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The approximation of a Polynomial’s
Measure, with Applications towards Jensen’s

Theorem1

Alexe Călin Mureşan

Abstract

We introduce the notion of measure of a polynomial F (z) with

complex coefficients, then we give an interpretation for it as an in-

tegral, using Jensen’s theorem. By introducing a new polynomial

F must be evaluated, depending on the measure of the new poly-

nomial, according only to the expression of F , or to other integral

expressions.
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1 Introduction

For F (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, F (x) ∈ C[x], a0 6= 0, an 6= 0,

n ≥ 1 with the roots x1, x2, . . . , xn ∈ C; repeated according to their mul-

tiplicity, then we introduce the notion of measure of polynomial F (z) with

complex coefficients.
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42 Alexe Călin Mureşan

M(F ) = M [F (x)] = |an| ·
n

∏

j=1

max{1, |xj|}

and there will be found an interpretation for it as an integral, by using

Jensen’s theorem:

ln[M(f)] =
1

2π

∫ 2π

0

ln|F (eiθ)|dθ.

We can determinate effectively the series (Fm)m≥1 and then, M(F ) which

is a real number, from relations:

2−n·2−m

· ‖Fm‖
2−m

≤ M(F ) ≤ ‖Fm‖
2−m

.

lim
m→∞

‖Fm‖
2−m

= M(F ).

Now by anew polynomial which depends on F , and that has all the roots

in D(0, 1), the degree of the polynomials F must be evaluated, depending

either on the edge of all the real roots R = 1 +
∑n−1

k=0 |
ak

an
| = L(F )

|an|
, on the

maximum and minimum of F (z) when |z| = 1, or on the measure of a new

polynomial or, least but not last, depending only the expression of F .

For example:

ln{min
|z|=R

|F (z)|} − ln |an|

ln|L(F )| − ln|an|
≤ n ≤

ln{max
|z|=R

|F (z)|} − ln|an|

ln|L(F )| − ln|an|
,

n =

1

2π

∫ 2π

0

ln |F [
L(F )

an

· eiθ]|dθ − ln |an|

ln[L(F )] − ln |an|
.

Also, other relation allowing the evaluation of maximum and minimum for

F (z) when |z| = R has been deducted; depending on the edge R, and

depending on the polynomial’s coefficients and degree. Then we can com-

pare the previous results with some basic results on Complex Analysis for

R = L(P )
|an|

the edge of all the real roots, such as ’The Cauchy’s integral

formula for polynomials on R’-radius circles and ’Maximum Principle’.
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2 Measure of a polynomial

Definition 2.1. Let F (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, n ≥ 1,

an 6= 0, F (x) ∈ C[x], with the roots x1, x2, . . . , xn ∈ C; repeated according

to their multiplicity, then by definition, the measure of the polynomials F ,

noted by M(F ), is:

M(F ) = M [F (x)] = |an| ·
n

∏

j=1

max{1, |xj|}

Definition 2.2. Let F (x) = anx
n +an−1x

n−1 + . . .+a1x+a0, n ≥ 1, an 6= 0,

Then the norm of the polynomial F , noted by ‖F‖, will be:

‖F‖ =
√

a2
0 + a2

1 + a2
2 + . . . + a2

n

And the length of the polynomial F noted by L(F ) is:

L(F ) =
n

∑

k=0

|ak|.

Theorem 2.1. For F (x) ∈ C[x]; F (x) = anx
n+an−1x

n−1+. . .+a1x+a0, n ≥

1, an 6= 0,with the toots x1, x2, . . . , xn ∈ C; repeated according to their mul-

tiplicity, then we have:

a) M(F ) =
|a0|

n
∏

j=1

min{1, |xj|}

; b) M [xn · F ( 1
x
)] = M [F (x)];

c)M(P · Q) = M(P ) · M(Q), for all P,Q ∈ C[x]; d) M [F (xk)] = M [F (x)]

e) M2(F ) + |aoan|
2 · M−2(F ) ≤ ‖F‖2.

Proof. a) From Viete’s formulas we have
n

∏

j=1

|xj| =

∣

∣

∣

∣

a0

an

∣

∣

∣

∣

.
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But,
n

∏

j=1

|xj| =
n

∏

j=1

max{1, |xj|} ·
n

∏

j=1

min{1, |xj|} =

∣

∣

∣

∣

a0

an

∣

∣

∣

∣

.

where we have |an| ·

n
∏

j=1

max{1, |xj|} =
|a0|

n
∏

j=1

min{1, |xj|}

.

b) H(x) = xn · F ( 1
x
) = a0x

n + a1x
n−1 + . . . + an−1x + an,

M

[

xn · F

(

1

x

)]

= a0 ·

n
∏

j=1

max{1, |yj|} where H(jj) = 0 and yj = 1
xj

,

j = 1, n.

Now M

[

xn · F

(

1

x

)]

=
|a0|

n
∏

j=1

min{1, |xj|}

and from a) is obvious.

c) and d) are easy to prove, also see [1] from References.

e) see[1] or[2] from References.

f)From (e) we have that: M2(F ) ≤ ‖F‖2 and M(F ) ≤ ‖F‖

Theorem 2.2. If f(x) = an ·
n

∏

j=1

(x − xj), an 6= o, where xj ∈ C; j = 1, n, n ≥

1 are the polynomials roots, repeated according to their multiplicity, and the

polynomials

Fm(x) = ±a2m
n ·

∏n

j=1(x − x2m

j ); m ≥ 0.

Then we can calculate Fm(x) according to Graeffe’s Method, that is:

i) F0(x) = F (x)

ii) Then for m = 0, n − 1, we can find {Gm(x), Hm(x), Fm+1(x)} ∈ C[x] in

order to have: Fm(x) = Gm(x2)−x ·H2
m(x). ,Fm+1(x) = G2

m(x)−x ·H2
m(x)

iii) Finally, we find Fm(x) for all m ≥ 0.

Proof. See [3] from References.
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Theorem 2.3. If F (x) ∈ C[x]; gradF ≥ 1 and Fm, m ≥ 0, the polynomial

series associated through the Graeffe’s Method, them:

2−n·2−m · ‖Fm‖
2−m

6= ‖Fm‖
2−m

and

lim
n→∞

‖Fm‖
2−m

= M(F ).

Proof. See [3] from References.

Remark 2.1. This theorem allows evaluating the polynomial‘s measure as

many as exact decimals.

3 Jensen’s Equality and its Applications

Theorem 3.1. Jensen’s equality. Let F (x) an analytic function in a re-

gion which contains the closed disk D(0; R); R > 0 in the complex plane, if

n ≥ 1, x1, x2, . . . , xn ∈ C, |xj| < R, for all i = 1, n, are the zeros of F in the

interior of D(0; R) repeated according to their multiplicity and if F (0) 6= 0,

then:

ln |F (0)| = −

n
∑

j=1

ln

(

R

xj

)

+
1

2π

∫ 2π

0

ln |F (R · eiθ)|dθ or :

n ln R =
1

2π

∫ 2π

0

ln |F (R · eiθ)|dθ − ln |F (0)| + ln

(

n
∏

j=1

|xj|

)

.

Proof. See [2] or [5] from References.

Remark 3.1. This formula establishes a connection between the moduli of

the zeros of the function F inside the disk |z| < R and the values of |F (z)|

on the circle |z| = R, and can be seen as a generalization of the mean value

property of harmonic functions.
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Consequence 3.1. Let F (x) an analytic function in a region which con-

tains the closed disk D(0; 1) in the complex plane, m ≥ 1 is the number of

all zeros of F in the interior of D(0; 1) repeated according to multiplicity,

then:

0 =
1

2π

∫ 2π

0

ln |F (eiθ)|dθ − ln |F (0)| + ln

(

n
∏

j=1

|xi|

)

.

Proof. Is obvious by Theorem 3.1 for R = 1.

Theorem 3.2. If F (x) = amxm + am−1x
m−1 + . . . + a1x + a0, F (x) ∈

C[x], a0 6= 0, am 6= 0,m ≥ 1 then:

ln[M(F )] =
1

2π

∫ 2π

0

ln |F (eiθ)|dθ

and:

min
|z|=1

{|F (z)|} ≤ M(F ) ≤ max
|z|=1

{|F (z)|}

Proof. Let be: x1, x2, . . . , xm ∈ C, for all i = 1,m all the roots, repeated ac-

cording to multiplicity of F (x) in the complex plane; and x−1, x2, . . . xn the

roots repeated according to multiplicity of F (x) in the interior of D(0; 1)|x−

j| < 1; j + 1, n.

Because F (x) is a polynomial analytic function and F (0) = a0 6= 0 we are

within the hypothesis of Consequence 3.1, and we have:

0 =
1

2π

∫ 2π

0

ln |F (eiθ)|dθ − ln |F (0)| + ln

(

n
∏

j=1

|xj|

)

.

that is:
1

2π

∫ 2π

0

ln |F (eiθ)|dθ = ln|F (0)| − ln

(

n
∏

j=1

|xj|

)

.

In conclusion,

1

2π

∫ 2π

0

ln |F (eiθ)|dθ = ln
|a0|

n
∏

j=1

|xj|

.
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But
n

∏

j=1

|xj| =
m
∏

j=1

min{1, |xj|} and according to Theorem 2.1 a), we have:

1

2π

∫ 2π

0

ln |F (eiθ)|dθ = ln(M(F )).

Next, by maximizing and minimizing, we obtain:

1

2π

∫ 2π

0

ln[min
|z|=1

(|F (z)|)]dθ ≤ ln(M(F )) ≤
1

2π

∫ 2π

0

ln[max
|z|=1

(|F (z)|)]dθ.

that is:

min
|z|=1

{|F (z)|} ≤ M(F ) ≤ max
|z|=1

{|F (z)|}.

Theorem 3.3. If F (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, ai ∈ C; i =

1, n, n ≥ 1, and a0 6= 0, an 6= 0 if x1, x2, . . . , xn are the roots repeated

according to multiplicity of F (x), F (xj) = 0, = 1, n then exists R > 0;

R > max

{

1,
n−1
∑

k=0

| ak

an
|

}

or R > 1 + max
0≤k<n

{| ak

an
|} or simply R = 1

n−1
∑

k=0

| ak

an
|

= L(F )
|an|

, with |xi| < R; i = 1, n.

Proof. See [1] or [4] from References.

Remark 3.2. We shall now give a few inequalities which resulted by com-

bining the condition from Theorem 3.3., so that all the roots of a polynomial

F (x) to be, within the moduli in interval (0, R), and the Jensen’s equality.

We have inferred these inequalities by using Theorem 3.2. where the author

introduced the measure of a polynomial in the above equality.

Theorem 3.4. If F (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, ai ∈ C; i =

1, n, n ≥ 1 and R ∈ R,R > 0, so that F (xi) = 0, |xi| < R; i = 1, n, where

x − 1, x − 2, dots, xn are all the roots repeated according to multiplicity of

F (x) and a0 6=, an 6= 0, then:

a) If G(y) = F (R · y) and G(yi) = 0, i = 1, n, that is y1, y2, . . . , yn are the

roots repeated according to multiplicity of G(y), then yi = xi

R
and |yi| < 1.
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b)Exists ǫ ∈ R; 0 < ǫ < 1 so that |a0| · (1 − ǫ)n ≤ max
|z|=R(1−ǫ)

{|F (z)|}

and

c)
ln{min

|z|=R
|F (z)|}−ln |an|

ln R
≤ n ≤

ln{max
|z|=R

|F (z)|}−ln |an|

ln R
.

Proof. a) Let yi = xi

R
; i = 1, n, then G(yi) = F (R ·yi) = F (R · xi

R
= F (xi) =

0),for all i = 1, n.

In conclusion, yi = xi

R
are the zeros of G(y).

Moreover, |yi| = |xy|R < R
R

= 1, that involves |yi| < 1; y = 1, n.

b)Because G(y) = F (R · y), we have:

G(y) = anR
n · yn + an−1R

n−1 · yn−1 + . . . + a1R · y + a0, ai ∈ C; i = 1, n

We choose ǫ > 0 so that R1 = 1 − ǫ and |yi| < 1 − ǫ < 1, i = 1, n.

This choise was possible due to the fact that |yi| < 1, i = 1, n.

From Jensen’s equality for G(y), we have:

n ln R1 =
1

2π

∫ 2π

0

ln |G(R1 · e
iθ)|dθ − ln |G(0)| + ln

(

n
∏

j=1

|yj|

)

Because for j = 1, n, |yi| < R1 < 1, we have 0 ≤

n
∏

j=1

|yj| < 1 which implies

ln

(

n
∏

j=1

|yj|

)

< 0.

And next G(0) = a0 6= 0 and
∫ 2π

0
ln |G(R1 · e

iθ)|dθ <
∫ 2π

o
ln[ max

|z|=R1

|G(z)|]dθ,

Therefore, from the previous relation we have:

n ln R1 ≤
1

2π
· 2π · ln[ max

|z|=R1

|G(z)|] − ln|a0|

and because R1 = 1 − ǫ, ǫ > 0, that is:

ln(1 − ǫ)n ≤ ln

max
|z|=1−ǫ

|G(z)|

|a0|

or,

(3.1) (1 − ǫ)n ≤

max
|z|=1−ǫ

|G(z)|

|a0|
.
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As max
|z|=1−ǫ

|G(z)| = max
|z|=1−ǫ

|F (R · z)|, by nothing R · z = z1, implies that

z = z1

R
, and then:

max
|z|=1−ǫ

|G(z)| = max
|
z1
R
|=1−ǫ

|F (z1)| = max
|z1|=R(1−ǫ)

|F (z1)|.

As a result:

(3.2) max
|z|=R1=1−ǫ

|G(z)| = max
|z|=R(1−ǫ)

|F (z1)| = max
|z|=R(1−ǫ)

|F (z)|.

From relation (3.1) and relation (3.2) we have:

(1 − ǫ)n ≤

max
|z|=R(1−ǫ)

|F (z)|

|a0|

which is equivalent with

|a0| · (1 − ǫ)n ≤ max
|z|=R(1−ǫ)

{|F (z)|},

with ǫ > 0, conveniently chosen.

c) By applying Theorem 3.2. to the polynomial G(z) = F (R · z), is

obtained, due to the fact that |yi| < 1; i = 1, n:

min
|z|=1

{G(z)} ≤ M [G(z)] ≤ max
|z|=1

{G(z)},

that is:

min
|z|=1

{|F (R · z)|} ≤ M [G(z)] ≤ max
|z|=1

{|F (R · z)|}.

By nothing R · z = z1, we obtain:

|z| = 1 is equivalent to |z1| = R; min
|z|=1

{|F (R · z)|} = min
|z1|=R

{F (z1)}

max
|z|=1

{|F (z1)|} = max
|z1|=1

{|F (z1)|}.

Then:

min
|z1|=R

{|F (z1)|} ≤ M [F (z1)] ≤ M [G(z)] ≤ max
|z1|=R

{F (z1)}.
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And afterwards nothing z1 = z we have:

(3.3) min
|z|=R

{|F (z)|} ≤ M [G(z)] ≤ max
|z|=R

{F (z)}.

Still, M [F (R·z)] = M [G(z)] = M [anR
nzn+an−1R

n−1yn−1+. . .+a1Ry+a0].

For G(z) = anR
n ·

n
∏

j=1

(z − yj) we have from definition:

M [G(z)] = |anR
n| ·

n
∏

j=1

max{1, |yj|}, that is: M [G(z)] = M [F (R · z)] =

= |anR
n|

n
∏

j=1

max{1, |yj|}.

But due to the fact that |yj| < 1, j = 1, n, we obtain

(3.4) M [F (R · z)] = M [G(z)] = |an| · R
n

Therefore, from relation (3.3) an (3.4), we obtain:

min
|z|=R

{|F (z)|} ≤ M [G(z)] = |an| · R
n ≤ max

|z|=R
{F (z)}.

And that implies: ln[min
|z|=R

{F (z)}] ≤ ln[|an| ·R
n] ≤ ln[max

|z|=R
{|F (z)|}] which is

equivalent with

ln[min
|z|=R

{|F (z)|}] − ln |an| ≤ n ln R ≤ ln[max
|z|=R

{|F (z)|}] − ln |an|,

and because R > 1 we have:

ln{min
|z|=R

|F (z)|} − ln |an|

ln R
≤ n ≤

ln{max
|z|=R

|F (z)|} − ln |an|

ln R
.

Consequence 3.2. If F (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, ai ∈ C; i =

1, n, n ≥ 1, F (xi) = 0, i = 1, n, where x1, x2, . . . , xn,, are the roots repeated

according to multiplicity of F (x) and a0 6= 0, an 6= 0, then:
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a)

ln{ min
|z|=

L(F )
an

|F (z)|} − ln |an|

ln L(F ) − ln |an|
≤ n ≤

ln{ max
|z|=

L(F )
|an|

|F (z)|} − ln |an|

ln L(F ) − ln |an|
;

b) Moreover, if L(F ) = 1 then:

ln{ min
|z|= 1

an

|F (z)|} − ln |an|

ln |an|
≥ n ≥

ln{ max
|z|= 1

|an|

|F (z)|} − ln |an|

ln |an|
;

c) Furthermore, if an = 1 then:
ln{ min

|z|=L(F )
|F (z)|}

ln L(F )
≤ n ≤

ln{ max
|z|=L(F )

|F (z)|}

ln L(F )
.

Proof. a) We can prove it by using Theorem 3.3 for R = L(f)
|an|

and from

Theorem 3.4. c)

b),c) is obvious from a).

Theorem 3.5. The Maximum Principle. An analytic function on an

open set U ⊂ C assumes its maximum modulus on the boundary. Moreover,

if f is analytic and takes at least two distinct values on an open connected

set U ⊂ C, then

|F (z)| < sup
z∈U

|F (z)|, z ∈ U

Proof. See [5] to References.

Remark 3.3. If F (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0, a1 ∈ C; i = 1, n,

n ≥ 1, an 6= 0, R > 0, then:

a) |F (z)| ≤ max
|z|=R

{F (z)} ≤ |an|R
n + |an−1|R

n−1 + . . . + |a1|R + a0, for each

z ∈ D(0; R) ⊂ C.

b) If R ∈ R,R > 0, so that F (xi) = 0, |xi| < R; i = 1, n, where x1, x2, . . . , xn

are the roots repeated according to multiplicity of F (x) and a0 6= 0, an 6= 0,

then:

|an|R
n ≤ max

|z|=R
{|F (z)|} ≤ |an|R

n + |an − 1|Rn−1 + . . .+ |a1|R + |ao|, for each

z ∈ D(0; R) ⊂ C.
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Proof. a) we are in conditions of the Maximum Principle. For U =

D(0; R) ⊂ C :

|F (z)| ≤ max|z|=R{|F (z)|}, for each z ∈ D(0; R) ⊂ C.

But

max
|z=R|

{|F (z)|} = max
|z|=R

|anz
n + an−1z

n−1 + . . . + a1z + a0| ≤ |an−1|R
n−1+. . .+

|a1|R + |a0| = anR
n + an−1R

n−1 + . . . + a1R + a0.

So we have the result

b) From Theorem 3.4 c) we have |an|R
n ≤ max

|z|=R
{|F (z)|} and from a) of this

Theorem we have:

|an|R
n ≤ max

|z|=R
{|F (z)|} ≤ |an|R

n + |an−1|R
n−1 + . . . + |a1|R + a0 for each

z ∈ D(0; R) ⊂ C.

Theorem 3.6. If F (x) + anx
n + an−1x

n−1 + . . . + a1x + a0, ai ∈ C; i =

1, n, n ≥ 1 and R = L(F )
|an|

, R > 1 where x1, x2, . . . , xn are the roots repeated

according to multiplicity of F (x) and a0 6= 0, an 6= 0, then:

n =

1

2π

∫ 2π

0

ln

∣

∣

∣

∣

F

[

L(F )

|an|
· eiθ

]∣

∣

∣

∣

dθ − ln |an|

ln [L(F )] − ln |an|
.

Proof. We are in condition of Theorem 3.2. and we have for G(z) = F (R·z)

ln[M(G)] =
1

2π

∫ 2π

0

ln |G(eiθ)|dθ.

Also we have M [G(z)] = |an|R
n from the Theorem 3.4.c)

From these relation, we have: ln(|an|R
n) = 1

2π

∫ 2π

0
ln |G(eiθ)|dθ

where

n =

1

2π

∫ 2π

0

ln |G(eiθ)|dθ − ln |an|

ln(R)
.

Now we can take from hypothesis R = 1 +
∑n−1

k=0 |
ak

an
| = L(F )

|an|

and from Theorem 3.3. F (xi) = 0, |xi| < R; i = 1, n.
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Also because G(eiθ) = F (R · eiθ) we obtain:

n =

1
2π

∫ 2π

0
ln |F [ L(F )

|an|
· eiθ ]| dθ − ln |an|

ln
[

L(F )
|an|

]

or

n =

1
2π

∫ 2π

0
ln

∣

∣

∣
F

[

L(F )
|an|

· eiθ
]∣

∣

∣
dθ − ln |an|

ln[L(F )] − ln |an|
.

Theorem 3.7. The Cauchy’s integral formula for polynomials on

circles. If F (z) = am

m
∏

j=1

(x − xj), then the number of indices j for which

|xj| < R is ”n”:

n =
1

2πi

∫

|z|=R

F ′(z)

F (z)
dz

provided no xj lies on Fr(D) : |z| = R.

Proof.
1

2πi

∫

|z|=R

F ′(z)

F (z)
dz =

1

2πi
·

∫

|z|=R

m
∑

j=0

1

z − xj

dz =

1

2πi
·

m
∑

j=0

∫

|z|=R

1

z − xj

dz =
1

2πi
·

n
∑

j=0

∫

|z−xj |=e

1

z − xj

dz =
1

2πi
·

n
∑

j=0

2πi = n

See [5] to References.

Remark 3.4. If F (x) = anx
n + an−1x

n−1 + . . . + a1x + a0, ai ∈ C; i =

1, n, n ≥, and R = L(F )
|an|

, R > 1, where x1, x2, . . . , xn are the roots repeated

according to multiplicity of F (x) and a0 6= 0, an 6= 0, then:

n =
1

2πi

∫

|z|=
L(F )
|an|

F ′(x)

F (z)
dz =

1
2π

∫ 2π

0
ln

∣

∣

∣
F

[

L(F )
|an|

· eiθ
]∣

∣

∣
dθ − ln |an|

ln[L(F )] − ln |an|

Proof. If we take R = 1 +
n−1
∑

k=0

∣

∣

∣

∣

ak

an

∣

∣

∣

∣

=
L(F )

|an|
for the ”n” from previous

theorem, what is now the number of all zeros, we can find first equality, the

another was given in Theorem 3.6.
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