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Some multiplier difference sequence spaces
defined by a sequence of modulus functions

Hemen Dutta

Abstract

In this paper we introduce and investigate the multiplier differ-
ence sequence spaces Co(F,A?m),A,p), c(F,A?m),A,p) and (o (F,
A?m),A, p) defined by a sequence F= (fi) of modulus functions and
p = (px) be any bounded sequence of positive real numbers. We
study their different properties like completeness, solidity, mono-
tonicity, symmetricity etc. We also obtain some relations between

these spaces as well as prove some inclusion results.
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1 Introduction

Throughout the paper w, ., ¢ and ¢y denote the spaces of all, bounded,
convergent and null sequences = = (xj) with complex terms respectively.
The zero sequence is denoted by 6 = (0,0,...).

The notion of difference sequence space was introduced by Kizmaz [4],
who studied the difference sequence spaces (o (A), ¢(A) and ¢o(A). The
notion was further generalized by Et and Colak [1] by introducing the spaces
loo(A™), ¢(A™) and co(A™). Another type of generalization of the difference
sequence spaces is due to Tripathy and Esi [10], who studied the spaces
loo(Ar), c(Ay,) and cg(A,,). Tripathy, Esi and Tripathy [11] generalized
the above notions and unified these as follows:

Let m, n be non-negative integers, then for Z a given sequence space we
have

Z(AY) ={x = (x) ew: (Al xy) € Z},

where A"z = (A"x) = (A" ey, — A" lop,,) and A%z, = xp for all

k € N, which is equivalent to the following binomial representation:

u n
Afnl‘k = Z(—l)v (U) Lh+muo-

v=0
Taking m = 1, we get the spaces lo(A"), ¢(A") and ¢y(A") studied by Et
and Colak [1]. Taking n = 1, we get the spaces (o (A,), ¢(A,,) and ¢o(A,,)
studied by Tripathy and Esi [10]. Taking m = n = 1, we get the spaces
loo(A), ¢(A) and ¢o(A) introduced and studied by Kizmaz [4].
Let A = (A\x) be a sequence of non-zero scalars. Then for E a sequence

space, the multiplier sequence space F(A) associated with the multiplier
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sequence A is defined as
E(A) = {(zx) € w: (M) € E}

The scope for the studies on sequence spaces was extended by using the
notion of associated multiplier sequences. Goes and Goes [2] defined the
differentiated sequence space dE and integrated sequence space [E for a
given sequence space F, using the multiplier sequences (k1) and (k) respec-
tively. A multiplier sequence can be used to accelerate the convergence of
the sequences in some spaces. In some sense, it can be viewed as a catalyst,
which is used to accelerate the process of chemical reaction. Sometimes the
associated multiplier sequence delays the rate of convergence of a sequence.

A function f : [0,00) — [0, 00) is called a modulus if

(a) f(x) =0 if and only if z =0,

(0) flz+y) < flz) + fly), for 2 >0, y >0,

(c) f is increasing,

(d) f is continuous from the right at 0.

Hence f is continuous everywhere in [0, 00).

The following inequality will be used throughout the article. Let p =
(pr) be a positive sequence of real numbers with 0 < p < suppy = G,

D = max(1,2971). Then for all a;, b, € C for all k € N, we have
|ar, + b < Dffax|" + [bx |}

and for A € C,

AP < max(1, [Al%)
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The studies on paranormed sequence spaces were initiated by Nakano [8]
and Simons [9] at the initial stage. Later on it was further studied by Mad-
dox [7], Lascardies [5], Lascardies and Maddox [6], Ghosh and Srivastava

[3] and many others.

2 Definitions and Preliminaries

A sequence space E is said to be solid (or normal) if (z) € FE implies
(apxr) € E for all sequences of scalars (ay) with |ag| < 1 for all k € N.

A sequence space F is said to be monotone if it contains the canonical
preimages of all its step spaces.

A sequence space F is said to be symmetric if (x4)) € E, where 7 is a
permutation on V.

A sequence space E is said to be convergence free if (y;) € E whenever
(x) € E and y = 0 whenever x; = 0.

A sequence space E is said to be sequence algebra if (xy.yx) € E when-
ever (zx) € F and (y) € E.

Let p = (px) be any bounded sequence of positive real numbers and
A = (A\r) be a sequence of non-zero scalars. Let m,n be non-negative
integers, then for a sequence F = (fj) of modulus functions we define the

following sequence spaces:
co(F's Ay Ay p) = {2 = () = lim (fi([AG) Ae]))™ = 0},

¢(F, Ay, Ap) = o = (an) « lim (ful| AT, Mwe — L)) =0,
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for some L € C'},
ool F Ay, M) = {2 = (1) 5Up(| A M D < 0},
>1
where (A?m)Akxk) = (A?n:)l)\kxk — A?n;)l)\k,mxk,m) and A(()m))\k:ck = /\kSCk
for all kK € N, which is equivalent to the following binomial representation:

" n
A?m))\kwk = Z(_l)v< )/\k—mvxk—mv-

(Y
v=0

In the above expansion it is important to note that we take xy_,,, = 0
and A\p_,,, = 0, for non-positive values of £k — muv. Also it is obvious that
co(F, AL,y Ap) Ce(F, A7, A p) Cleo(F, AL, A p).

The inclusions are strict follows from the following examples.

Example 1 Let m = 2,n = 2, fi.(x) = 25, for all k odd and fi.(z) = 22
for all k even, for all x € [0,00) and pr = 1 for all k > 1. Consider the
sequences A = (k%) and x = (35). Then x belongs to ¢(F, Aé),/\,p), but =
does not belong to co(F, A?Q),A,p).

Example 2 Let m = 2,n = 2, fy(x) = 22, for all k > 1 and z € [0,00)
and pr, = 2 for all k odd and p,, = 3 for all k even. Consider the sequences
A={1,1,1,..} andz ={1,3,2,4,5,7,6,8,9,11,10,12, ...}. Then x belongs
to loo(F, A%Q), A,p), but x does not belong to c(F, A%Q), A, p).

Lemma 1 If a sequence space E is solid, then E is monotone.

3 Main Results

In this section we prove the main results of this article. The proof of the

following result is easy, so omitted.
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Proposition 1 The classes of sequences co(F, A} |, A, p), c(F, A?m),A,p)

(m)

and lo (F, Al A, p) are linear spaces.

Theorem 1 For Z = l,c and ¢y, the spaces Z(F, A" A, p) are para-

(m)?

normed spaces, paranormed by

g(x) = i‘ill)((fkﬂA?m))‘kkapk)%»

where H = max(1,sup pg).
k>1

Proof. Clearly g(z) = g(—x); « = 6 implies g(f) = 0.
Let (zx) and (yx) be any two sequences belong to anyone of the above
spaces. Then we have,
gz +y) = ililf(fk(m?m)%xk + Al Aeyl))
< sup(fu(IA7) Azl ) 7+ sup(fi(| AL, Ayel)) 7
k>1 k>1
This implies that
9z +y) < g(z) +9(y).

The continuity of the scalar multiplication follows from the following

PE
H

inequality:
glaz) = iglf((fk(lﬁ?m)a%%|))p’€)%
= sup(( ol [ AL M) )P5) 7
k>1

< (1+[||])g(z), where [|a]] denotes the largest integer contained
in |o.
Hence the spaces Z (F,A?m),A, p), for Z = l,c,co are paranormed

spaces paranormed by g.

Theorem 2 For 7 = ly,c and ¢y, the spaces Z(F, A?m),A,p) are com-

plete paranormed spaces, paranormed by g as defined above.
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Proof. We prove the result for the case (o (F, A?m), A, p) and for the other
spaces it will follow on applying similar arguments.

Let (2°) be any Cauchy sequence in EOO(F,A?W),A,p). Let ¢ > 0 be
given and let &1 = s%p( f1(€))#. Then there exists a positive integer ng

such that

g(x" —a7) < gy, for all i, j > ng.
Using the definition of paranorm, we get
ili;l)((fk(mz‘m))\k% — A?m))\kxﬂ))pk)% < ey, forall i, j > ny.
It follows that
|A?m))\k:11;§C — A?m))\kxi] < g, for each k > 1 and for all i, j > ny.

Hence (A?m))\kxi;) is a Cauchy sequence in C for all k € N. This implies
that (A7, A\xz}) is convergent in C for all k € N. Let lim A7 Aez) = yi
for each k € N.

Let kK =1, we have

. n n .
1 lim A Az; = i —1)" Mmooy =
0 fm At = i D2 (T
Similarly we have,
(2) lim A’(lm))\kq:ﬁc = lim Mzl = yp, for k=1,....,nm

Thus from (1) and (2) we have lim T exists. Let im 28, = &1 4pnm.

1—00

Proceeding in this way inductively, we have lim z} = =, exists for each

i—00
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ke N.

Now we have for all 7,7 > ny,
sUp((fi(1AL Mzl = Al Auzi)))F < 2
>1
Then we have

lim [sup((fi(|A%, Ay — 7m)Akxg))m)%1 < e, for all i > ny

This implies that
SUD((fe| Ay M), = Ay M ))) 7 < 2
>1
It follows that
(' — x) € loo(F, ALy, A, p).

Since (z°) € loo(F, A?m), A,p) and (o (F, A?m), A, p) is a linear space, so we

have x = o' — (2" — x) € loo(F, AL, A, ).
This completes the proof of the Theorem.

Theorem 3 If 0 < pp < g < oo for each k, then Z(F, A?m),A,p) C
Z(F, A?m),A, q), for Z =cy and c.

Proof. We prove the result for the case Z = ¢y and for the other case it
will follow on applying similar arguments.
Let (zy) € co(F, Af,,), A, p). Then we have
Jim (Fr(|AG) Arza]))™ = 0.
This implies that

fe(lAG) Aswk|) < (0 < e < 1) for sufficiently large k.
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Hence we get
Jim (fr(|AG Aezi))® < Tim (fe(|AG) Arze]))? = 0

This implies that (zx) € co(F, A} |, A, q)

(m)

This completes the proof.

The following result is a consequence of Theorem 3.

Corollary 1 (a) If 0 < infp, < pp < 1, for each k, then Z(F, A?m),A,p)
C Z(F, A?m),/\), for Z = ¢y and c.
(b) If 1 < pr. < suppy < oo, for each k, then Z(F, A?m),A) C Z(F, A?m),A,p),

for Z = ¢y and c.

Theorem 4 Z(F,A" ! A, p) C Z(F, AT,y A, p) (in general Z(F, Aém),A,p)

(m)> m)’

C Z(F, A?m),A,p), fori=1,2,...,n-1), for Z = U, c and cy.

Proof. We prove the result for Z = ¢y and for the other cases it will follow

on applying similar arguments.

Let © = (xy) € co(F, A?T;)l, A, p). Then we have
3) dim (Fu(|AG) sz = 0
Now we have

Fel| AT Akzx]) < fr(IAT Aeael) + Fe(| AL A-mTh—m)
Hence we have

(fe(1AGmAezi)P < DE(ful1 ALy Meza))™ + (Fill Al MemTa—ml))™ }
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Then using (3), we get

Jim (Fe(|AG) Akze])) =0

Thus co(F,A?n;)l,A,p) C co(F, A7 | A, p).

(m)>

The inclusion is strict follows from the following example.

Example 3 Let m = 3,n = 2, fy(x) = 2'°, for all k > 1 and x € [0,00)
and pr =5 for all k odd and pp = 3 for all k even. Consider the sequences
A = (3) and x = (k*). Then A%S))\kxk =0, for all k € N. Hence
x € co(F, A%?)),A,p). Again we have A%S))\kxk = —3, for all k € N. Hence
x does not belong to co(F, Aé), A, p). Thus the inclusion is strict.

Theorem 5 The spaces co(F, A?m),A,p), c(F, A?m),A,p) and Lo (F, AT

(m)

A, p) are not monotone and as such are not solid in general.
Proof. The proof follows from the following example.

Example 4 Let n = 2,m = 3,p,, = 1 for all k odd and p, = 2 for all k
even and fi(z) = x*, for all x € [0,00) and k € N. Then A%?)))\ka:k:)\kxk —
2\h_3Tk_3 + Mp_eTi_g, for all k € N. Consider the J" step space of a
sequence space E defined as, for (zy), (yx) € E7 implies that yy, = x), for k
odd and yr = 0 for k even. Consider the sequences A = (k*) and x = (35).
Then x € Z(F, A%3),A,p) for Z = Uy, c and cy, but its J™* canonical pre-
image does not belong to Z(F, A%g),A,p) for Z = l,c and cy. Hence the

spaces Z(F, A%S), A, p) for Z = Uy, c and ¢y are not monotone and as such

are not solid in general.
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Theorem 6 The spaces co(F, A?m), A, p), ¢(F, A?m), A,p) and (. (F, A’(lm),

A, p) are not symmetric in general.
Proof. The proof follows from the following example.

Example 5 Let n = 2,m = 2,pp, = 2 for all k odd and p, = 3 for all
k even and fi(x) = 2?, for all x € [0,00) and for all k > 1. Then
Aé)/\kxk:)\kxk — 2Xp9Tk_9 + Ap_axp_yg, for all kK € N. Consider the
sequences A = (1,1,1,...) and v = (xy) defined as xp = k for k odd
and x, = 0 for k even. Then A(ZQ))\kxk = 0, for all kK € N. Hence

(xy) € Z(F, A%g),A,p) for Z = Uy, c and cq. Consider the rearranged se-

quence, (yx) of (xy) defined as

(yr) = (21, 23, T2, T4, T5, T7, T6, T8, L9, T11, L10, L12, ---)

Then (yx) does not belong to Z(F, A%Q),A,p) for Z =, c and cy.
Hence the spaces Z(F, A7 N, p) for Z = U, c and ¢y are not symmetric

(m)

n general.

Theorem 7 The spaces co(F, A?m),/\,p), c(F, A?m),A,p) and lu(F, A’(lm),

A, p) are not convergence free in general.
Proof. The proof follows from the following example.

Example 6 Let m = 3,n = 1,p, = 6 for all k and fi(z) = 23, for k
even and fi,(z) = x, for k odd, for all x € [0,00). Then A%?’))\kxk:)\kxk —
Ae_3Ti_3, for all k € N. Let A = (%) and consider the sequences (xy) and
(yx) defined as xy = %k‘ for all k € N and y, = %k?’ for all k € N. Then
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(x) belongs to Z(F, A%g), A, p), but (yx) does not belong to Z(F, A%S), A, p)

for Z = ly,c and cy. Hence the spaces Z(F, A7 ., A, p) for Z = ly,c and
(m)

co are not convergence free in general.

Theorem 8 The spaces co(F, A?m),A,p), c(F, A?m),A,p) and lu(F, A?m),

A, p) are not sequence algebra in general.
Proof. The proof follows from the following examples.

Example 7 Let n = 2,m = 1,p, = 1 for all k and fy(x) = %2, for each
ke N andx € [0,00). Then A%l))\kxk =MeTp — 2 o 1Tp—1 + Ah—oTp_a, for all
ke N. Consider A = (31) and let x = (k°) and y = (k®). Then x,y belong
to Z(F, A?l),./\,p) for Z =l c, but x.y does not belong to Z(F, A%l), A, p)
for Z = ., c. Hence the spaces c(F, A?m),/\,p), (oo (F, A?m),A,p) are not

sequence algebra in general.

Example 8 Let n = 2,m = 1,pr = 3 for all k and fi(x) = 2°, for each
ke N and x € [0,00). Then A%l))\kzk =MeTp — 2 g 1Tp—1+ Ah—oTp_a, for all
k€ N. Consider A = (3) and let x = (k%) and y = (k®). Then x,y belong
to co(F, A%l), A, p), but x.y does not belong to co(F, A?l), A, p) for Z =L, c.

Hence the space co(F, A?m),A,p) s not sequence algebra in general.
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