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Disruption management has recently become an active area of research. In this study, an extension
is made to consider the fact that some products may deteriorate during storage. A production-
inventory model for deteriorating items with production disruptions is developed. Then the
optimal production and inventory plans are provided, so that the manufacturer can reduce the
loss caused by disruptions. Finally, a numerical example is used to illustrate the model.

1. Introduction

In real life, the effect of decay and deterioration is very important in many inventory systems.
In general, deterioration is defined as decay, damage, spoilage, evaporation, obsolescence,
pilferage, loss of utility, or loss of marginal value of a commodity that results in decreasing
usefulness [1]. Most of the physical goods undergo decay or deterioration over time,
the examples being medicine, volatile liquids, blood banks, and others. Consequently, the
production and inventory problem of deteriorating items has been extensively studied
by researchers. Ghare and Schrader [2] were the first to consider ongoing deterioration
of inventory with constant demand. As time progressed, several researchers developed
inventory models by assuming either instantaneous or finite production with different
assumptions on the patterns of deterioration. In this connection, researchers may refer to
[3–7]. Interested readers may refer to review [8, 9]. Recently, several related papers were
presented, dealing with such inventory problems [10–17].

At the beginning of each cycle, the manufacturer should decide the optimal production
time, so that the production quantity should satisfy the following two requirements: one,
it should meet demand and deterioration; second, all products should be sold out in each
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cycle, that is, at the end of each cycle, the inventory level should decrease to zero. Some
researchers have studied such production model for deteriorating items under different
condition. For example, Yang and Wee [18] derived the optimal production time for a
single-vendor, multiple-buyers system. Liao [19] derived a production model for the lot-size
inventory system with finite production rate, taking into consideration the effect of decay
and the condition of permissible delay in payments. Lee and Hsu [20] developed a two-
warehouse inventory model with time-dependent demand. He et al. [21] provided a solution
procedure to find the optimal production time under the premise that the manufacturer sells
his products in multiple markets. The above papers all assume that production rate is known
and keeps constant during each cycle. They do not consider how to adjust the production
plan once the production rate is changed during production time.

However, after the plan was implemented, the production run is often disrupted by
some emergent events, such as supply disruptions, machine breakdowns, earthquake, H1N1
epidemic, financial crisis, political event and policy change. For example, the Swedish mining
company Boliden AB suffered the production disruptions at its Tara zinc mine in Ireland due
to an electric motor breakdown at one of the grinding mills. As a result of the breakdown,
the production of zinc and lead concentrates is expected to fall by some 40% over the next
six weeks [22]. These production disruptions will lead to a hard decision in production
and inventory plans. Recently, there is a growing literature on production disruptions. For
example, some researchers studied the production rescheduling problems with the machine
disruptions [23–26]. Some researchers analyzed the optimal inventory policy with supply
disruptions [27–30].

In most of the existing literature, products are assumed to be no deterioration when the
production disruptions are considered. But, in real situation the deterioration is popular in
many kinds of products. Hence, if the deterioration rate is not small enough, the deterioration
factor cannot be ignored when the production system is disrupted.

Therefore, in this paper, we develop a production-inventory model for deteriorating
items with production disruptions. Once the production rate is disrupted, the following
questions are considered in this paper.

(i) Whether to replenish from spot markets or not?

(ii) How to adjust the production plan if the new production system can still satisfy the
demand?

(iii) How to replenish from spot markets if the new production system no longer
satisfies the demand?

The paper is organized as follows. Section 2 is concerned with the mathematical
development and the method for finding the optimal solutions. In Section 3, we present a
numerical example to illustrate the model. In Section 4, conclusions and topics for further
research are presented.

2. Mathematical Modeling and Analysis

Suppose a manufacturer produces a certain product and sells it in a market. All items are
produced and sold in each cycle. The following assumptions are used to formulate the
problem.
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(a) A single product and a single manufacturer are assumed.

(b) Demand rate is deterministic and constant.

(c) Normal Production rate is greater than demand rate.

(d) Lead time is assumed to be negligible.

(e) Deterioration rate is deterministic and constant.

(f) Shortages are not allowed.

(g) Time horizon is finite.

(h) There is only one chance to order the products from spot markets during the
planning horizon.

Let the basic parameters be as follows:

p: normal production rate,

d: demand rate,

θ: constant deterioration rate of finished products,

H: planning horizon,

Tp: the normal production period without disruptions,

Td: the production disruptions time,

Tdp : the new production period with disruptions,

Tr : the replenishment time from spot markets once shortage appears,

Qr : the order quantity from spot markets once shortage appears,

Ii(t): inventory level in the ith interval (i = 1, 2, . . . n), n can be different in different
scenario.

2.1. The Basic Model without Disruptions

At first, the manufacturer makes decisions about the optimal production time Tp under the
normal production rate. The inventory model for deteriorating items with normal production
rate can be depicted as in Figure 1.

The instantaneous inventory level at any time t ∈ [0,H] is governed by the following
differential equations:

dI1(t)
dt

+ θI1(t) = p − d, 0 ≤ t ≤ Tp,

dI2(t)
dt

+ θI2(t) = −d, Tp ≤ t ≤ H.
(2.1)

Using the boundary condition I1(0) = 0 and I2(H) = 0, the solutions of above differential
equations are

I1(t) =
p − d
θ

(
1 − e−θt

)
, 0 ≤ t ≤ Tp,

I2(t) =
d

θ

[
eθ(H−t) − 1

]
, Tp ≤ t ≤ H.

(2.2)
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Figure 1: Inventory system without disruptions.

The condition I1(Tp) = I2(Tp) yields

p − d
θ

(
1 − e−θTp

)
=
d

θ

[
eθ(H−Tp) − 1

]
. (2.3)

From (2.3), the production time Tp satisfies the following equation:

Tp =
1
θ

ln
p − d + deθH

p
. (2.4)

In order to facilitate analysis, we do an asymptotic analysis for Ii(t). Expanding the
exponential functions and neglecting second and higher power of θ for small value of θ,
(2.2) becomes

I1(t) ≈
(
p − d

)(
t − 1

2
θt2

)
, 0 ≤ t ≤ Tp,

I2(t) ≈ d
[
(H − t) + 1

2
θ(H − t)2

]
, Tp ≤ t ≤ H,

(2.5)

and Tp approximately satisfies the equation

(
p − d

)(
Tp −

1
2
θT2

p

)
= d

[(
H − Tp

)
+

1
2
θ
(
H − Tp

)2
]
. (2.6)

From Misra [31], we have

Tp ≈
d

p − d
(
H − Tp

)[
1 +

1
2
θ
(
H − Tp

)]
. (2.7)
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Figure 2: Inventory system with production disruptions.

Since

dTp
dθ

=
1
2

d
(
H − Tp

)2

p + θd
(
H − Tp

) > 0, (2.8)

we can get the following corollary.

Corollary 2.1. Assuming that θ � 1, then Tp is increasing in θ.

Corollary 2.1 implies that the manufacturer has to produce more products when
deterioration rate increases. Hence, decreasing deterioration rate is an effective way to reduce
the product cost of manufacture.

2.2. The Production-Inventory Model under Production Disruptions

In the above model, the production rate is assumed to be deterministic and known. In
practice, the production system is often disrupted by various unplanned and unanticipated
events. Here, we assume the production disruptions time is Td. Without loss of generality, we
assume that the new disrupted production rate is p + Δp, where Δp < 0 if production rate
decreases suddenly, or Δp > 0 if production rate increases.

Proposition 2.2. IfΔp ≥ −(p−d)(1−e−θH)/(1−e−θ(H−Td)), then the manufacturer can still satisfy
the demand after production disruptions. Otherwise, that is, −p ≤ Δp < −(p − d)(1 − e−θH)/(1 −
e−θ(H−Td)), there will exist shortages due to the production disruptions.

Proof. Without considering the stop time of production or replenishment, the inventory
system with production disruptions can be depicted as Figure 2.



6 Discrete Dynamics in Nature and Society

From Section 2.1, we know

I1(t) =
p − d
θ

(
1 − e−θt

)
, 0 ≤ t ≤ Td. (2.9)

The inventory system after disruptions can be represented by the following differential
equation:

dI2(t)
dt

+ θI2(t) = p + Δp − d, Td ≤ t ≤ H. (2.10)

Using I1(Td) = I2(Td) = ((p − d)/θ)(1 − e−θTd), we have

I2(t) =
1
θ

[
p + Δp − d −Δpe−θ(t−Td) −

(
p − d

)
e−θt

]
, Td ≤ t ≤ H. (2.11)

Hence, we know that

I2(H) =
1
θ

[
p + Δp − d −Δpe−θ(H−Td) −

(
p − d

)
e−θH

]
. (2.12)

Hence, if I2(H) ≥ 0, that is, Δp ≥ −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), this means that the
manufacturer can still satisfy the demand after production disruptions.

But if I2(H) < 0, that is, −p ≤ Δp < −(p−d)(1− e−θH)/(1− e−θ(H−Td)), we know that the
manufacturer will face shortage since the production rate decreases deeply. The proposition
is proved.

From Proposition 2.2, we know that if Δp ≥ −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), the
production-inventory problem is to find the new optimal production period Tdp . If −p ≤ Δp <
−(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), the production-inventory problem is to find the optimal
replenishment time Tr and replenishment quantity Qr .

Proposition 2.3. If Δp ≥ −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), then the manufacturer’s production
time with production disruptions is

Tdp =
1
θ

ln
p + d

(
eθH − 1

)
+ ΔpeθTd

p + Δp
. (2.13)

Proof. From Proposition 2.2, we know that the new production time Tdp ∈ [Td,H] if Δp ≥
−(p − d)(1 − e−θH)/(1 − e−θ(H−Td)). The inventory model can be depicted as in Figure 3.
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Figure 3: Inventory system (Tdp ∈ [Td,H]).

So if Δp ≥ −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), the inventory system after disruptions
can be represented by the following differential equations:

dI2(t)
dt

+ θI2(t) = p + Δp − d, Td ≤ t ≤ Tdp ,

dI3(t)
dt

+ θI3(t) = −d, Tdp ≤ t ≤ H.

(2.14)

Using the boundary conditions I1(Td) = I2(Td) = ((p − d)/θ)(1 − e−θTd) and I3(H) = 0, we
know

I2(t) =
1
θ

[
p + Δp − d −Δpe−θ(t−Td) −

(
p − d

)
e−θt

]
, Td ≤ t ≤ Tdp ,

I3(t) =
d

θ

[
eθ(H−t) − 1

]
, Tdp ≤ t ≤ H.

(2.15)

Using the boundary condition I2(Tdp ) = I3(Tdp ), we have

Tdp =
1
θ

ln
p + d

(
eθH − 1

)
+ ΔpeθTd

p + Δp
. (2.16)

The proposition is proved.

Since dTdp /dTd = (p + Δp)ΔpeθTd/(p + d(eθH − 1) + ΔpeθTd), we can easily get
Corollary 2.4.
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Corollary 2.4. If −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)) ≤ Δp < 0, then Tdp is decreasing in Td.
If Δp > 0, then Tdp is increasing in Td.

Expanding the exponential functions and neglecting second and higher power of θ for
small value of θ, (2.15) becomes

I2(t) ≈ Δp(t − Td)
[

1 − 1
2
θ(t − Td)

]
+
(
p − d

)
t

(
1 − 1

2
θt

)
, Td ≤ t ≤ Tdp ,

I3(t) ≈ d(H − t)
[

1 +
1
2
θ(H − t)

]
, Tdp ≤ t ≤ H,

(2.17)

and Tdp approximately satisfies the equation

Δp
(
Tdp − Td

)[
1 − 1

2
θ
(
Tdp − Td

)]
+
(
p − d

)
Tdp

[
1 − 1

2
θTdp

]
= d

(
H − Tdp

)[
1 +

1
2
θ
(
H − Tdp

)]
.

(2.18)

From Misra [31], we have

Tdp ≈
ΔpTd + d

(
H − Tdp

)[
1 + (1/2)θ

(
H − Tdp

)]

p + Δp − d . (2.19)

According to (2.19), we know that

dTdp
dθ

=
1
2

d
(
H − Tdp

)2

p + Δp + dθ
(
H − Tdp

) > 0. (2.20)

Hence, we can get the following corollary.

Corollary 2.5. Assuming that θ � 1, then Tdp is increasing in θ.

If −p ≤ Δp < −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), there will exist shortage. The
manufacturer will have to produce products during the whole planning horizon, that is,
Tdp = H. In order to avoid shortage, the manufacturer needs to order products from spot
markets to satisfy the demand. The inventory model can be depicted as in Figure 4.

Proposition 2.6. If −p ≤ Δp < −(p−d)(1−e−θH)/(1−e−θ(H−Td)), then the replenishment time and
quantity are

Tr =
1
θ

ln
p − d + ΔpeθTd

p + Δp − d ,

Qr =
p + Δp − d

θ

[
1 − eθ(H−Tr)

]
.

(2.21)
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Figure 4: Inventory system (Tdp = H).

Proof. First, we need to determine the order time point Tr . Let I2(t) = (1/θ)[p + Δp − d −
Δpe−θ(t−Td) − (p − d)e−θt] = 0, we have

Tr =
1
θ

ln
p − d + ΔpeθTd

p + Δp − d . (2.22)

So,

dI3(t)
dt

+ θI3(t) = p + Δp − d, Tr ≤ t ≤ H. (2.23)

Using the boundary condition I3(H) = 0, we have

I3(t) =
p + Δp − d

θ

[
1 − eθ(H−t)

]
, Tr ≤ t ≤ H. (2.24)

Hence, the order quantity is

Qr = I3(Tr) =
p + Δp − d

θ

[
1 − eθ(H−Tr)

]
. (2.25)

The proposition is proved.

If −p ≤ Δp < −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), according to (2.22), we have

dTr
dTd

=
p + Δp − d

p − d + ΔpeθTd
ΔpeθTd < 0,

dQr

dTd
=
(
p + Δp − d

)
eθ(H−Tr)

dTr
dTd

< 0.

(2.26)
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Hence, we can obtain the following corollary.

Corollary 2.7. If −p ≤ Δp < −(p − d)(1 − e−θH)/(1 − e−θ(H−Td)), then Tr and Qr are decreasing in
Td.

3. A Numerical Example

Our objective in this section is to gain further insights based on a numerical example. We
use the following numbers as the base values of the parameters: p = 350, d = 200, θ = 0.03,
H = 20, Td = 8, and Δp = −200. Using (2.4), we obtain Tp = 12.8. Next, we observe how Tdp ,
Tr , and Qr would change as θ and Td. Figures 5 and 6 depict Tdp with respect to θ and Td,
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respectively. Figures 7 and 9 depict Tr with respect to θ and Td, respectively. Figures 8 and 10
depict Qr with respect to θ and Td, respectively.

From Figure 5, we can find that Tdp is increasing in θ when θ ≤ 0.068. When θ > 0.068,
since the deterioration rate is so high that the manufacturer cannot satisfy the demand by
self-producing, he has to buy products from spot markets in order to avoid shortage. From
Figures 7 and 8, we can see that Tr is decreasing in θ, and Qr is increasing in θ when
θ > 0.068.

From Figure 6, we can find that Tdp is decreasing in Td when 6.2 ≤ Td ≤ 12.8. If 0 ≤ Td <
6.2, the manufacturer will have to replenish inventory from spot markets. From Figures 9 and
10, we can see that Tr is increasing in Td, and Qr is decreasing in θ when 0 ≤ Td < 6.2.
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4. Conclusions

In this paper, we propose a production-inventory model for a deteriorating item with
production disruptions. Here, we analyze this inventory system under different situations.
We have showed that our method helps the manufacturer reduce the loss caused by
production disruptions.

In this study, the proposed model considers the deterioration rate as constant. In real
life, we may consider the deterioration rate as a function of time, stock, and so on. This will
be done in our future research.
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