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This paper deals with the problem of delay-dependent stability criterion of arbitrary switched
linear systems with time-varying delay. Based on switched quadratic Lyapunov functional
approach and free-weighting matrix approach, some linear matrix inequality criterions are found
to guarantee delay-dependent asymptotically stability of these systems. Simultaneously, arbitrary
switched linear system can be expressed as a problem of uncertain liner system, so some delay-
dependent stability criterions are obtained with the result of uncertain liner system. Two examples
illustrate the exactness of the proposed criterions.

1. Introduction

Recently, switched linear systems have got more and more attention in the research
community, which consists of a family of liner subsystems described by liner differential
or difference equations and a switching law that orchestrates switching between them; see,
for example, [1-4]. Simultaneously, systems with delays abound in the world and time-
delay systems frequently appear in vast engineering systems [5-7]. Therefore, many papers
consider switched linear systems with time constant delay or time-varying delay [8-24].
Naturally, stability is a fundamental property which has been investigated from the very
beginning for this class of systems [25]. For stability analysis under arbitrary switching, even
when all subsystems of a switched system are asymptotically stable or exponentially stable,
it is still possible to construct a divergent trajectory from any initial state for such a switched
system [4]. Thus, this paper aims to study the stability of arbitrary switched linear system
with time-varying delay.

On one hand, many methods have been developed in the study of arbitrary switched
systems such as common quadratic Lyapunov functional approach (CQLF), converse
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Lyapunov theorem, and switched quadratic Lyapunov functional approach (SQLF) [4, 26—
28]. On the other hand, WuM. and He Y. develop free-weighting matrix approach for stability
of liner system and uncertain liner system [29-33]. In this paper, Based on SQLF and free-
weighting matrix approach, we consider the linear switched system:

x(k + 1) = Ar(k)x(k) + Adr(k>x(k - d(k)) + Br(k)u(k), ke Z+, T(k) € Q, (1.1)

where x(k) € R" is the state, u(k) € R" is the control input, and r(k) is a switching rule
defined by (k) : N — Qwith Q = {1,2,..., N'}. Moreover, r(k) = i means the subsystem
(Ai, Agi, B;) is active. d(k) is nonnegative differential time-varying functions which denote
the time delays and satisfy 0 < d; < d(k) < ds.

At the same time, the uncertain linear system

x(k+1) = (A- AAK))x(k) + (Ag — AAq(k))x(k — d(k)) + (B — AB(k)u(k), keZ*,
(1.2)

where x(k) € R" is the state, u(k) € R" is the control input, A, A4, and B are given constant
matrices, AA(k), AA4(k), and AB(k) are the parameter uncertainties matrices which are
assumed to be of the form

[AA(k) AAg(k) AB(k)] = DF(k)[Es Eaa Es), (1.3)

where E,, E,4, and E; are given constant matrices of appropriate dimensions and F (k) is the
uncertain matrix such that

FT(k)F(k) < I (1.4)

From (1.1) and (1.2), we know that when one subsystem switches to another subsystem, there
exist matrixes A, A4, and B such that

[Ar) Aargey Brw] = [A—- AA(K) Ag—AA4(k) B-AB(K)] (1.5)

so system (1.1) be equivalent to system (1.2). The key ideas of this paper are that SQLF is
connected with free-weighting matrix approach and arbitrary switched linear system can be
expressed as a problem of uncertain liner system.

This paper is organized as follows. In Section 2, we give some basic definitions. We
analyze the stability of the system (1.1) with the SQLF and free-weighting matrix approach
in Section 3. Based on uncertain liner system, we study the stability of the system (1.1) in
Section 4. Some examples are given in Section 5. The last section offers the conclusions of this

paper.
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2. Preliminaries

In this section, with the switched quadratic Lyapunov functional approach, we investigate
the stability of the origin of an autonomous switched system given by

x(k+1) = Ayx(k), keZ, rk)eQ. (2.1)

Define the indicator function

k) = [&1(k), ..., &(K), ..., en ()T, (2.2)
with
1 ifr(k) =1,
i) = { | 23)
0, otherwise.

Then, the switched system (2.1) can also be written as
N
x(k+1) = D &(k)Aix(k). (2.4)
i=1
This corresponds to the switched Lyapunov function defined as
N
V(k,x(k)) = x" (k) Py x (k) = x" (k) <Z§i(k)Pi>x(k) (2.5)
i=1

with P; is symmetric positive definite matrices. If such a positive-definite Lyapunov function
exists and

AV (k,x(k)) =V(k+1,x(k+1))-V(k, x(k)) (2.6)

is negative definite along the solutions of (2.1), then the origin of the switched system (2.1) is
asymptotically stable. In order to represent, we give the following notation.

Throughout this paper, the superscript T stands for the inverse and transpose of a
matrix; R is the set of all n x m real matrices; P > 0 means that the matrix P is positive
definite; and the symmetric terms in a symmetric matrix are denoted by x, for example,

M O] [M O
= : (2.7)
SR
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Lemma 2.1 (see [4]). If there exist positive definite symmetric matrices P; € R™"(P; = PI),
satisfying

L]
<0 (2.8)

* P]

foralli,j € Q, then the switched linear system (2.1) is asymptotically stable.

Lemma 2.2 (see [4]). If there exist positive definite symmetric matrices P; € R™™(P; = Pl) and
matrices F;, G; € RV (i € Q), satisfying

|:A1FIT + F,AlT - Pl AiGi - Fi ] (2 9)

* P,-—Gi—GiT

foralli,j € Q, then the switched linear system (2.1) is asymptotically stable.

Lemma 2.3 (see [33]). Let dq and d, be positive integers such that 0 < dy < dp. When u(k) = 0, the
systems (1.2) is asymptotically stability if there exist symmetric matrices P = PT >0, Q = QT > 0,

Z=7">0X-= [X*“ §;§] > 0 and any appropriate dimensional matrices N1, Np and X > 0 such
that the following LMIs hold,

W +AETE, Wi, +AETE,; (A-I)"H PD

o WnsAELE. ATH 0|

* * -H HD

* * * -\ (2.10)
X1 X2 Ni
*x Xp Naf 20,
*x *x Z

where‘PH = (dZ_dl +1)Q+P(A—I) + (A—I)TP+N1 +N{+d2X11, lplz = PAd+N£—N1 +
Ay X120, W2 = -Q - NZT ~No+dyXp,and H=P +d,Z.

3. Stability Analysis of System (1.1) with SQLF

In this section, firstly, when we do not consider the control input, the linear switched system
(1.1) is rewritten as

x(k+1) = Ar(k)x(k) + Adr(k)x(k -d(k)), ke z, r(k) € Q. (3.1)

With SQLF and free-weighting matrix approach, we have the following theorem.
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Theorem 3.1. Let dy and d, be positive integers such that 0 < di <dy; the systems (3.1) is
asymptotically stability, if there exist symmetric matrices P; = PI > 0, P; = P].T >0, Q=07 >0,

X X},

Z=7">0X1=|"" 1.2] > 0 and any appropriate dimensional matrices Nij and N;j such that

the following LMIs hold,

ij
2

ol @) d(A-1)Z

o=« @) dAlz |<0 (32)
* % -drZ
ij  ij ij
Xy X3, Np
* * Z

where ® = (dy—d+1)Q+ Al P A= Pt N+ (N)) '+ X}, @, = ATP; A (N)) =N+ X3,
and @, = ALP; A - Q- (N})' = Ny + dy X5,

1

Proof. Suppose that y(I) = x(I + 1) — x(I), then we have x(k + 1) = x(k) + y(k) and x(k) =

x(k = d(k)) + 55 a0 y (D).
Combined with (2.2), we consider the following SQLF:

V(k,x(k)) = Vi(k, x(k)) + Va(k, x(k)) + V3(k, x(k)),

i=1

N
Vi(k,x(k)) = x" (k) Pryx (k) = x" (k) <Z§i(k)1’i>x(k),

0 k-1 0 k-1 N (3.4)
ok, x(k) = > D vV D ZiwyD = D, D) yT(l)<Z§i(k)Zi>y(l),
O=—d,+11=k-1+60 O=—dy+1 I=k-1+6 i=1

—di+1 k-1 —di+1 k-1 N
Valk,x(k) = >, D X (DQpx() = D xT(l)<Z§i(k)Qi>x(l),

O0=—d>+1 1=k-1+6 O=—d>+1 I=k-1+6 i=1

where P, =Pl >0,Z; =7 >0, and Q; = Q] >0.
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With (2.6), we obtain

AVy(k,x(k)) = x" (k + 1) Prgesnyx(k + 1) = x7 (k) Py x (k)
= xT(k) [ArT(k)Pr(kJrl)Ar(k) - Pr(k)] x(k)
42 (k= d(K)) [ AL gy Preken) Aargo | x = d (k)

+ xT(k)Az(k)Pr(k+l)Adr(k)x(k —d(k)) +x" (k - d(k))Agr(k)Pr(kﬂ)Ar(k)x(k)/

(3.5)
0 k 0 k-1
AVa(k,x(k) = >, Dy DZgeyyD = D, D, ¥ (D Zrwyy(l)
O=—d)+1 I=k+6 O=—dr+1 I=k-1+6
k-1
= doy" () Zrwnyy (k) = > y" () Zroy (1) (3.6)
I=k—dy
0 k-1
+ > 2y D[ Zekery = Zry ]y (D)
O=—d>+1 I=k+6
when Z, 1) = Zy k),
k-1
AV (k, x(k)) < doy" (k) Zy k1) y (k) — Z v (D Z oy (D), (3.7)
I=k—d,
—di+1 k —di+1 k-1
AVi(k,x(k) = > D X DQryx( = >, D, ' (DQrwx()
O=—dy+1 1=k+0 O=—dp+1 I=k—1+6
k-dh
= (dy — i + 1)x" () Qe x(k) = > x" (D Qi x(1) (338)
I=k—ds
—d+l k-1
+ > D, X (D[Qrken) — Qi ] x(D)
O=—d,+1 I=k+0
when Qyk+1) = Qr(i),
AVa(k, x(k)) < (da — di + DX (k) Qriesyx (k) = xT (k = d(K)Qrox(k —d(K)).  (39)

Suppose that r(k) = i and r(k + 1) = j mean that the subsystem i switches to the
subsystem j in the switching system. As this has to be satisfied under arbitrary switching
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laws, it follows that this has to hold for the special configuration ¢;(k) = 1, §4i(k) = 0, §;(k +
1) =1,and §4;(k + 1) = 0. And supposing that Z; = Z; = Z and Q; = Q; = Q, we obtain

AV (k, x(K)) < x (k) [AT Py A; = Pi]x(k) + x (k = d(K)) [ AL P Aas| x (ke = d(K)) + doy™ (1 Zy (1)

+ xT (k) ATP; Agix (k — d(k)) + x" (k — d(k)) AT P; Aix (k)

k-1
- >y D Zy() + (dr — dy + 1)x" (k)Qx(k) — x" (k - d(k))Qx(k — d(k)).
I=k—d,
(3.10)

By using the Leibniz-Newton formula, for any appropriately dimensioned matrices N ij and
N, the following equation is true:

k-

,_.

2[ xT(kK)NY + 7 (k - d(k))N”]xI:x(k) x(k —d(k)) - y(z)lzo. (3.11)
(k)

I=k—-d

In addition, for any semipositive definite matrix X% = [Xll]l ﬁ}] > 0, the following equation
holds: :
k-1 B k-1 B k-1
> dL )X (k) - ¢ (k)X 1 (k) = dagpy (k)X 1 (K) — ¢1 (k)X 1 (k) >0,
I=k—d, I=k—d(k) I=k—d(k)
(3.12)
where ¢y (k) = [xT  (k)xT  (k-d(k))]".
With (3.1), (3.10), (3.11), and (3.12), we have
V(k,x(k)) < p{ ()T dr(k) = > ¢L (k, 1) da(k, 1) <0, (3.13)
I=k-d(k)
where
i Y+ dr(Ai - DT Z(Ai - 1) O +doI(Ai- 1) ZAy
* <D22 + A ZAgi (3.14)

(k1) = [T (k) y" ()]

And ¢1(k is defined in (3.12); CDH, 11]2, and CD” are defined in (3.2). Therefore, when

i < 0and ©7 > 0, the system (3.1) is asymptotically stabllity. Applying Schur’s complement,
Il < 0 is equivalent to @/ < 0,1, j € Q. This completes the proof of Theorem 3.1. O
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If we have y(k), for any appropriately dimensioned matrices Tlij , T2ij , N ij , N, ;j , N, ;j ,and

X x X

11 12 13
Xi=|x xI x5 >0 (3.15)
* ok X;]S

the following equations are also true:

z[xT(k)Tlif + yT(k):r;'f] x [y(k) = (Ai - Dx(k) - Agix(k - d(k))] =0,

.. .. .. k-1
2[xT(k)N;f +y (k)N +x" (k - d(k))N;f] x | x(k) — x(k - d(k)) - y()| =0,
I=k—d(k)
k-1 N k-1 B - k-1 N
> i ()X (k) - 11 (k) X1(k) = damy (k)X (k) - 11 (k)Xm1(k) >0,
I=k—d> I=k—d(k) I=k—d(k)

(3.16)

where m1 (k) = [xT(k) yT(1) xT(k-d(k))]".
Considering (3.16), similar to the proof of Theorem 3.1, we can obtain the following
corollary.

Corollary 3.2. Let dy and d, be positive integers such that 0 < dy <d,; the systems (3.1) is
asymptotically stability if there exist symmetric matrices P; = Pl > 0, Pj = P].T >0,Q=QT >0,

Z=7T>0,and any appropriate dimensional matrices T i T;j , Nij , N;j i N;j , and

ij i
Xn Xp Xy
ij — ij i
X7=|«x XJ, X;]20 (3.17)
ij
*  x X
such that the following LMIs hold,
TR
Y Y Yo
ij — ij i
YV = * Y22 YZS < 0/
ij
*x  x Y5
i el 5l ij 3.18
Xn Xp X3 Ny (3.18)
ij i i
*x X, X5 N

i qij
* % X5 Ny

* * x 7
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where Y}, = (da —dy +1)Q + AT P A = P - T) (A = T) - (A; —“I)T(Tl” )T +(NY )?_+ N +d> Xy,
1 1 1 1 1 1 1 1 1 1 1
Y], =T~ (Ai-D'(T))" + (N))" +do X7, Y, = ATP A~ T Asi+ (N])T = N +do X[, Y3, =

e 2/ 7 y 12/ : i S T2 T
b Z+(T)) +T) +do X3, Yo, = —T) Agi— N +da X3, and Y, = ALP Ayi—Q-Nj +(NJ) +d> X3,

Next, we consider the design of a switched state feedback:
u(k) = Kygox(k). (3.19)
Ensuring stability of the closed-loop switched system:
x(k+1) = (Ar) + Broy Kriy) x(k) + Agrgoyx(k —d(k)), keZ', r(k) Q. (3.20)

Based on Theorem 3.1, we obtain the following theorem.

Theorem 3.3. Let dy and d, be positive integers such that 0 < dy < dp. Under arbitrary switch, the

systems (1.1) is asymptotically stability if there exist symmetric matrices P; = Pl.T >0, P = PJ.T >0,
ij ij ..

Y i’j] > 0, and any appropriate dimensional matrices Mllj and
* Iy

Q=Q">02z=2">0,Y7 = [
M;’ such that the following LMIs hold,

=) 2, da(ALi+ BV - V)T

“11 12
=ij _ =ij
— = * =y dzL,A; 2 0/

* % d>R
o (3.21)
1] 1] 1]
Yll Y12 Ml
ij ij -
* YZZ M2 2 0/ 1, ] € Q/
* x LRL

where =) = (dy=dy +1) Wi+ (AL) Py (L) + (AL Py (B Vi) +(BiVi) By (ALLy)+ (BV)T By (Bi Vi)~
Li+ (M) + M + d Y], 20 = (AiL)"Py(AaLy) + (BV) Py(AgLi) + (M3)T ~ MY + dy Y}, and
23, = (AaL) Pi(AgLi) =W - M3 - (M))" + dyY3),

Proof. To the system (3.1), A; is replaced by A; + B;K; in (3.2). Simultaneously, two parts
of inequality (3.2) multiply the same matrix diag[P;*, P!, Z7'] and two parts of inequality
(3.3) multiply the same matrix diag[Pi’l,Pifl,P;l]. Suppose that L; = P{l, W; = PilePIfl,
Y = diag[P!, P1XY diag[P L, P71, R = 27, MY = PAANYP, MY = PINYPY, and
V; = KiPITl ; then we obtain (3.21).This completes the proof of Theorem 3.3. O
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4. Stability Analysis of System (1.1) with Uncertain Liner System

In this section, results of uncertain liner system are extended to arbitrary switched linear
system for arbitrary switched linear system can be expressed as a problem of uncertain liner
system. When u(k) = 0, (1.5) are rewritten as

[AA(K) AAK)] = [A- Ay Ad— Adre]- (4.1)

Then the system (3.1) is rewritten as

x(k + 1) = (A - (A - Ar(k)))x(k) + (Ad - (Ad - Ad,(k)))x(k - d(k)), ke Z+, T(k) € Q.
(4.2)

Combined with Lemma 2.3, we easily have the following theorem.

Theorem 4.1. Let dy and d; be positive integers such that 0 < dy < dp. Under arbitrary switch, the
system (4.2) is asymptotically stability if there exist matrices P = PT >0,Q =QT >0, Z=Z" > 0,
X = [X*“ g] > 0 and any appropriate dimensional matrices A,Aa,D, Ea,Eqa,Fi, N1, No, and A > 0
such that the LMIs (2.10) and the following LMISs hold,

[A-A; As- A4 =DFi[E; Eu]
(4.3)
FIFi<I, ieQ.

Next, we consider the design of a switched state feedback. With (4.1) and (4.2), the
system (3.20) is rewritten as

x(k+1) = (A= (A= (Arw) + BranKrry)) ) x (k)
+ (Ad - (Ad - Adr(k)))x(k -d(k)), ke z, r(k) € Q.

(4.4)

Combined with Theorem 4.1, we easily have the following theorem.

Theorem 4.2. Let dy and d; be positive integers such that 0 < dy < dp. Under arbitrary switch, the
systems (4.4) is asymptotically stability if there exist matrices P=PT >0,Q =QT >0,Z = Z" >0,
X = [le g > 0, and any appropriate dimensional matrices A,Aaq,D, Eq,Eq4,Fi, N1, Ny and A > 0
such that the LMIs (2.10) and (4.3), and the following LMIs hold,

[A- (A +BK;) Ai—A4] =DF;[E, Eu], i€Q. (4.5)
5. Examples

Example 5.1. Consider the following switched delay systems with two subsystems

x(k +1) = Aix(k) + Agx(k - d(k)), keZ', ieQ, (5.1)
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where
01 0 -02 0 02 0 -01 0
Ay = , Ag = , Ax= , Ap= , (5.2)
0 0.5 -0.1 -0.1 0 03 03 -0.2
and Q = {1,2}.

When d; = d; thatis, d(k) = d, d, is without limit. To time-varying delay d(k), when
dy is given, d, is a maximum value of the solvability of LMIs (3.2) and (3.3), and some results
are in Table 1.

In this example, the switching system has two subsystems, so there are there switches
that are between subsystem 1 and subsystem 2, between subsystem 1 and subsystem 1, and
between subsystem 2 and subsystem 2. According to Theorem 3.1, whend; = 1and d, = 3,
solving the LMIs (3.2) and (3.3) leads to

[29.9101 —3.0324]

5.3474 0.0341
-3.0324 14.4926 ’

143.7206 —9.2029
0.0341 6.8596 ’

-9.2029 102.1555

1449500 850717, [-12592 05437 ]

| -85971 93.0312] " |-04002 —2.1476 |
1.9723 —0.1401] -1.3023 —-0.8619]

N%Z — i N121 — ,
04588 3.0624 | | 0.8282 21259

[ 22016 0.3203] [-1.2553  0.6225 |

N%l — i Nlll _ ,
| -0.6405 3.2331] |-0.4427 -2.2909)
[1.9636 —0.1949] -1.3199 —-0.7026]

N%l — , N122 _ ,
05126 3.0790 | | 07078 —2.0469|

10.2348 0.0282 -0.8722 0.3092
[2.2049 0.2493] 2 0.0282 8.2857 0.3092 -0.5114
—0.5319 3.1800 -0.8722 0.3092 6.3470 -0.8716
0.3092 -0.5114 -0.8716 4.7227

22 _
5=

10.1529 0.2694 -0.4215 —0.6588
0.2694 8.2610 -0.6588 -0.6227
-0.4215 -0.6588 5.0357 0.9594
—0.6588 —-0.6227 0.9594 3.9515

X21
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[10.2369 0.0251 -0.8788 0.3659 ]

0.0251 7.7927 0.3659 -0.4471
-0.8788 0.3659 6.3347 —0.8928]"
| 0.3659 -0.4471 -0.8928 4.7126 |

[10.1467 0.2491 —0.4220 -0.5494]

0.2491 8.4372 -0.5494 -0.7209
X22 —
-0.4220 -0.5494 5.2477 0.8376

[ -0.5494 -0.7209 0.8376 4.0014 |

(5.3)

It can be seen from Figure 1 that when d; = 1 and d, = 3, all the state solutions

corresponding to the 10 random initial points are convergent asymptotically to the unique
equilibrium x* = {0, 0}.

Example 5.2. Consider the following switched delay systems with two subsystems:
x(k+1) = Aix(k) + Agix(k—d(k)), keZ', ieQ, (5.4)
where

0.3850 0.0090 N ~0.4150 0.0090
~10.0180 0.5880]" ~ [-0.0820 —0.3120|"

(5.5)
0.3970 0.0120 ~0.4030 0.0120
= , = , Q = {1,2}
0.0150 0.5820 ~0.0850 —0.3180
When there exit matrixes
0.4000 0.0000 . _ [Fo4000 0.0000
~10.0000 0.6000]" “~ |-0.1000 ~0.3000]’
0.0300 0.0000 . _ [1-0000 0.0000
~ [0.0000 0.0300]" " 10.0000 1.0000
] (5.6)
. _ [1.0000 0.0000 ~0.5000 0.3000
| 0.0000 1.0000]" "7 | 0.6000 -0.4000]’

~0.1000 0.4000
271 05000 -0.6000]"
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15 20 25 30

(@)
15 20 25 30
—x
(b)

Figure 1: Global convergence of states x; and x, in Example 5.1, when d; =1 and d, = 3.

which satisfied (4.3), and d; = 1 and d> = 3, based on Theorem 4.1 solving the LMIs (2.10)
leads to

1.0888 -0.0129

P = (1.0e + 004) x
~0.0129 0.2758

2.5193 0.0379
, Q = (1.0e + 003) * ,

0.0379 0.4439

1.4927 0.0809 —472.4815 -6.3448
Z:(l.Oe+003)*[ ], N =[ ],

0.0809 0.4826 -53.9979 -181.8198

(5.7)

478.2798 -0.0086
[ 45.6698 185.5393]

216.7792 -41.8304 -134.0982 -18.7083

—41.8304 113.2493 -18.7083 —-62.9775
X = , A =148.1177.
—-134.0982 -18.7083 174.9568 -10.6693

-18.7083 -62.9775 -10.6693 84.3589

It can be seen from Figure 2 that when d; = 1 and d, = 3, all the state solutions
corresponding to the 10 random initial points are convergent asymptotically to the unique
equilibrium x* = {0, 0}.



14 Discrete Dynamics in Nature and Society

20 25 30 35 40 45 50

20 25 30 35 40 45 50

(b)

Figure 2: Global convergence of states x; and x, in Example 5.2, when d; =1 and d, = 3.

Table 1: Allowable upper bound of d, with given d;.

d; 0 1 2 3 4 5 6 7 8 9 50 100
d 11 12 13 14 15 16 17 18 19 20 61 111

6. Conclusions

This paper was dedicated to the delay-dependent stability of arbitrary switched linear sys-
tems with time-varying delay. We obtain two main results. Firstly, using switched quadratic
Lyapunov functional approach and free-weighting matrix approach, less conservative LMI
conditions have been proposed. Secondly, based on the result of uncertain liner system, some
delay-dependent stability criterions are obtained.
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