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Projective synchronization and generalized projective synchronization have recently been
observed in the coupled hyperchaotic systems. In this paper a generalized projective synchro-
nization technique is applied in the hyperchaotic Lorenz system and the hyperchaotic Lü.
The sufficient conditions for achieving projective synchronization of two different hyperchaotic
systems are derived. Numerical simulations are used to verify the effectiveness of the proposed
synchronization techniques.

1. Introduction

Chaos is an interesting phenomenon in nonlinear dynamical systems research area. In the
last three decades, chaos has been extensively studied within the scientific, engineering, and
mathematical communities [1–6].

A chaotic system is a nonlinear deterministic system that displays complex, noisy-like
and unpredictable behavior. These motions are trajectories in which infinite unstable periodic
orbits (UPOs) are embedded. Chaos is generally undesirable in many fields. This irregular
and complex phenomenon can lead systems to harmful or even catastrophic situations.
In these troublesome cases chaos should be suppressed as much as possible or totally
eliminated. Therefore controlling chaos has become one of the most considerable research
area in the nonlinear problems ranging from biology, physics and chemistry to economics.

Since Pecora and Carroll [7, 8] showed that it is possible to synchronize two identical
chaotic systems, chaos synchronization has been intensively and extensively studied due to
its potential applications in secure communication, ecological systems, system identification,
and so forth.

Among all kinds of chaos synchronizations, projective synchronization is one of the
most noticeable ones. This kind of synchronization was first observed in continuous systems



2 Discrete Dynamics in Nature and Society

[9] where a part of state variables possessed some partial linearity [10]. Its typical feature is
that the state variables of the two-coupled system may synchronize up to a scaling factor but
the Lyapunov exponents and fractal dimensions remain unchanged. Such synchronization
has been relatively understood well [11–14].

In 1999, Mainieri and Rehacek [10] first reported the projective synchronization
phenomenon and explained the mechanism of the formation of projective synchronization in
three-dimensional systems and further attempted to predict the scaling factor by introducing
a vector field. However, they only provided a guideline of predicting the scaling factor rather
than a concrete theoretical solution.

Generalized synchronization [15–23] is another interesting chaos synchronization
technique. It means that there exists a transformation which is able to map asymptotically
the trajectories of the master attractor into those of the slave one. To understand such kind of
synchronization needs much mathematics. Till now, there are relatively few publications for
generalized synchronization.

A focused problem in the study of chaos synchronization is how to design a physically
available and simple controller to guarantee the realization of high-quality synchronization
in coupled chaotic systems. Linear feedback is of course a practical technique, but the
shortcoming is that it needs to find the suitable feedback constant. Recently, Huang proposed
a simple adaptive feedback control method, which dose not need to estimate or find feedback
constant, to effectively synchronize two almost arbitrary identical hyperchaotic systems [24–
26]. This technique has been adopted by some authors to realize the identical synchronization
of almost all kinds of coupled identical neural networks with time—varying delay [27] and
the complete synchronization in uncertain complex networks [28].

In this paper, we introduce a new synchronization technique, which is different from
projective synchronization, but share the same typical feature of projective synchronization,
that is, the Lyapunov exponents and fractal dimensions are also invariant during the
synchronization process. To some extent, the synchronization presented here is very similar
to the generalized synchronization.

The rest of the paper is organized as follows. In Section 2, a mathematical description
of generalized projective synchronization is presented. In Section 3 system description is
introduced. In Section 4, the projective synchronization problem of a hyperchaotic Lorenz
system is investigated and numerical simulation results are demonstrated in Subsection 4.1.
In Section 5, the generalized projective synchronization problem of hyperchaotic Lü system
is presented, and numerical simulation results are given in Subsection 5.1. In Section 6,
the generalized projective synchronization problem between hyperchaotic Lorenz system
and hyperchaotic Lü system is presented, and numerical simulation results are given in
Subsection 6.1. Finally, in Section 7 the conclusion of the paper is given.

2. Generalized Projective Synchronization of Chaotic Systems

First, both projective and generalized synchronization are introduced.
A partial linear system is often expressed as

u̇(t) = M(z)u,

ż(t) = f(u, z),
(2.1)

in which the state vector u is linearly related to u̇ with respect to t, while the matrix M(z)
only depends upon the variable z which is nonlinearly related to the variable u. Projective
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synchronization often occurs when two identical system are coupled through the variable z
in the form as

u̇d = M(z)ud,

ż(t) = f(ud, z),

u̇r = M(z)ur .

(2.2)

The subscripts d and r stand for the driver (or master) and response (or slave) systems,
respectively.

If there exists a constant α ∈ R (α/= 0) such that limt→∞‖ur − α ud‖ = 0, then the
projective synchronization between the drive system and response system is achieved, and
we call α as “scaling factor.”

Consider the following coupled system:

ẋd = f(xd),

ẏr = g
(
yr, hμ(xd)

)
,

(2.3)

where xd ∈ Rn, yr ∈ Rk, f : Rn → Rn, h : Rn → Rk, and g : R2k → Rk. When
μ = 0, yr evolves independently and has no relation to xd, and we assume that both
systems are chaotic. When μ/= 0, the chaotic trajectories of the two systems are said to be
generalized synchronization if there exists a transformation ϕ : xd → yr which is able to
map asymptotically the trajectories of the master attractor into those of the slave attractor
yr(t) = ϕ(xd(t)), regardless of the initial conditions in the basin of the synchronization
manifoldM = {(xd, yr : yr(t) = ϕ(xd(t))} [22, 23]. In general. ϕ is difficult to be determined.

In what follows, a new definition is introduced. Consider the following chaotic
equations:

ẋd = f(xd),

ẋr = g(xr, u(xd, xr)),
(2.4)

where xd, xr ∈ Rn, u : R2n → Rn, g : R2n → Rn, and u(0, 0) = 0, g(x, u(0, 0)) =
f(x) : R2k → Rk. If there exists a constant α ∈ R (α/= 0) such that limt→∞‖xr − α xd‖ = 0,
then we call them “generalized projective synchronization.”

Remark 2.1. (i) This definition is very similar to that of generalized synchronization, see (2.3)
and (2.4). (ii) The master attractor synchronizes to the slave one up to a scaling factor a.
Obviously, the Lyapnove exponents and fractal dimension remain invariant. (iii) From the
last equation of (2.4), u can be regarded as a feedback controller (or “synchronizer”), that is,
similar to [7, 10], and if and only if such feedback controller u is applied to the slave system,
generalized projective synchronization may occur.

Remark 2.2. From the definition, one has limt→∞‖xr − α xd‖, the limit of α(t) as t → ∞ is still
written as α. So one gets limt→∞ log |α(t)| = limt→∞ log |xr/xd|.

3. System Description

Very recently, based on Lorenz system [29, 30] and Lü system [31, 32], two hyperchaotic
systems, we are constructed by introducing state feedback controller function, which were
named as hyperchaotic Lorenz system and hyperchaotic Lü system, respectively.
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Figure 1: It shows the attractor of hyperchaotic Lorenz dynamical system at a = 10, r = 28, b = 8/3, and
d = 1.3 in x, y, z subspace.

The hyperchaotic Lorenz system is described by

ẋ = a
(
y − x

)
+w,

ẏ = −xz + rx − y,

ż = −bz + xy,

ẇ = dw − xz.

(3.1)

When parameters a = 10, r = 28, b = 8/3, and 0.85 < d ≤ 1.3, the system (3.1) shows
hyperchaotic behavior, see Figure 1

The hyperchaotic Lü system is described by

ẋ = a1
(
y − x

)
+w

ẏ = −xz + c1y

ż = −b1z + xy

ẇ = d1w + xz.

(3.2)

When parameters a1 = 36, b1 = 3, c1 = 20, and −0.35 < d1 ≤ 1.3, the system (3.2) has
hyperchaotic attractor, see Figure 2

4. Generalized Projective Synchronization for
Hyperchaotic Lorenz System

In order to observe generalized projective synchronization between two identical hyper-
chaotic Lorenz systems, we assume that the drive systemwith four state variables denoted by
the subscript 1 and the response system having identical equations denoted by the subscript
2. However, the initial condition on the drive system is different from that of the response
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Figure 2: It shows the attractor of hyperchaotic Lü dynamical system at a1 = 36, b1 = 3, c1 = 20, and d1 = 1.3
in x, y, z subspace.

system. The drive and response systems are defined below, respectively,

ẋ1 = a
(
y1 − x1

)
+w1,

ẏ1 = −x1z1 + rx1 − y1,

ż1 = −bz1 + x1y1,

ẇ1 = dw1 − x1z1,

(4.1)

ẋ2 = a
(
y2 − x2

)
+w2 + u1,

ẏ2 = −x2z2 + rx2 − y2 + u2,

ż2 = −bz2 + x2y2 + u3,

ẇ2 = dw2 − x2z2 + u4,

(4.2)

whereU = [u1 u2 u3 u4]
T is the controller functions. The controllerU is to be determined

for the purpose of projective synchronizing the two identical hyperchaotic Lorenz systems.
In order to get generalized projective synchronization, we define the error system as

the difference between the system (4.2) and (4.1). Set

ex = x2 − αx1, ey = y2 − αy1, ez = z2 − αz1, ew = w2 − αw1, (4.3)

then one obtains the error dynamical system between (4.2) and(4.1)

ėx = a
(
ey − ex

)
+ ew + u1,

ėy = rex − ey − x2z2 + αx1z1 + u2,

ėz = −bez + x2y2 − αx1y1 + u3,

ėw = dew − x2z2 + αx1z1 + u4.

(4.4)
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Let

V1 = u1,

V2 = αx1z1 − x2z2 + u2,

V3 = x2y2 − αx1y1 + u3,

V4 = αx1z1 − x2z2 + u4,

(4.5)

then the error dynamical system can be rewritten as

ėx = a
(
ey − ex

)
+ ew + V1,

ėy = rex − ey + V2,

ėz = −bez + V3,

ėw = dew + V4.

(4.6)

To get the projective synchronization to occur, the zero solutions of error system must
be stable, that is to say, the error evolution of the drive system and response system tends
to zero as t → ∞. As we know, if all the eigenvalues of the Jacobian matrix of closed-loop
system have negative real parts, the system is stable. Based on this theory, we desired the
(V1, V2, V3, V4)

T to guarantee that all the eigenvalues of closed-loop system (4.6) have negative
real part. There are of course some other choices of (V1, V2, V3, V4)

T , but here the choice is very
easy and convenient. For simplicity, choose (V1, V2, V3, V4)

T as follows:

⎛

⎜⎜⎜⎜⎜
⎝

V1

V2

V3

V4

⎞

⎟⎟⎟⎟⎟
⎠

= M

⎛

⎜⎜⎜⎜⎜
⎝

ex

ey

ez

ew

⎞

⎟⎟⎟⎟⎟
⎠

, where M =

⎛

⎜⎜⎜⎜⎜
⎝

0 −a 0 −1
−r 0 0 0

0 0 0 0

0 0 0 −2d

⎞

⎟⎟⎟⎟⎟
⎠

. (4.7)

System (4.6) has four negative eigenvalues −10,−1,−8/3, and −1.3 when setting a =
10, r = 28, b = 8/3, and d = 1.3. That is to say, the error states ex, ex, ez, and ew converge to
zero as t → ∞. So the generalized projective synchronization is achieved.

4.1. Numerical Results

By using MAPLE 12, the systems of differential equations (4.1) and (4.2) are solved
numerically. The parameters are chosen as a = 10, r = 28, b = 8/3, and d = 1.3 in all
simulations so that the hyperchaotic Lorenz system exhibits a chaotic behavior if no control
is applied (see Figure 1). The initial states of the drive system are x1(0) = 0.1, y1(0) =
0.1, z1(0) = 0.1, andw1(0) = 0.1, and initial states of the response system are x2(0) = 1, y2(0) =
−1, z2(0) = 1, and w2(0) = 1.

Choosing α = −2 then the error system (4.4) has the initial values ex(0) = 1.2, ey(0) =
−0.8, ez(0) = 1.2, and ew(0) = 1.2. Figure 3 shows that the trajectories of ex(t), ey(t), ez(t),
and ew(t) tended to zero after t ≥ 5. Figure 4 shows the evaluation of the ratios log |xr/xd| =
log |x2/x1|, log |yr/yd| = log |y2/y1|, log |zr/zd| = log |z2/z1|, and log |wr/wd| = log |w2/w1|
whose limits are equal to log 2 = 0.693.
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Figure 3: It shows that the behaviour of the trajectories ex, ey, ez, and ew of the hyperchaotic Lorenz system
error system tends to zero as t tends to 5 when the scaling factor α = −2.
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Figure 4: It shows the evaluation of the ratios log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose
limits are equal to log 2 = 0.693.

Choosing α = 5 then the error system (4.4) has the initial values ex(0) = 0.5, ey(0) =
−1.5, ez(0) = 0.5, and ew(0) = 0.5. Figure 5 shows that the trajectories of ex(t), ey(t), ez(t)
and ew(t) tended to zero after t ≥ 5. Figure 6 shows the evaluation of the ratios
log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose limits are equal to log 5 = 1.609.
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Figure 5: It shows that the behaviour of the trajectories ex, ey, ez, and ew of the hyperchaotic Lorenz system
error system tends to zero as t tends to 5 when the scaling factor α = 5.
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Figure 6: It shows the evaluation of the ratios log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose
limits are equal to to log 5 = 1.609.

5. Generalized Projective Synchronization for Hyperchaotic Lü System

In order to observe generalized projective synchronization between two identical hyper-
chaotic Lü systems, we assume that the drive system with four state variables denoted
subscript 1 and the response system having identical equations denoted by the subscript
2. However, the initial condition on the drive system is different from that of the response
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system. The drive and response systems are defined below, respectively,

ẋ1 = a1
(
y1 − x1

)
+w1,

ẏ1 = −x1z1 + c1y1,

ż1 = −b1z1 + x1y1,

ẇ1 = d1w1 + x1z1,

(5.1)

ẋ2 = a1
(
y2 − x2

)
+w2 + u1,

ẏ2 = −x2z2 + c1y2 + u2,

ż2 = −b1z2 + x2y2 + u3,

ẇ2 = d1w2 + x2z2 + u4,

(5.2)

whereU = [u1 u2 u3 u4]
T is the controller functions. The controllerU is to be determined

for the purpose of projective synchronizing the two identical hyperchaotic Lü systems.
In order to get generalized projective synchronization, we define the error system as

the difference between the systems (5.2) and (5.1). Set

ex = x2 − αx1, ey = y2 − αy1, ez = z2 − αz1, ew = w2 − αw1, (5.3)

then one obtains the error dynamical system between (5.2) and(5.1)

ėx = a1
(
ey − ex

)
+ ew + u1,

ėy = c1ey − x2z2 + αx1z1 + u2,

ėz = −b1ez + x2y2 − αx1y1 + u3,

ėw = d1ew + x2z2 − αx1z1 + u4.

(5.4)

Let

V1 = u1,

V2 = αx1z1 − x2z2 + u2,

V3 = x2y2 − αx1y1 + u3,

V4 = x2z2 − αx1z1 + u4,

(5.5)

then the error dynamical system can be rewritten as

ėx = a1
(
ey − ex

)
+ ew + V1,

ėy = c1ey + V2,

ėz = −b1ez + V3,

ėw = d1ew + V4.

(5.6)
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Figure 7: It shows that the behaviour of the trajectories ex, ey, ez, and ew of the hyperchaotic Lü system
error system tends to zero as t tends to 5 when the scaling factor α = −2.

To get the projective synchronization, the zero solutions of error systemmust be stable,
that is to say, the error evolution of the drive system and response system tends to zero as
t → ∞. As we know, if all the eigenvalues of the Jacobian matrix of closed-loop system have
negative real parts, the system is stable. Based on this theory, we desired the (V1, V2, V3, V4)

T

to guarantee that all the eigenvalues of closed-loop system (5.6) have negative real part.
There are of course some other choices of (V1, V2, V3, V4)

T , but here the choice is very easy
and convenient. For simplicity, choose (V1, V2, V3, V4)

T as follows:
⎛

⎜⎜⎜⎜⎜
⎝

V1

V2

V3

V4

⎞

⎟⎟⎟⎟⎟
⎠

= M

⎛

⎜⎜⎜⎜⎜
⎝

ex

ey

ez

ew

⎞

⎟⎟⎟⎟⎟
⎠

, where M =

⎛

⎜⎜⎜⎜⎜
⎝

0 −a1 0 −1
0 −2c1 0 0

0 0 0 0

0 0 0 −2d

⎞

⎟⎟⎟⎟⎟
⎠

. (5.7)

System (5.6) has four negative eigenvalues −36,−20,−3, and −1.3 when setting a1 =
36, b1 = 3, c1 = 20, and d1 = 1.3. That is to say, the error states ex, ex, ez, and ew converge to
zero as t → ∞. So the generalized projective synchronization is achieved.

5.1. Numerical Results

By using MAPLE 12, the systems of differential equations (5.1) and (5.2) are solved
numerically. The parameters are chosen as a1 = 36, b1 = 3, c1 = 20, and d1 = 1.3 in all
simulations so that the hyperchaotic Lü system exhibits a chaotic behavior if no control
is applied (see Figure 2). The initial states of the drive system are x1(0) = −7, y1(0) =
−12, z1(0) = 7, andw1(0) = 11 and initial states of the response system are x2(0) = −4, y2(0) =
−6, z2(0) = 1, and w2(0) = 1.
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Figure 8: It shows the evaluation of the ratios log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose
limits are equal to log 2 = 0.693.

40

20

0

−20

−40

0 2 4 6 8 10

E
rr
or

t

ex
ey

ez
ew

Figure 9: It shows that the behaviour of the trajectories ex, ey, ez, and ew of the hyperchaotic Lü system
error system tends to zero as t tends to 5 when the scaling factor α = 5.

Choosing α = −2 then the error system (5.4) has the initial values ex(0) = −18,
ey(0) = −30, ez(0) = −13, and ew(0) = 21. Figure 7 shows that the trajectories of ex(t),
ey(t), ez(t), and ew(t) tended to zero after t ≥ 5. Figure 8 shows the evaluation of the ratios
log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose limits are equal to log 2 = 0.693.

Choosing α = 5 then the error system (5.4) has the initial values ex(0) = 31, ey(0) =
54, ez(0) = −34, and ew(0) = −54. Figure 9 shows that the trajectories of ex(t), ey(t), ez(t),
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Figure 10: It shows the evaluation of the ratios log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1|whose
limits are equal to to log 5 = 1.609.

and ew(t) tended to zero after t ≥ 5. Figure 10 shows the evaluation of the ratios
log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose limits are equal to log 5 = 1.609.

6. Generalized Projective Synchronization between Hyperchaotic
Lorenz System and Hyperchaotic Lü System

In order to observe generalized projective synchronization between hyperchaotic Lorenz
system and hyperchaotic Lü system, we assume that hyperchaotic Lorenz system is the
drive system and hyperchaotic Lü system is the response system. The drive system with
four state variables denoted by the subscript 1 and the response system with four state
variables denoted by the subscript 2. However, the initial condition on the drive system is
different from that of the response system. The drive and response systems are defined below,
respectively,

ẋ1 = a
(
y1 − x1

)
+w1,

ẏ1 = −x1z1 + rx1 − y1,

ż1 = −bz1 + x1y1,

ẇ1 = dw1 − x1z1,

(6.1)

ẋ2 = a1
(
y2 − x2

)
+w2 + u1,

ẏ2 = −x2z2 + c1y2 + u2,

ż2 = −b1z2 + x2y2 + u3,

ẇ2 = d1w2 + x2z2 + u4,

(6.2)
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Figure 11: It shows the behaviour of the trajectories ex, ey, ez, and ew of the error system between
hyperchaotic Lorenz system and hyperchaotic Lü system tends to zero as t tends to 5 when the scaling
factor α = −2.

whereU = [u1 u2 u3 u4]
T is the controller functions. The controllerU is to be determined

for the purpose of projective synchronizing between hyperchaotic Lorenz system and
hyperchaotic Lü system.

In order to get generalized projective synchronization, we define the error system as
the difference between the systems (6.2) and (6.1). Set

ex = x2 − αx1, ey = y2 − αy1, ez = z2 − αz1, ew = w2 − αw1, (6.3)

then one obtains the error dynamical system between (6.2) and(6.1)

ėx = a1
(
y2 − x2

)
+w2 − aα

(
y1 − x1

) − αw1 + u1,

ėy = −x2z2 + c1y2 + αx1z1 − αrx1 + αy1 + u2,

ėz = −b1z2 + x2y2 + αbz1 − αx1y1 + u3,

ėw = d1w2 + x2z2 − αdw1 + αx1z1 + u4.

(6.4)

Let

V1 = (a − a1)
(
x2 − y2

)
+ u1,

V2 = αx1z1 − x2z2 + (c1 + 1)y2 − rx2 + u2,

V3 = x2y2 − αx1y1 − (b1 − b)z2 + u3,

V4 = (d1 + d)w2 + x2z2 + u4 + αx1z1,

(6.5)
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Figure 12: It shows that the evaluation of the ratios log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1|
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then the error dynamical system can be rewritten as

ėx = a
(
ey − ex

)
+ ew + V1

ėy = rex − ey + V2

ėz = −bez + V3

ėw = −dew + V4.

(6.6)

To get the projective synchronization, the zero solutions of error systemmust be stable,
that is to say, the error evolution of the drive system and response system tends to zero as
t → ∞. As we know, if all the eigenvalues of the Jacobian matrix of closed loop system have
negative real parts, the system is stable. Based on this theory, we desired the (V1, V2, V3, V4)

T

to guarantee that all the eigenvalues of closed-loop system (6.7) have negative real part.
There are of course some other choices of (V1, V2, V3, V4)

T , but here the choice is very easy
and convenient. For simplicity, choose (V1, V2, V3, V4)

T as follows:

⎛

⎜⎜⎜⎜⎜
⎝

V1

V2

V3

V4

⎞

⎟⎟⎟⎟⎟
⎠

= M

⎛

⎜⎜⎜⎜⎜
⎝

ex

ey

ez

ew

⎞

⎟⎟⎟⎟⎟
⎠

, where M =

⎛

⎜⎜⎜⎜⎜
⎝

0 −a 0 −1
−r 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠

. (6.7)

System (6.7) has four negative eigenvalues −10,−1,−8/3, and −1.3 when setting a =
10, r = 28, b = 8/3, and d = 1.3. That is to say, the error states ex, ex, ez, and ew converge to
zero as t → ∞. So the generalized projective synchronization is achieved.



Discrete Dynamics in Nature and Society 15

10

5

0

−5

−10

0 2 4 6 8 10

t

ex
ey

ez
ew

E
rr
or

Figure 13: It shows that the behaviour of the trajectories ex, ey, ez, and ew of the error system between
hyperchaotic Lorenz system and hyperchaotic Lü system tends to zero as t tends to 5 when the scaling
factor α = 5.
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Figure 14: It shows the evaluation of the ratios log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1|whose
limits are equal to log 5 = 1.609.

6.1. Numerical Results

By using MAPLE 12, the systems of differential equations (6.1) and (6.2) are solved
numerically. The initial states of the drive system are x1(0) = 0.1, y1(0) = 0.1, z1(0) = 0.1, and
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Figure 15: (a) It shows that the behaviour of the trajectories ex, ey, ez, and ew of the hyperchaotic Lorenz
system error system tends to zero as t tends to 5 when the scaling factor α = 1. (b) It shows that the
behaviour of the trajectories ex, ey, ez, and ew of the hyperchaotic Lü system error system tends to zero as
t tends to 5 when the scaling factor α = 1. (c) It shows that the behaviour of the trajectories ex, ey, ez, and
ew of the error system between hyperchaotic Lorenz system and hyperchaotic Lü system tends to zero as t
tends to 5 when the scaling factor α = 1.

w1(0) = 0.1, and initial states of the response system are x2(0) = −7, y2(0) = −12, z2(0) = 7,
and w2(0) = 11.

Choosing α = −2, then the error system has the initial values ex(0) = −6.8, ey(0) =
−11.8, ez(0) = 7.2, and ew(0) = 11.2. Figure 11 shows that the trajectories of ex(t), ey(t), ez(t),
and ew(t) tended to zero after t ≥ 5. Figure 12 shows the evaluation of the ratios
log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose limits are equal to log 2 = 0.693.

Choosing α = 5, then the error system has the initial values ex(0) = −7.5, ey(0) =
−12.5, ez(0) = 6.5, and ew(0) = 10.5. Figure 13 shows that the trajectories of ex(t), ey(t), ez(t),
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Figure 16: (a) Its shows the behaviour of the trajectories ex, ey, ez, and ew of the hyperchaotic Lorenz system
error system tends to zero as t tends to 5 when the scaling factor α = −1. (b) It shows that the behaviour
of the trajectories ex, ey, ez, and ew of the hyperchaotic Lü system error system tends to zero as t tends to
5 when the scaling factor α = −1. (c) It shows that the behaviour of the trajectories ex, ey, ez, and ew of the
error system between hyperchaotic Lorenz system and hyperchaotic Lü system tends to zero as t tends to
5 when the scaling factor α = −1.

and ew(t) tended to zero after t ≥ 5. Figure 14 shows the evaluation of the ratios
log |x2/x1|, log |y2/y1|, log |z2/z1|, and log |w2/w1| whose limits are equal to log 5 = 1.609.

7. Conclusion
This paper shows that the generalized projective synchronizations for the hyperchaotic
Lorenz system and the hyperchaotic Lü system can be easily achieved by using the
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fundamental feedback techniques, where the scaling factors can be arbitrarily manipulated
(amplified or reduced). We note that the driver and response systems achieve complete
synchronization when α is equal to 1 (see Figure 15). Further, if α is equal to −1, then the
two systems are said to be in anti-synchronization (see Figure 16). Numerical simulations
are used to verify the effectiveness of the proposed generalized projective synchronization
techniques.
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