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1. Introduction

In this paper, we study the existence of positive solutions of the following dynamic equations
on time scales:

(
φ
(
uΔ))∇ + a(t)f

(
t, u(t)

)
= 0, t ∈ (0, T),

φ
(
uΔ(0)

)
=

m−2∑

i=1

aiφ
(
uΔ(ξi

))
, u(T) =

m−2∑

i=1

biu
(
ξi
)
,

(1.1)

where φ : R→R is an increasing homeomorphism and homomorphism and φ(0) = 0.
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A projection φ : R→R is called an increasing homeomorphism and homomorphism if
the following conditions are satisfied:

(i) if x ≤ y, then φ(x) ≤ φ(y), for all x, y ∈ R;

(ii) φ is a continuous bijection and its inverse mapping is also continuous;

(iii) φ(xy) = φ(x)φ(y), for all x, y ∈ R.

We will assume that the following conditions are satisfied throughout this paper:

(H1) 0 < ξ1 < · · · < ξm−2 < ρ(T), ai, bi ∈ [0,+∞) satisfy 0 <
∑m−2

i=1 ai < 1, and
∑m−2

i=1 bi <
1, T
∑m−2

i=1 bi ≥
∑m−2

i=1 biξi;

(H2) a(t) ∈ Cld((0, T), [0,+∞)) and there exists t0 ∈ (ξm−2, T), such that a(t0) > 0;

(H3) f ∈ C([0, T] × [0,+∞), [0,+∞)).

Recently, there is much attention focused on the existence of positive solutions for
second-order, three-point boundary value problem on time scales. On the other hand, three-
point and m-point boundary value problems with p-Laplacian operators on time scales have
also been studied extensively, for details, see [1–11] and references therein. But with an
increasing homeomorphism and homomorphism, few works were done as far as we know.

A time scale T is a nonempty closed subset of R. We make the blanket assumption that
0, T are points in T. By an interval (0, T), we always mean the intersection of the real interval
(0, T) with the given time scale, that is, (0, T) ∩ T.

We would like to mention some results of Anderson et al. [2], He [4, 5], Sun and Li
[9], Ma et al. [12], Wang and Hou [13], Wang and Ge [14], which motivate us to consider our
problem.

In [2], Anderson et al. considered the following problem:

(
φp

(
uΔ))∇ + a(t)f

(
u(t)
)
= 0, t ∈ (a, b),

u(a) − B0
(
uΔ(υ)

)
= 0, uΔ(b) = 0,

(1.2)

where φp(u) = |u|p−2u, p > 1, υ ∈ (a, b), f ∈ Cld([0,+∞), [0,+∞)), a(t) ∈ Cld((a, b), [0,+∞)),
and Kmx ≤ B0x ≤ KMx for some positive constants Km, KM. They established the existence
results of at least one positive solution by using a fixed point theorem of cone expansion and
compression of functional type.

In [4, 5], He considered the existence of positive solutions of the p-Laplacian dynamic
equations on time scales:

(
φp

(
uΔ))∇ + a(t)f

(
u(t)
)
= 0, t ∈ (0, T) (1.3)

satisfying the boundary conditions

u(0) − B0
(
uΔ(η)

)
= 0, uΔ(T) = 0 (1.4)

or

uΔ(0) = 0, u(T) − B1
(
uΔ(η)

)
= 0, (1.5)
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where φp(u) = |u|p−2u, p > 1, η ∈ (0, ρ(T)), a(t) ∈ Cld((0, T), [0,+∞)), f ∈ C([0,+∞), [0,+∞)),
and Ax ≤ Bix ≤ Bx (i = 0, 1) for some positive constants A, B. He obtained the existence of at
least double and triple positive solutions of the problem (1.3), (1.4), and (1.5) by using a new
double fixed point theorem and triple fixed point theorem, respectively.

In recent papers, Ma et al. [12] have obtained the existence of monotone positive
solutions for the following BVP:

(
φp

(
u′))′ + a(t)f(t, u(t)

)
= 0, t ∈ (0, 1),

u′(0) =
m−2∑

i=1

aiu
′(ξi), u(1) =

m−2∑

i=1

biu
(
ξi
)
.

(1.6)

The main tool is the monotone iterative technique.
In [9], Sun and Li studied the following p-Laplacian, m-point BVP on time scales:

(
ϕp

(
uΔ))∇ + a(t)f

(
t, u(t)

)
= 0, t ∈ (0, T),

u(0) = 0, ϕp

(
uΔ(T)

)
=

m−2∑

i=1

aiϕp

(
uΔ(ξi

))
,

(1.7)

where ϕp(u) = |u|p−2u, p > 1, ai ≥ 0 for i = 1, . . . , m − 2, 0 < ξ1 < · · · < ξm−2 < ρ(T),
∑m−2

i=1 ai <
1, a(t) ∈ Cld((0, T), [0,+∞)), f ∈ Cld((0, T) × [0,+∞), [0,+∞)). Some new results are obtained
for the existence of at least twin or triple positive solutions of the problem (1.7) by applying
Avery-Henderson and Leggett-Williams fixed point theorems, respectively.

In [15], Sang and xi investigated the existence of positive solutions of the p-Laplacian
dynamic equations on time scales:

(
φp

(
uΔ))∇ + a(t)f

(
t, u(t)

)
= 0, t ∈ (0, T),

φp

(
uΔ(0)

)
=

m−2∑

i=1

aiφp

(
uΔ(ξi

))
, u(T) =

m−2∑

i=1

biu
(
ξi
)
,

(1.8)

where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, φ−1
p = φq, 1/p + 1/q = 1, 0 <

ξ1 < · · · < ξm−2 < ρ(T). Let

f
ρ
γρ = min

{

min
ξm−2≤t≤T

f(t, u)
φp(ρ)

: u ∈ [γρ, ρ]

}

,

f
ρ

0 = max

{

max
0≤t≤T

f(t, u)
φp(ρ)

: u ∈ [0, ρ]

}

, γ =
∑m−2

i=1 bi(T − ξi
)

T −∑m−2
i=1 biξi

,

fα = lim
u→α

sup max
0≤t≤T

f(t, u)
φp(u)

, fα = lim
u→α

inf max
ξm−2≤t≤T

f(t, u)
φp(u)

,
(
α := ∞ or 0+

)
,

m =

{
1

1 −∑m−2
i=1 bi

∫T

0
φq

[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]

Δs

}−1
,

M =

{
T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫T

0
φq

[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]

Δs

}−1
,

(1.9)

they mainly obtained the following results.
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Theorem 1.1. Assume (H1), (H2), and (H3) hold, and assume that one of the following conditions holds:

(H4 ) there exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < γρ2 such that

f
ρ1
0 ≤ φp(m), f

ρ2
γρ2 ≥ φp

(
Mγ
)
; (1.10)

(H5 ) there exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that

f
ρ2
0 ≤ φp(m), f

ρ1
γρ1 ≥ φp

(
Mγ
)
. (1.11)

Then, (1.8) have a positive solution.

In this paper, we will establish two new theorems of positive solution of (1.8), our
work concentrates on the case when the nonlinear term does not satisfy the conditions of
Theorem 1.1. At the end of the paper, we will give an example which illustrates that our work
is true.

2. Preliminaries and some lemmas

For convenience, we list the following definitions which can be found in [16–19].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R. For t < supT and
r > infT, define the forward jump operator σ and backward jump operator ρ, respectively, by

σ(t) = inf
{
τ ∈ T | τ > t

} ∈ T,

ρ(r) = sup
{
τ ∈ T | τ < r

} ∈ T,
(2.1)

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered; and if ρ(r) < r, r is said to be left
scattered; if σ(t) = t, t is said to be right dense; and if ρ(r) = r, r is said to be left dense. If T
has a right scattered minimum m, define Tk = T − {m}; otherwise, set Tk = T. If T has a left
scattered maximum M, define Tk = T − {M}; otherwise, set Tk = T.

Definition 2.2. For f : T→R and t ∈ Tk, the delta derivative of f at the point t is defined to
be the number fΔ(t), (provided it exists), with the property that for each ε > 0; there is a
neighborhoodU of t such that

∣
∣f
(
σ(t)
) − f(s) − fΔ(t)

(
σ(t) − s

)∣
∣ ≤ ε

∣
∣σ(t) − s

∣
∣ (2.2)

for all s ∈ U.
For f : T→R and t ∈ Tk, the nabla derivative of f at t is the number f∇(t), (provided it

exists), with the property that for each ε > 0; there is a neighborhood U of t such that

∣
∣f
(
ρ(t)
) − f(s) − f∇(t)

(
ρ(t) − s

)∣
∣ ≤ ε

∣
∣ρ(t) − s

∣
∣ (2.3)

for all s ∈ U.

Definition 2.3. A function f is left-dense continuous (i.e., ld continuous) if f is continuous at
each left-dense point in T, and its right-sided limit exists at each right-dense point in T.
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Definition 2.4. If GΔ(t) = f(t), then we define the delta integral by

∫b

a

f(t)Δt = G(b) −G(a). (2.4)

If F∇(t) = f(t), then we define the nabla integral by

∫b

a

f(t)∇t = F(b) − F(a). (2.5)

To prove the main results in this paper, we will employ several lemmas. These lemmas are
based on the linear BVP:

(
φ
(
uΔ))∇ + h(t) = 0, t ∈ (0, T),

φ
(
uΔ(0)

)
=

m−2∑

i=1

aiφ
(
uΔ(ξi

))
, u(T) =

m−2∑

i=1

biu
(
ξi
)
.

(2.6)

We can prove the following lemmas by the methods of [15].

Lemma 2.5. For h ∈ Cld[0, T], the BVP (2.6) has the unique solution:

u(t) = −
∫ t

0
φ−1
(∫ s

0
h(τ)∇τ −A

)

Δs + B, (2.7)

where

A = −
∑m−2

i=1 ai

∫ ξi
0 h(τ)∇τ

1 −∑m−2
i=1 ai

,

B =

∫T
0φ

−1(∫s
0h(τ)∇τ −A

)
Δs −∑m−2

i=1 bi
∫ ξi
0φ

−1(∫s
0h(τ)∇τ −A

)
Δs

1 −∑m−2
i=1 bi

.

(2.8)

Lemma 2.6. Assume (H1) holds, For h ∈ Cld[0, T] and h ≥ 0, then the unique solution u of (2.6)
satisfies

u(t) ≥ 0, for t ∈ [0, T]. (2.9)

Lemma 2.7. Assume (H1) holds, if h ∈ Cld[0, T] and h ≥ 0, then the unique solution u of (2.6)
satisfies

inf
t∈[0,T]

u(t) ≥ γ‖u‖, (2.10)

where

γ =
∑m−2

i=1 bi
(
T − ξi

)

T −∑m−2
i=1 biξi

, ‖u‖ = max
t∈[0,T]

∣
∣u(t)

∣
∣. (2.11)
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Let the norm on Cld[0, T] be the maximum norm. Then, the Cld[0, T] is a Banach space.
It is easy to see that the BVP (1.1) has a solution u = u(t) if and only if u is a fixed point of the
operator equation:

(Au)(t) = −
∫ t

0
φ−1
(∫s

0
a(τ)f

(
τ, u(τ)

)∇τ − Ã

)

Δs + B̃, (2.12)

where

Ã = −
∑m−2

i=1 ai

∫ ξi
0 a(τ)f

(
τ, u(τ)

)∇τ

1 −∑m−2
i=1 ai

,

B̃ =

∫T
0φ

−1(∫s
0a(τ)f

(
τ, u(τ)

)∇τ − Ã
)
Δs −∑m−2

i=1 bi
∫ ξi
0φ

−1(∫s
0a(τ)f

(
τ, u(τ)

)∇τ − Ã
)
Δs

1 −∑m−2
i=1 bi

.

(2.13)

Throughout this paper, we will assume that 0 ≤ μ ≤ ν ≤ T . Denote

K =

{

u | u ∈ Cld[0, T], u(t) ≥ 0, inf
t∈[μ,ν]

u(t) ≥ γ‖u‖
}

, (2.14)

where γ is the same as in Lemma 2.7. It is obvious that K is a cone in Cld[0, T]. By Lemma 2.7,
A(K) ⊂ K. So by applying Arzela-Ascoli theorem on time scales [20], we can obtain thatA(K)
is relatively compact. In view of Lebesgue’s dominated convergence theorem on time scales
[21], it is easy to prove that A is continuous. Hence, A : K→K is completely continuous.

Lemma 2.8. Let

ϕ(s) = φ−1
(∫s

0
a(τ)f

(
τ, u(τ)

)∇τ − Ã

)

, (2.15)

for ξi (i = 1, . . . , m − 2), then

∫ ξi

0
ϕ(s)Δs ≤ ξi

T

∫T

0
ϕ(s)Δs. (2.16)

Lemma 2.9 ([22]). Let E be a Banach space, and letK ⊂ E be a cone. AssumeΩ1, Ω2 are open bounded
subset of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

F : K ∩ (Ω2 \Ω1
) −→ K (2.17)

be a completely continuous operator such that

(i) ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or

(ii) ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then, F has a fixed point in K ∩ (Ω2 \Ω1).
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Now, we introduce the following notations. Let

A0 =

{
1

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]

Δs

}−1
,

B0 =

{
T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫ν

μ

φ−1
[∫ s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]

Δs

}−1
.

(2.18)

For l > 0, Ωl = {u ∈ K : ‖u‖ < l}, ∂Ωl = {u ∈ K : ‖u‖ = l},

α(l) = sup
{‖Au‖ : u ∈ ∂Ωl

}
, β(l) = inf

{‖Au‖ : u ∈ ∂Ωl

}
. (2.19)

By Lemma 2.6, α and β are well defined.

3. Existence theorems of positive solution

Theorem 3.1. Assume (H1), (H2), (H3) hold, and assume that the following conditions hold:

(A1) pi ∈ C([0,+∞), [0,+∞)), i = 1, 2, and

lim
l→0

p1(l)
φ(l)

< φ
(
A0
)
, lim

l→∞

p2(l)
φ(l)

> φ

(
B0

γ

)

; (3.1)

(A2) k1 ∈ L1([0, T], [0,+∞)), k2 ∈ L1([0, T], [0,+∞));

(A3) there exist 0 < c1 ≤ c2, 0 ≤ λ2 < 1 < λ1, such that

f(t, l) ≤ p1(l) + k1(t)
[
φ(l)
]λ1 , (t, l) ∈ [0, T] × [0, c1

]
,

f(t, l) ≥ p2(l) − k2(t)
[
φ(l)
]λ2 , (t, l) ∈ [μ, ν] × [c2,+∞

)
.

(3.2)

Then, the problems (1.1) have at least one positive solution.

Theorem 3.2. Assume (H1), (H2), (H3) hold, and assume that the following conditions hold:

(B1) pi ∈ C([0,+∞), [0,+∞)), i = 3, 4, and

lim
l→∞

p3(l)
φ(l)

< φ
(
A0
)
, lim

l→0+

p4(l)
φ(l)

> φ

(
B0

γ

)

; (3.3)

(B2) k3 ∈ L1([0, T], [0,+∞)), k4 ∈ L1([0, T], [0,+∞));

(B3) there exist 0 < c3 ≤ c4, 0 ≤ λ4 < 1 < λ3, such that

f(t, l) ≤ p3(l) + k3(t)
[
φ(l)
]λ4 , (t, l) ∈ [0, T] × [c4,+∞

)
,

f(t, l) ≥ p4(l) − k4(t)
[
φ(l)
]λ3 , (t, l) ∈ [μ, ν] × [0, c3

]
.

(3.4)

Then, the problems (1.1) have at least one positive solution.
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Proof of Theorem 3.1. By liml→0(p1(l)/φ(l)) < φ(A0), then we can get that there exist 0 < a1 ≤
c1, 0 < ε < φ(A0) such that

p1(l) ≤
(
φ
(
A0
) − ε

)
φ(l), 0 ≤ l ≤ a1. (3.5)

If 0 ≤ l ≤ a1, u ∈ ∂Ωl, then 0 ≤ u(t) ≤ l, 0 ≤ t ≤ T . By condition (A3), we have

f
(
t, u(t)

) ≤ p1
(
u(t)
)
+ k1(t)

[
φ
(
u(t)
)]λ1

≤ (φ(A0
) − ε

)
φ
(
u(t)
)
+ k1(t)

[
φ(u(t)

)]λ1

≤ (φ(A0
) − ε

)
φ
(‖u‖) + k1(t)

[
φ
(‖u‖)]λ1

=
(
φ
(
A0
) − ε

)
φ(l) + k1(t)

[
φ(l)
]λ1 .

(3.6)

Let M(l, τ) = (φ(A0) − ε)φ(l) + k1(τ)[φ(l)]
λ1 so that

∫ s

0
a(τ)f

(
τ, u(τ)

)∇τ − Ã =
∫s

0
a(τ)f

(
τ, u(τ)

)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)f(τ, u(τ))∇τ

1 −∑m−2
i=1 ai

≤
∫s

0
a(τ)M(l, τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)M(l, τ)∇τ

1 −∑m−2
i=1 ai

.

(3.7)

Therefore,

‖Au‖ ≤ B̃ =
1

1 −∑m−2
i=1 bi

(∫T

0
ϕ(s)Δs −

m−2∑

i=1

bi

∫ ξi

0
ϕ(s)Δs

)

≤ 1

1 −∑m−2
i=1 bi

∫T

0
ϕ(s)Δs

≤ 1

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫s

0
a(τ)M(l, τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)M(l, τ)∇τ

1 −∑m−2
i=1 ai

]

Δs.

(3.8)

It follows that

α(l)
l

≤ 1

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫s

0
a(τ)

M(l, τ)
φ(l)

∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)

(
M(l, τ)/φ(l)

)∇τ

1 −∑m−2
i=1 ai

]

Δs. (3.9)

Noticing λ1 > 1, we have

lim
l→0+

α(l)
l

≤ 1

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫s

0
a(τ)

(
φ
(
A0
) − ε

)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)

(
φ
(
A0
) − ε

)∇τ

1 −∑m−2
i=1 ai

]

Δs

=
φ−1[φ

(
A0
) − ε

]

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]

Δs

≤ φ−1[φ
(
A0
)]
A−1

0 = A0 ·A−1
0 = 1.

(3.10)

Therefore, there exist 0 < a1 < a1 such that α(a1) < a1. It implies that ‖Au‖ < ‖u‖, u ∈ ∂Ωa1 .
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On the other hand, by liml→∞(p2(l)/φ(l)) > φ(B0/γ), we can get that there exist ε′ > 0,
and c2 ≤ d < +∞ such that

p2(l) ≥
[

φ

(
B0

γ

)

+ ε′
]

φ(l), d ≤ l ≤ +∞, for d ≤ γl < +∞ , u ∈ ∂Ωl, (3.11)

then d ≤ γl ≤ u(t) ≤ l, μ ≤ T ≤ ν.
Let m(l, τ) = [φ(B0/γ) + ε′]φ(γl) − k2(τ)[φ(l)]

λ2 . By Lemma 2.8 and condition (A3),
applying Lemma 2.8, it follows that

‖Au‖ = max
0≤t≤T

(Au)(t) ≥ −
∫T

0
ϕ(s)Δs +

1

1 −∑m−2
i=1 bi

(∫T

0
ϕ(s)Δs −

m−2∑

i=1

bi

∫ ξi

0
ϕ(s)Δs

)

=
∑m−2

i=1 bi

1 −∑m−2
i=1 bi

∫T

0
ϕ(s)Δs −

∑m−2
i=1 bi

∫ ξi
0ϕ(s)Δs

1 −∑m−2
i=1 bi

≥
∑m−2

i=1 bi

1 −∑m−2
i=1 bi

∫T

0
ϕ(s)Δs −

∑m−2
i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫T

0
ϕ(s)Δs

=
T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫T

0
ϕ(s)Δs

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫ν

μ

φ−1
[∫s

0
a(τ)m(l, τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)m(l, τ)∇τ

1 −∑m−2
i=1 ai

]

Δs.

(3.12)

It follows that

β(l)
l

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫ν

μ

φ−1
[∫ s

0
a(τ)

m(l, τ)
φ(l)

∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)

(
m(l, τ)/φ(l)

)∇τ

1 −∑m−2
i=1 ai

]

Δs.

(3.13)

Noticing 0 ≤ λ2 < 1, we get

lim
l→∞

β(l)
l

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

×
∫ν

μ

φ−1
[∫ s

0
a(τ)

φ
(
B0/γ

)
φ(γl)

φ(l)
∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)

((
φ
(
B0/γ

)
φ(γl)

)
/φ(l)

)∇τ

1 −∑m−2
i=1 ai

]

Δs

= φ−1φ(B0)B−1
0 = B0B

−1
0 = 1.

(3.14)

Therefore, there exists b with b > a1 > 0 such that β(b) > b. It implies that ‖Au‖ > ‖u‖ for
u ∈ ∂Ωb.

By Lemma 2.9, we assert that the operator A has one fixed point u∗ ∈ K such that a1 ≤
‖u∗‖ ≤ b. Therefore, u∗ is positive solution of the problems (1.1).
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Proof of Theorem 3.2. By liml→∞(p3(l)/φ(l)) < φ(A0), then we can get that there exist d ≥ λ4, 0 <
ε < φ(A0) such that

p3(l) ≤
(
φ
(
A0
) − ε

)
φ(l), l ≥ d. (3.15)

For l ≥ d, u ∈ ∂Ωl, then 0 ≤ u(t) ≤ l, 0 ≤ t ≤ T . By condition (B3), we have

f
(
t, u(t)

) ≤ p3
(
u(t)
)
+ k3(t)

[
φ
(
u(t)
)]λ4

≤ (φ(A0
) − ε

)
φ
(
u(t)
)
+ k3(t)

[
φ
(
u(t)
)]λ4

≤ (φ(A0
) − ε

)
φ
(‖u‖) + k3(t)

[
φ
(‖u‖)]λ4

=
(
φ
(
A0
) − ε

)
φ(l) + k3(t)

[
φ(l)
]λ4 .

(3.16)

Let M1(l, τ) = (φ(A0) − ε)φ(l) + k3(τ)[φ(l)]
λ4 so that

∫ s

0
a(τ)f

(
τ, u(τ)

)∇τ − Ã ≤
∫s

0
a(τ)M1(l, τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)M1(l, τ)∇τ

1 −∑m−2
i=1 ai

. (3.17)

Denote

m1 = max
{

f(τ, u(τ)) : τ ∈ [0, s]
⋃

[0, ξi], u(τ) ≤ d

}

(3.18)

satisfying

m1 + φ−1[φ
(
A0
) − ε

] ≤ A0. (3.19)

Therefore,

‖Au‖ ≤ m1A
−1
0 +

1

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫ s

0
a(τ)M1(l, τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)M1(l, τ)∇τ

1 −∑m−2
i=1 ai

]

Δs.

(3.20)

It follows that

α(l)
l

≤m1A
−1
0 +

1

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫s

0
a(τ)

M1(l, τ)
φ(l)

∇τ+

∑m−2
i=1 ai

∫ ξi
0 a(τ)

(
M1(l, τ)/φ(l)

)∇τ

1 −∑m−2
i=1 ai

]

Δs.

(3.21)

Noticing 0 ≤ λ4 < 1, we have

lim
l→∞

α(l)
l

≤ m1A
−1
0 +

1

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫s

0
a(τ)

(
φ
(
A0
) − ε

)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)

(
φ
(
A0
) − ε

)∇τ

1 −∑m−2
i=1 ai

]

Δs

= m1A
−1
0 +

φ−1[φ
(
A0
) − ε

]

1 −∑m−2
i=1 bi

∫T

0
φ−1
[∫ s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]

Δs

= m1A
−1
0 + φ−1[φ

(
A0
) − ε

]
A−1

0 ≤ A0 ·A−1
0 = 1.

(3.22)

Therefore, there exists a1 ≥ d such that α(a1) < a1. It implies that ‖Au‖ < ‖u‖, u ∈ ∂Ωa1 .
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On the other hand, by liml→0+(p4(l)/φ(l)) > φ(B0/γ), we can get that there exist ε′ > 0,
and 0 < e < c3 such that

p4(l) ≥
[

φ

(
B0

γ

)

+ ε′
]

φ(l), for 0 ≤ l ≤ e, u ∈ ∂Ωl, (3.23)

then γl ≤ u(t) ≤ l, μ ≤ T ≤ ν.
Let m1(l, τ) = [φ(B0/γ) + ε′]φ(γl) − k4(τ)[φ(l)]

λ3 . By Lemma 2.8 and condition (B3),
applying Lemma 2.8, it follows that

‖Au‖ ≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫ν

μ

φ−1
[∫ s

0
a(τ)m1(l, τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)m1(l, τ)∇τ

1 −∑m−2
i=1 ai

]

Δs. (3.24)

It follows that

β(l)
l

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T
(
1 −∑m−2

i=1 bi
)

∫ν

μ

φ−1
[∫s

0
a(τ)

m1(l, τ)
φ(l)

∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)

(
m1(l, τ)/φ(l)

)∇τ

1 −∑m−2
i=1 ai

]

Δs.

(3.25)

Noticing λ3 > 1, we can get

lim
l→0+

β(l)
l

≥ 1. (3.26)

Therefore, there exists b with 0 < b < a1 such that β(b) > b. It implies that ‖Au‖ > ‖u‖ for
u ∈ ∂Ωb.

By Lemma 2.9, we assert that the operator A has one fixed point u∗ ∈ K such that b ≤
‖u∗‖ ≤ a1. Therefore, u∗ is positive solution of the problems (1.1).

4. Example

In this section, we present a simple example to explain our results.
Let f(t, 0) ≡ 0, T = R, T = 1. Consider the following BVP:

(
φ
(
uΔ))∇ + f

(
t, u(t)

)
= 0, t ∈ (0, T),

φ
(
uΔ(0)

)
=
1
4
φ

(

uΔ
(
1
3

))

, u(T) =
1
2
u

(
1
3

)

,
(4.1)

where

φ(u) =

⎧
⎨

⎩

−u2, u ≤ 0,

u2, u > 0,

f(t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

45u3 +
5
√
2

2
min

{
1

√
t(1 − t)

,
4
u

}√
u5, (t, u) ∈ [0, 1] × [0, 2],

400, (t, u) ∈ [0, 1] × [2, 5],

17
5
u3 −

√
5
2

min

{
1

√
t(1 − t)

,
2u
5

}√
u3, (t, u) ∈

[
2
5
,
1
2

]

× [5,+∞).

(4.2)
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It is easy to check that f : [0, 1] × [0,+∞)→[0,+∞) is continuous. In this case, a(t) ≡ 1, m =
3, a1 = 1/4, b1 = 1/2, ξ1 = 1/3, it follows from a direct calculation that

A0=
[

1
1 − b1

∫T

0
φ−1
(

s +
a1ξ1
1 − a1

)

Δs

]−1
=
[

1
1 − (1/2)

∫1

0

(

s +
1/4 · 1/3
1 − (1/4)

)1/2

Δs

]−1
=

3 · 27
4(10

√
10 − 1

) ,

γ =
b1
(
T − ξ1

)

T − b1ξ1
=
1/2(1 − (1/3)

)

1 − (1/2 · 1/3) =
2
5
,

B0 =
[
Tb1 − b1ξ1

T
(
1 − b1

)

∫1/2

2/5
φ−1
(

s +
a1ξ1
1 − a1

)

Δs

]−1
=
[
1/2 − (1/2 · 1/3)

1 − (1/2)

∫1/2

2/5

(

s +
1/4 · 1/3
1 − (1/4)

)1/2

Δs

]−1

=
[
4
9
33 × 25

√
22 − 69 × 4

√
115

8100

]−1
.

(4.3)

Choose c1 = 2, c2 = 5, b = 5, λ1 = 5/4, λ2 = 3/4, p1(u) = 45u3, p2(u) = (17/5)u3, k1(t) =
(5
√
2/2)(1/

√
t(1 − t)), k2(t) = (

√
5/2)(1/

√
t(1 − t)), it is easy to check that

f(t, u) ≤ p1(u) + k1(t)
(
u2)5/4, (t, u) ∈ [0, 1] × [0, 2],

f(t, u) ≥ p2(u) − k2(t)
(
u2)3/4, (t, u) ∈

[
2
5
,
1
2

]

× [5,+∞),

lim
u→0

p1(u)
φ(u)

= lim
u→0

45u3

u2
= 0 < A2

0 =
[

3 · 27
4(10

√
10 − 1)

]2
,

lim
u→∞

p2(u)
φ(u)

= lim
u→∞

(17/5)u3

u2
= +∞ > φ

(
B0

γ

)

.

(4.4)

It follows that f satisfies the conditions (A1)–(A3) of Theorem 3.1, then problems (1.1) have at
least one positive solution.
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