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Power law (PL) and fractional calculus are two faces of phenomena with long memory behavior.
This paper applies PL description to analyze different periods of the business cycle. With such
purpose the evolution of ten important stock market indices (DAX, Dow Jones, NASDAQ, Nikkei,
NYSE, S&P500, SSEC, HSI, TWII, and BSE) over time is studied. An evolutionary algorithm is
used for the fitting of the PL parameters. It is observed that the PL curve fitting constitutes a good
tool for revealing the signal main characteristics leading to the emergence of the global financial
dynamic evolution.

1. Introduction

Business cycles are the usual trend behavior found in the economic activity over a significant
period of time (i.e., several months or years). Such fluctuations tend to involve shifts between
periods of economic growth (expansions) and periods of stagnation or decline (recessions);
see Table 1. The complex reasons behind business cycles are studied by macroeconomics and
are mainly grounded on the gears of the economic activity (e.g., monetary policy, business
sentiment, inflation). In the United States the business cycle is followed by the National
Bureau of Economic Research (NBER), a research organization which is dedicated to promote
a greater understanding of how the economy works. The NBER’s Business Cycle Dating
Committee defines the official US business cycle’s peaks and troughs. An economy expansion
corresponds to a period from a trough to a peak, and a recession corresponds to the period
from a peak to a trough. For NBER a recession is defined as “a significant decline in economic
activity spread across the economy, lasting more than a few months, normally visible in
real Gross Domestic Product (GDP), real income, employment, industrial production, and
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Table 1: Business cycle reference dates, in US, since 1970.

Period Main characteristics Main causes

Dec. 1969 to
Nov. 1970

(i) Followed one of the longest economic
expansion in the US history (Feb. 1961
to Dec. 1969)

(ii) Relatively mild recession

(i) Fiscal tightening to close the budget
deficits of the VietnamWar

(ii) Monetary tightening to face the rising
inflation

Nov. 1973 to
Mar. 1975

(i) Simultaneous increase of inflation and
unemployment

(ii) Long and deep recession

(i) 1973 oil crisis
(ii) Wage and price control policies

implemented to mask inflation
pressures and fight unemployment

(iii) Abnormal long decline in
productivity growth

(iv) Emergence of newly industrialized
countries

Jan. 1980 to
Jul. 1980 and
Jul. 1981 to
Nov. 1982

(i) Conjunction of two recessions, separated
by a very short expansion (w-shaped)

(ii) Deepest and longest recession in the
postwar period

(i) Contractionary monetary policy to
control high inflation

Jul. 1990 to
Mar. 1991

(i) Hit much of the world—not particularly
deep or long

(i) Fed tightened monetary policy (Feb.
1988 to May 1989) to counter a rising
inflation rate

(ii) Oil price shock after Iraq invaded
Kuwait gave momentum to the
starting recession

(iii) Serious solvency problems among
thrift institutions due to savings and
loan crisis

(iv) Consumer pessimism

Mar. 2001 to
Nov. 2001

(i) Ended the longest period of growth in
the American history

(ii) Predicted by economists for years
(iii) Affected all the developed world

(i) Collapse of the speculative dot-com
bubble

(ii) Fall in business investments
(iii) September 11th attacks

Since Dec.
2007

(i) Worst financial crisis since the Great
Depression (1930s)

(ii) Unprecedented responses by
governments and central banks (fiscal
stimulus, monetary policy expansion,
and institutional bailouts)

(iii) Ongoing
(iv) Fears of a new w-shaped recession

(i) Collapse of the housing bubble
(ii) Financial crisis
(iii) Return to tight monetary policy

wholesale-retail sales” [1–3]. Since 2000 there has been two recessions (Figure 1), which are
now briefly described.

Economy recessions are the primary factor that drives fluctuations in the volatility of
stock returns. It is not surprising that changes in economic activity have strong consequences
on stock markets.

Stock values are based on corporate earnings which are greatly determined by the
business cycle. Therefore, the stock market growth and the GDP tend to correlate quite well.
However, it is clear that the correlation is not direct because of the following.

(i) Stock markets tend to behave in a magnified way when compared with the GDP
fluctuations. When the GDP falls/increases, the stock market falls/increases even
more.
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Figure 1: The temporal evolution of the daily closing value for the DAX, DJI, NASDAQ, Nikkei, NYA, BSE,
SSEC, TWII, HIS, and S&P 500 indices and the main crisis, from Jan, 2000 to Dec, 2009.

(ii) Stock markets are normally faster to react than the economy and are, therefore,
considered by many as a leading indicator of the business cycle. Almost without
exception, the stock market turns down prior to recessions and rises before
economic recoveries. In fact Siegel [4] shows that out of the 46 recessions from 1802,
42 of them (91.3%) have been preceded (or accompanied) by declines of 8 percent
or more in the total stock returns index.

Business cycle forecasting is a popular effort in stock markets not because it is
successful, but because the potential gains are so large. In fact, such prevision is a very
difficult task and most of the times it is not correct, as illustrated by a famous Samuelson
[5] quote “Wall Street indices predicted nine out of the last five recessions!”. Therefore,
although the stock markets normally identify coming recessions, there is a tendency to be
many false alarms. The gains of being able to predict the turning points of the economic
cycle are enormous. If an investor could identify the turning points of the economic cycle, he
would switch stocks for government bonds before the business downturn begins (stocks fall
prior to a recession while treasury bills tend to valorize) and return to stocks when prospects
for economic recovery are positive. Nevertheless, if the investor lacks forecasting effort and
just follows the established business sentiment about economic activity, he will be buying
when prices are high (because everyone is optimistic) and selling when they are low (because
everyone is pessimistic) resulting in big losses.

The development of mathematical tools for describing, analyzing and forecasting
financial markets has been the subject of considerable research during the last decades, in
different perspectives such as in the case of statistics, stochastic systems, signal processing,
nonlinear dynamics, and chaos. However, only recently intelligent and evolutionary
algorithms were considered for this task, but the results seem promising and motivate
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Table 2: The ten stock markets adopted in the study.

k Stock market index Abbreviation Country
1 Deutscher Aktienindex DAX Germany
2 Dow Jones Industrial DJI USA
3 NASDAQ NDX USA
4 New York Stock Exchange NYA USA
5 Standard & Poor’s SP500 USA
6 Tokyo Stock Exchange NIKKEI Japan
7 Stock market index in Hong Kong HSI Hong Kong
8 Bombay Stock Exchange Index BSE India
9 Shanghai Stock Exchange SSEC China
10 Stock market index in Taipei TWII Taiwan

further work [6–8]. Bearing these ideas in mind, the present work establishes a link between
classical methods, namely those of system dynamics, and intelligent algorithms, through
the development of a adaptive trendline scheme with genetic algorithms and is expected
to contribute to the improvement of business cycle forecasting practices by developing an
intelligent method of analysis of the trend.

The remainder of this paper is as follow. Section 2 presents the data, namely the
financial indices, the fundamental concepts adopted in the study, and the methodology of
analysis. Finally, Section 3 draws the main conclusions.

2. Financial Data and Methodology of Analysis

In this section we analyze the stock market indices from January 2000 to December 2009. Our
data comprises daily close values of S = 10 stock markets to be denoted as xk(t), 1 ≤ t ≤ n,
where t is time, n is the total number of samples, and k = 1, . . . , S. The stock markets in study
are listed in Table 2. The data is obtained from the Yahoo Finance website [9] and corresponds
to indices in local currencies.

Figure 1 depicts the time evolution, of daily, closing price of the indices versus time
with the well-know noisy, and “chaotic-like” characteristics [10].

These signals have a strong variability which makes difficult their direct comparisons
in the time domain.

In order to examine the behavior of the signal spectrum, we superimpose a trendline
over to the Fourier transform (FT); that is, we approximate the modulus of the FT amplitude
through the power law in the frequency domain (ωPL):

F{xk(t)} =
∫+∞

−∞
xk(t)e−jωtdt,

|F{xk(t)}| ≈ pk ωqk , pk ∈ R
+, qk ∈ R, k = 1, . . . , S,

(2.1)

where F is the Fourier operator,ω is the frequency, pk a positive constant that depends on the
signal amplitude, and qk is the trendline slope [11, 12] presented in Table 3. According to the
values of qk, the signals can exhibit an integer or fractional order behavior.
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Table 3: Parameter values for the ωPL (left) and average parameter values for tPL, with ε = 0.05 (right)
for the ten stock markets adopted in the study.

k pk qk ak av bk av ck av dk av

1 16388.5 −0.94 1604.7 −0.09 −475.7 364.1
2 59112.7 −0.88 2405.0 −0.54 331.2 4665.2
3 5703.0 −0.97 1546.5 0.02 −1055.9 1334.9
4 39112.2 −0.88 1938.1 0.14 162.3 1815.2
5 5307.9 −0.90 3498.2 0.19 −1516.2 618.9
6 31180.2 −0.97 1816.2 −0.26 −901.8 −1231.6
7 32323.6 −0.98 1744.8 −0.53 −393.8 2426.3
8 19344.8 −0.99 2434.1 −0.76 100.6 1442.8
9 11800.1 −0.91 1529.4 0.21 211.8 1279.6
10 9251.3 −1.01 1562.4 −1.27 780.6 2514.5
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Figure 2: |FT{xk(t)}| and the power trendline pkωqk for the indices Dow Jones (a) and Nikkei (b).

For example, Figure 2 depicts the amplitude of the FT of the Dow Jones and Nikkei
indices and the corresponding ωPL slope values q2 = −0.884, q6 = −0.966, respectively.

We verify that we get a fractional order spectrum in between thewhite and pink noises,
typical in fractional systems, and corresponding to a considerable volatility.

FT is not capable of characterizing signal variations in a limited time window and
leads to a portrait of the overall signal characteristics. Therefore, given the signal volatility it
is important to develop an intelligent method capable of capturing evolutions and trends in
finite width time windows [13, 14].

In order to examine the behavior of the signal, for small time partitions, a power law
in the time domain (tPL) trendline is calculated according the following equation:

xk(t) ≈ ak(t − ck)bk + dk, ak, dk ∈ R
+, bk, ck ∈ R,

k = 1, . . . , S, 1 ≤ t ≤ n,
(2.2)

where t represents time and ak, bk, ck, dk are fitting parameters.
It should be noted that, a priori, there is no formal link between expression (2.1) and

(2.2), but this study may clarify any dependence in case it exists.
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Figure 3: Number of trendlinesNw versus 0.001 � ε � 0.06 for the Dow Jones and Nikkei indices.

In this approximation the parameter ak describes the “magnitude,” bk is related with
dynamics of evolution, and ck and dk coordinate offsets. Therefore, from the point of view of
financial dynamics, the parameter bk is clearly the most relevant one.

We must mention that tPL and fractional dynamics may be manifestations of the same
type of phenomena, that is to say, of dynamical systems with long memory. In fact, the power
law behavior can emerge even in systems lacking such property [15]. Nevertheless, while the
relation between the two faces is not yet clearly understood, the mathematical complexities
underlying fractional calculus can be softened with the tPL approximation [16].

Based on a visual analysis of the pattern of the indices chart, we see that we can
subdivide each of them into several different partitions. According to the pattern of the
indices chart we decided to adopt a variable number of the trendlines Nw according with
a maximum relative error ε, defined as

εk =
n∑
t=1

∣∣∣∣∣∣∣
xk(t) −

[
ak(t − ck)bk + dk

]
xk(t)

∣∣∣∣∣∣∣
. (2.3)

Figure 3 shows the number of trendlines Nw, for the Dow Jones and Nikkei indices,
versus the value of the maximum relative error ε. Obviously, the larger the Nw the smaller
the ε.

In our case we consider 0.001 � ε � 0.075. Having calculated the tPL approximations,
for each one of the partitions, we superimpose the corresponding values of the tPL trendline
over the original data. For example, Figure 4 depicts the partitions and the trendlines
approximation for the Dow Jones and the Nikkei indices.

For the calculation of the parameters {a, b, c, d} in (2.2), it is adopted a genetic
Algorithm (GA). GAs are a class of computational techniques to find approximate solutions
in optimization and search problems [17, 18]. GAs are simulated through a population
of candidates of size NGA that evolve computationally towards better solutions. Once the
genetic representation and the fitness function are defined, the GA proceeds to initialize
a population randomly and then to improve them through the repetitive application of
mutation, crossover, and selection operators. During the successive iterations, a part or
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Figure 4: The temporal evolution and tPL trendline for the the Dow Jones x2(k) (a) and Nikkei x6(k) (b)
indices from Jan. 2000 to Dec. 2009 with ε = {0.005, 0.05}.

the totality of the population is selected to breed a new generation. Individual solutions
are selected through a fitness-based process, where fitter solutions (measured by a fitness
function) are usuallymore likely to be selected. The GA terminates when either themaximum
number of generations is produced or a satisfactory fitness level has been reached. In the
experiments was considered a GA population of NGA = 400 elements, the crossover of
all population elements and the adoption of elitism, a mutation probability of 5%, and
an evolution with 60 iterations. This scheme leads to a fast convergence and reduced
computational time.

For the purpose of checking the convergence of the GA towards nonoptimal values,
several executions of the algorithm were performed, and the results compared.

Figure 5 shows the charts of the parameters {a, b, c, d} of the Dow Jones and Nikkei
indices, for the tPL approximation. Again the charts reveal that for small/large values of ε
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Figure 5: Locus of the parameters {a, b, c, d} versus (ε, t), based on (2.2), for the Dow Jones (left) and
Nikkei (right) indices, from Jan. 2000 to Dec. 2009.
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(b) indices.

we get an high/low number of Nw. By other words, the smaller the number of windows
Nw the larger the generalization and scope of the conclusions, but the higher the error ε.
Furthermore, we observe that the estimation of the model parameters is robust since we have
only volatile results for small values of ε.

From the point of view of dynamics, parameter b is the most relevant one. Figure 6
depicts the variation of the tPL parameters {ak, bk, ck, dk}, k = {2, 6} through time for the
Dow Jones, and Nikkei signals, and the cases of ε = {0.005, 0.05}. On the other hand, Figure 7
shows the evolution of the average and standard deviation for the parameter bk over time
(bk av,bk sd), k = {2, 6} versus ε for the two indices Dow Jones and Nikkei.

We should note that the power law approximation fits well the time evolution
of the stock markets. Since we are doing a splitting of the signal in adequate time
windows, an interesting question is if any kind of function could be fitted for any time
signal. Several experiments with linear approximations, quadratic polynomials and rational
fractions revealed that we could get a good fit with a given approximation for a particular
financial index. However, when considering the approximation of all indices, numerical
experiments demonstrated problems, both in the resulting plots and the GA convergence.
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Therefore, further research is necessary to explore the type of functions that constitute good
approximations, having in mind both the numerical convergence of the fitting procedure and
the characteristics of the resulting plots.

Finally, Table 3 shows the ωPL parameters and average parameter’s values for tPL,
with ε = 0.05 for the ten indices. We verify that the tPL leads to a much more detailed
description of the signal, being capable of adapting to its time variability, while capturing
its trend within the time window under analysis. In this perspective the tPL establishes a
good compromise between time adaptation and trend estimation.

We can note that while formally there is no relationship between the parameters of
the ωPL and tPL, there is some degree of correlation as can be seen in Figure 8 that depicts
b versus q. In fact, we verify not only that b varies from negative (economic recession) to
positive (economic expansion) for q ≈ 0.9 but also the sensitivity of the time model that
“dilutes” the transients into the final result.

3. Conclusions

Economy cycles are the cumulative result of a plethora of different phenomena. Therefore,
financial indices reveal a complex behavior, and their dynamical analysis poses problems not
usual in other types of systems. In this paper it was studied a PL trendline as a manifestation
of the long memory property of systems with fractional dynamics.

For that purpose we developed an intelligent algorithm with a sliding time window
having width proportional to a predefined threshold error. Moreover, for the parameter
estimation we adopt a genetic algorithm that demonstrates to pose a low computational load
while leading to a fast convergence.

The PL trendline proved to constitute a tool capable of retaining the dynamical
properties of the economic cycles while providing a global perspective of its evolution.
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