} \cdot e^{i\theta}\right] \right| d\theta - \ln |a_n|}{\ln[L(F)] - \ln |a_n|}$$

Proof. If we take $R = 1 + \sum_{k=0}^{n-1} \left| \frac{a_k}{a_n} \right| = \frac{L(F)}{|a_n|}$ for the "n" from previous theorem, what is now the number of all zeros, we can find first equality, the another was given in Theorem 3.6.

References

- [1] Mignotte M., Introduction to Computational Algebra and Linear Programming, Ed. Univ. Bucureşti, 2000, 136-140; 40-44; 149-156.
- [2] Prasolov V.V., *Polynomials*, Moscow Center for Continuous math. Education, 2001-2004, 160-170.
- [3] Cerlienco L., Mignotte M., Piras F., Computing the measure of a polynomial, Journal of Symbolic Computation Vol.4. Issue1., Academic Press, Inc. Duluth, MN, USA., 1987, 21-34.
- [4] Mignotte M., Some Useful Bounds Computing Supplementum 4.,(ed. B.Bucherger, G.E. Collins & R.G.K. Loos), Springer-Verlag, WIen-New York, 1982, 259-263
- [5] L.V. Ahlfors, *Complex Anlysis.*, second edition, McGraw-Hill Book Company., 1979, 205-210; 134-137,139-143.

Department of Mathematics Petrol-Gaze Ploiești University