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We give a complete picture regarding the behavior of positive solutions of the follow-
ing important difference equation: x,, = 1 + Eleocixn,pi/z ;”:lﬁjxn,qj, n € Ny, where a;,
ie{l,....,k}, andﬁj,j € {1,...,m}, are positive numbers such that Zleoc,- = Z;”:lﬁj =1,
and p;, i € {1,...,k}, and g;, j € {1,...,m}, are natural numbers such that p; < p; <

s <prand q1 < g2 < -+ < qm. The case when gcd (p1,..., pr>q1>--->qm) = 1 is the most
important. For the case we prove that if all p;, i € {1,...,k}, are even and all gj, j €
{1,...,m}, are odd, then every positive solution of this equation converges to a periodic
solution of period two, otherwise, every positive solution of the equation converges to a
unique positive equilibrium.

Copyright © 2007 Stevo Stevi¢. This is an open access article distributed under the Cre-
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1. Introduction and preliminaries

In [1], we studied the behavior of positive solutions of the recursive equation

yn=1+yy—"7k, n € N, (1.1)

with y_, ¥—s415...,¥-1 € (0,00) and k,m € {1,2,3,4,...}, where s = max {k, m}. We proved
that if 2/ is the highest power of 2 which divides m, then if 21 { k, y,, tends to 2, exponen-
tially, and otherwise every solution tends to a period ¢ solution, with ¢ = 2 gcd(k,m). The
method we used in [1] is a little bit complicated and its idea essentially stems from the
theory of nonexpansive metrics. Since the above result is formulated in number theoretic
language, we expect that the result is a particular case of a more general result, which
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motivates us to investigate the following somewhat natural generalization of (1.1):

k
i1 XiXp—p;

Z;n=1 Bjxn-q, ’

Xy =1+ n € Ny, (1.2)

where «;, i € {1,...,k}, and f3;, j € {1,...,m}, are positive numbers such that Zle(xi =
>iLiBj=1and p; i€ {1,....,k}, and g;, j € {L,...,m}, are natural numbers such that
pr<p2<---<prandq1 <@ < <qm.

Here, we give a complete picture regarding the asymptotic behavior of positive so-
lutions of (1.2). For closely related results, see, for example, [1-16] and the references
therein.

In the proof of the main result of this paper, we need the following result by Karakostas
(see [8,9]).

THEOREM 1.1. Let ] be some interval of real numbers, let f € C[J%,]], and let (x,);-_, be
a bounded solution of the difference equation

Xn+l = f(xn)xnfl)) ne NO) (13)

with I = liminf,_. I,, S = limsup,,_., x, and with 1,S € J. Then there exist two solutions
(1) o and (S,)s-_ of the difference equation

n=—oo

Xn+l = f(xmxnfl) (1.4)

which satisfy the equation for alln € Z, with Iy =1, Sy = S, I,,S, € [1,S] for alln € Z and
such that for every N € Z, Iy and Sy are limit points of (x,)y-_,. Furthermore, for every
m < —1, there exist two subsequences (x,,) and (xi,) of the solution (x,),-_, such that the
following are true:

limx, Ny =Iy, limx;n=S8yv foreveryN =m. (1.5)
n— 00 n— o0

The solutions (I,,) and (S,)> of (1.4) are called full limiting solutions of (1.4)

n=—00 n=-—00

associated with the solution (x;,),__, of (1.3).

2. Main results

First, we study the boundedness character of positive solutions of (1.2). For closely related
results, see, for example, [4, 6, 12—14].

THEOREM 2.1. Every positive solution of (1.2) is bounded.

Proof. Assume that (x,) is a positive solution of (1.2). Note that x, > 1 for n > 0. Hence,
it is possible to choose positive numbers [ and L greater than one such that IL = L+ and
I<x;<Lforie{0,1,...,s — 1}, where s = max{ px, g, }. Employing (1.2), we obtain

k
) i—1 0iXs—p, L
5x5=1+z,’,:17”’s1+—=L. (2.1)
ijlﬁjXS_‘Ij !
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By the induction, we obtain that x,, € [[,L] for every n € Ny, finishing the proof of the
theorem. O

We are now in a position to formulate and prove the main result of this paper.

THEOREM 2.2. Consider (1.2). Assume that

G:=ged (pryeeos P s s qm) = 1. (2.2)

Then ifall p;, i € {1,...,k}, are even and all q;, j € {1,...,m}, are odd, every positive solu-
tion of (1.2) converges to a periodic solution of period two. Otherwise, every positive solution
of (1.2) converges to a unique positive equilibrium.

Proof. Let
@Z{pi|i=1,...,k}, 91={qj|j=1,...,m}. (23)

Assume first that N Q # &. In view of Theorem 2.1, every positive solution (x,) of (1.2)
is bounded which implies that there are finite liminf, . x, = I and limsup,,_ . x, = S.
Letting n — o in (1.2), we obtain

~l

IA
—~
IA
5]
IA
—
+

(2.4)

N~

1+

from which it follows that
SI=1+S. (2.5)

Let (L_;)icz be a full limiting sequence of a solution (x;,) of (1.2), such that Ly = S.
Since (L_;)iez is a solution of (1.2) belonging to the interval [I,S], we have that

k
Zitilp S o (2.6)
2j=1BiL—q I
From (2.6), it follows that L_,, =S for every i € {1,...,k} and L, =1 for every j €
{1,...,m}. Employing assumption % N 9 # &, we obtain I = S, from which the result
follows in this case.

Now we assume that P N Q = &. Further, assume that there is p;, € % which is odd.
Let p;, = 2s+ 1 and let q;, be an arbitrary element of 9. Then, (1.2) can be written in the
form

S=L0=1+

k
®igXn—(2s+1) T Zi:l,i%io QXiXn—p;

Xy =1+ - .
ﬁjﬂxn_qjo + Z]‘:lvj%joﬁj'xn_qf

(2.7)

Let (L-;)icz be a full limiting sequence of a solution (x,) of (1.2), such that Ly = S =
limsup, _ ., x,. From

k
“inL7(2s+1) + ZiZl,i%io (X,’L,pi
m )
BinL-gy + 2j=1,jkio Bil-q,

S=Ly=1+ (2.8)
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similar to (2.6), we obtain
L_s11) =S, Ly, =1 (2.9)
From (2.9) and since (L_;);c7 is a solution of (2.7), it follows that
L) =S, Loy, =S (2.10)

Indeed, since

k
ai, L + 2ic 1 it @il -
S=L_eery = 14+ - Zak20s0) Zl;ﬂl,l#zo iLp@ewy S _ s, (2.11)
,Bjoqumf(Zerl) + Zj=1,jaéjo ﬁjL*qr(%H) I
we obtain the first equality in (2.10). On the other hand, from
inL—q. — I TR
I L_qjo 14 QKigL—qjo—(25+1) mzlfl,l#:lg &il—g;—pi . 1+£ -1, (2.12)
BioL-2q5, + =1, j4jo BiL-a5-a; S
the second equality in (2.10) follows.
By induction we obtain
L7(25+1)i = S) i€ N) (213)
I, jodd,
Log,;= _ (2.14)
S, jeven.

If we take i = gj, in (2.13) and j = 2s+1in (2.14), we obtain I = L_(35+1);, = S, as desired.
Now, assume that all p; € % are even, and 9 has odd as well as even elements. Then,
(1.2) can be written in the form

k
2iz1 XiXn-p,
m bl
ﬁjoxn—%'o +ﬁflx"—qj1 * ijl’j#jo,h ﬁfx”—‘b'

Xp =1+ (2.15)

where qj, = 2sand q;, = 2t + 1.

From a result in number theory [11], we know that the condition G = 1 implies that for
each sufficiently large n, say, n > ny, there are nonnegative numbers d; € No,i € {1,...,k+
m}, such that

Zpidi +

i=1 j

k m
qjdk+j =n. (2.16)
=1

From condition G = 1, by using (2.15) and (2.16), and employing the procedure de-
scribed above for getting formulae (2.13) and (2.14), we obtain that the subsequence
(L-i)izn, of the full limiting sequence (L;);cz with Ly = S takes values I and S.



Stevo Stevi¢ 5

Now we prove that the sequence (L_;);cy is eventually periodic with periods p1, p2,...,
pr and also with periods 2q,...,2¢q,. Indeed, if we replace n in (2.15) by —ng—1, I €
{0,1,...,p1 — 1}, we obtain that L, ;= L, 1, for everyi € Nand each l € {0,1,...,
p1 — 1}, thatis, (L_;)ien is eventually periodic with period p;. Similarly it can be proven
that (L_;);en is eventually periodic with periods p,..., pr. The periodicity with periods
2q1,...,2qm can be proven similar to (2.9) and (2.10) and by using induction.

Since all p; € % are even and G = 1, we have that

2 <ged (p1>P2see s Pl>2q15-+>2Gm) =chd<%,%,...,%,ql,...,qm) <2G=2,
(2.17)
that is,
gcd (p1,P2s- > P> 2q15-- -5 2Gm) = 2. (2.18)

Hence, the sequence (L-;);cn is eventually periodic with period two. Since (L;)icz is a
solution of (1.2), we obtain that (L;);cz is also periodic with period two.
Assume now that

I T T 2 TR (2.19)

is a two-periodic solution of (2.15). Then we have

_ X _ Y
x_1+cx+(1—c)y’ Y 1+cy+(1—c)x’ (2.20)
for some ¢ € (0,1). Hence,
(c=Dxy=cx*—(c+Dx—(1-c)y=cy*—(c+1)y—(1—0)x, (2.21)

from which it follows that c(x — y)(x+y —2) = 0. If x+ y = 2 and x # y, then we have
that x and y are different positive solutions of the equation
X

x:1+cx+(1—c)(2—x)’ (2.22)

which implies that (2c — 1)(x — 1)? = 1. Hence, if ¢ < 1/2, then this equation does not
have real roots. If ¢ > 1/2, then x = 1 = (1/(2c — 1))/? are solutions. However, since ¢ €
(1/2,1), the number 1 — (1/(2c — 1))"? is negative. Therefore, it follows that x = y as
desired.

Assume now that the set & contains only even elements while 9 contains only odd
elements. Then, it is easy to see that (1.2) in this case has infinite prime two-periodic
solutions of the form x, y,x, y,..., such that xy = x + y. Similar to (2.18), it can be proven
that, in this case, the full limiting sequence (L;)iez, Lo = S is periodic with period two and
that

L,y=S, Ly,:=1 i€el. (2.23)
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Assume that ¢,8 € (0,S) are such that
(S—e)(I+9)=(S—¢e)+(I+9). (2.24)
Then, for such chosen ¢ and &, there is a kg € Z such that
Xkot2j > S — & Xkpr2j—1 <I+6, (2.25)

for j € {1,2,...,[s/2] + 1}, where s = max{ pk,qm}.
From (1.2) and (2.25), we have that

I+6
Xkyr2ls2ls < 1+ o0 = 1+,
(2.26)
S—¢
Xkot2[s/2]44 > 1+ 140 S—e
By induction, we obtain
Xkyr2it1 <I+6, Xkor2i > S — & (2.27)

for everyie N. From (2.27) and the fact that e — 0 implies § — 0, it follows that lim,,— « X2,
=Sand limy,_.« X241 = I, or lim, . X2, = I and lim,,— « X2,—1 = S, finishing the proof of
the theorem. O

Remark 2.3. Note that the case when all p;, i € {1,...,k}, and g}, j € {1,...,m}, are even
is excluded from the consideration in Theorem 2.1 since we assume that G = 1. However,
this case is reduced to the cases considered in Theorem 2.1. Indeed, let 2° be the highest
power of 2 which divides G, then (1.2) can be separated into 2° different equations of the
form

k (t)
2lim1 06Xy, pil2
()
Z]]Tnzl ﬂj'xn—q}-/zs

where t € {0,1,...,2° — 1}. Note that by the definition of 2°, it follows that at least one
of the numbers p;/2°,i € {1,...,k}, and q;/2*, j € {1,...,m}, is odd. Hence, Theorem 2.1
can be applied to the equations in (2.28).

0 =14 , neN,, (2.28)
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