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This paper is concerned with a nonlinear fractional differential equation involving Caputo
derivative. By constructing the upper and lower control functions of the nonlinear term without
any monotone requirement and applying the method of upper and lower solutions and the
Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial
value problem are investigated. Moreover, the existence of maximal and minimal solutions is also
obtained.

1. Introduction

Fractional differential equation can be extensively applied to various disciplines such as
physics, mechanics, chemistry, and engineering, see [1–3]. Hence, in recent years, fractional
differential equations have been of great interest and there have been many results on
existence and uniqueness of the solution of FDE, see [4–8]. Especially, Diethelm and Ford [9]
have gained existence, uniqueness, and structural stability of solution of the type of fractional
differential equation

Dq(y − Tm−1
[
y
])
(x) = f

(
x, y(x)

)
, y(k)(0) = y(k)

0 , k = 0, 1, . . . , m − 1, (1.1)

where q > 0 is a real number, Dq denotes the Riemann-Liouville differential operator of
order q, and Tm−1[y] is the Taylor polynomial of order (m − 1) for the function y(x) at
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x0 = 0. Recently, Daftardar-Gejji and Jafari [10] have discussed the existence, uniqueness,
and stability of solution of the system of nonlinear fractional differential equation

Dα
∗y(t) = f

(
t, y(t)

)
, 0 < t < 1, y(k)(0) = ck, 0 ≤ k ≤ m, 0 ≤ ck, (1.2)

where m < α ≤ m + 1 and Dα
∗ denotes Caputo fractional derivative (see Definition 2.3).

Delbosco and Rodino [11] have proved existence and uniqueness theorems for the nonlinear
fractional equation

Dδu = f(t, u), 0 < t < 1, u(0) = 0, (1.3)

where 0 < δ < 1, Dδ is the Riemann-Liouville fractional derivative. Zhang [12] used the
method of the upper and lower solution and cone fixed point theorem to obtain the existence
and uniqueness of positive solution to (1.3). Yao [13] considered the existence of positive
solution to (1.3) controlled by the power function employing Krasnosel’skii fixed point
theorem of cone expansion-compression type. The existence of the local and global solution
for (1.3) was obtained by Lakshmikantham and Vatsala [14] utilizing classical differential
equation theorem.

More recently, Zhang [15] shows the existence of positive solutions to the singular
boundary value problem for fractional differential equation

Dα
0+u(t) + g(t)f

(
u, u′, . . . , u(n−2)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
(1.4)

where Dα
0+ is the Riemann-Liouville fractional derivative of order n − 1 < α ≤ 2, n ≥ 2.

However, in the previous works, the nonlinear term has to satisfy the monotone or
others control conditions. In fact, the fractional differential equations with nonmonotone
function can respond better to impersonal law, so it is very important to weaken monotone
condition. Considering this, in this paper, we mainly investigate the fractional differential
Equation (1.2) without any monotone requirement on nonlinear term by constructing upper
and lower control function and exploiting the method of upper and lower solutions and the
Schauder fixed point theorem. The existence and uniqueness of positive solution for (1.2)
are obtained. Some properties concerning the maximal and minimal solutions are also given.
This work is motivated by the above references and my previous work [16, 17]. Other related
results on the fractional differential equations can be found in [18–24].

This paper is organized as follow. In Section 2, we recall briefly some notions of the
fractional calculus and the theory of the operators for integration and differentiation of
fractional order. Section 3 is devoted to the study of the existence and uniqueness of positive
solution for (1.2) utilizing the upper and lower solution method and the Schauder fixed point
theorem. The existence of maximal and minimal solutions for (1.2) is given in Section 4.

2. Preliminaries and Notations

First, we give some basic definitions and theorems which are basically used throughout
this paper. C[0, 1] denotes the space of continuous functions defined on [0, 1] and Cn[0, 1]
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denotes the class of all real valued functions defined on [0, 1] which have continuous nth
order derivative.

Definition 2.1. Let f(x) ∈ C[0, 1] and α > 0, then the expression

Iα0 f(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, 0 < x < 1 (2.1)

is called the (left-sided) Riemann-Liouville integral of order α.

Definition 2.2. Let n − 1 < α ≤ n, n ∈N, then the expression

Dα
0f(x) =

dn

dxn
[
In−α0 f(x)

]
, 0 < x < 1 (2.2)

is called the (left-sided) Riemann-Liouville derivative of f(x) of order α whenever the
expression on the right-hand side is defined.

Definition 2.3. Let f(x) ∈ Cn[0, 1] and n − 1 < α ≤ n, n ∈N, then the expression

Dα
∗0f(x) = I

n−α
0 f (n)(x) (2.3)

is called the (left-sided) Caputo derivative of f(x) of order α.

In further discussion we will denote Dα
0 , I

α
0 , and D

α
∗0 as D

α, Iα, and Dα
∗ , respectively.

Lemma 2.4 (see [25, 26]). Let f(x) ∈ Cn[0, 1] and n − 1 < α ≤ n, n ∈N, then we one has

IμIνf(x) = Iμ+νf(x), μ, ν ≥ 0, (2.4)

DαIαf(x) = f(x), (2.5)

IαDα
∗f(x) = f(x) −

n−1∑

k=0

xk

k!
f (k)(0+). (2.6)

Lemma 2.5 (see, [10]). If the function f(t, y(t)) is C1[0, 1], then the initial value problem (1.2) is
equivalent to the Volterra integral equations

y(t) =
m∑

k=0

tk

k!
ck + Iαf

(
t, y(t)

)
, 0 < t < 1, m < α ≤ m + 1. (2.7)
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Proof. Suppose y(t) satisfies the initial value problem (1.2), then applying Iα to both sides
of (1.2) and using Lemma 2.4 (2.7) follows. Conversely, suppose y(t) satisfies (2.7). Then
observe that D(m+1)y(t) exists and is integrable, because

y(m+1)(t) = Dm+1

(
m∑

k=0

tk

k!
ck + Iαf

(
t, y(t)

)
)

= Dm+1Iαf
(
t, y(t)

)
= DDmImIα−mf

(
t, y(t)

)

= DIα−mf
(
t, y(t)

)
= Dm+1−αf

(
t, y(t)

)
,

(2.8)

which exists and is integrable as f(t, y(t)) is C1[0, 1]. Thus Im+1−αy(m+1)(t) = Dα
∗y(t) exists.

Applying Dα
∗ on both sides of (2.7), one has

Dα
∗y(t) = I

m+1−αDm+1

(
m∑

k=0

tk

k!
ck + Iαf

(
t, y(t)

)
)

= Im+1−αDm+1−αf
(
t, y(t)

)
= f

(
t, y(t)

)
,

(2.9)

as f(t, y(t)) is continuous and 0 < m + 1 − α < 1. Hence y(t) satisfies (1.2). Moreover, from
(2.4), y(k)(0) = ck, 0 ≤ k ≤ m hold.

Let X = C[0, 1] be the Banach space endowed with the infinity norm and K a
nonempty closed subset of X defined as K = {y(t) ∈ X | 0 < y(t) ≤ l, 0 < t ≤ 1, y(k)(0) =
ck, 1 ≤ k ≤ m, 0 ≤ ck}. The positive solution which we consider in this paper is a function
such that y(t) ∈ K.

According to Lemma 2.5, (1.2) is equivalent to the fractional integral Equation (2.7).
The integral equation (2.7) is also equivalent to fixed point equation Ty(t) = y(t), y(t) ∈
C[0, 1], where operator T : K → K is defined as

Ty(t) =
m∑

k=0

tk

k!
ck + Iαf

(
t, y(t)

)
, (2.10)

then we have the following lemma.

Lemma 2.6. Let f : [0, 1]×[0, l] → R+ a given continuous function. Then the operator T : K → K
is completely continuous.

Proof. Let M ⊂ K be bounded, that is, there exists a positive constant l∗ such that ‖y‖∞ ≤ l∗

for any y(t) ∈M. Since f(t, y(t)) is a given continuous function, we have

max
0≤t≤1

f
(
t, y(t)

) ≤ max
(t,y) ∈D

f
(
t, y

)
, for any y(t) ∈M, (2.11)

where D = {(t, y) | 0 ≤ t ≤ 1, 0 ≤ y ≤ l∗}.
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Let L = max(t,y)∈Df(t, y), then for any y(t) ∈M, we have

∣
∣Ty(t)

∣
∣ =

∣
∣
∣
∣∣

m∑

k=0

tk

k!
ck + Iαf

(
t, y(t)

)
∣
∣
∣
∣∣

=

∣
∣
∣
∣
∣

m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, y(s))ds

∣
∣
∣
∣
∣

≤
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1∣∣f(s, y(s))∣∣ds

≤
m∑

k=0

tk

k!
ck +

L

Γ(α)

∫ t

0
(t − s)α−1ds ≤

m∑

k=0

tk

k!
ck +

L

Γ(1 + α)
tα.

(2.12)

Thus,

∥∥Ty
∥∥ ≤

m∑

k=0

ck
k!

+
L

Γ(1 + α)
. (2.13)

Hence T : K → K is uniformly bounded.
Now, we prove that T : K → K is continuous. Since f(t, y(t)) is continuous function

in a compact set [0, 1] × [0, l], then it is uniformly continuous there. Thus given ε > 0, we can
find μ > 0 such that ‖f(t, y) − f(t, z)‖ < ε∗ whenever ‖y − z‖ < μ, where ε∗ = εΓ(α + 1). Then

∣∣Ty(t) − Tz(t)∣∣ ≤
∣∣∣∣∣

1
Γ(α)

∫ t

0
(t − s)α−1[f(s, y(s)) − f(s, z(s))]ds

∣∣∣∣∣

≤ ε∗
∣∣∣∣∣

1
Γ(α)

∫ t

0
(t − s)α−1ds

∣∣∣∣∣

= ε∗
tα

Γ(α + 1)
< ε,

(2.14)

proving the continuity of the operators T : K → K.
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Now, we will prove that the operator T : K → K is equicontinuous. For each
y(t) ∈ M, any ε > 0, t1, t2 ∈ [0, 1] and t1 < t2. Let δ = min{(ε/2)(∑m

k=1 (ck/(k − 1)! )−1,
(ε Γ(1 + α)/4L)1/α}, then when |t2 − t1| < δ, we have

∣
∣Ty(t1) − Ty(t2)

∣
∣ =

∣
∣
∣
∣
∣

m∑

k=0

tk1
k!
ck + Iαf

(
t1, y(t1)

) −
m∑

k=0

tk2
k!
ck − Iαf

(
t2, y(t2)

)
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m∑

k=0

tk1
k!
ck −

m∑

k=0

tk2
k!
ck

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
Γ(α)

∫ t1

0
(t1 − s)α−1f(s, u(s))ds − 1

Γ(α)

∫ t2

0
(t2 − s)α−1f(s, u(s))ds

∣
∣
∣
∣
∣

≤ (t2 − t1)
m∑

k=1

ck
(k − 1)!

+
1

Γ(α)

∫ t1

0

∣
∣∣(t1 − s)α−1 − (t2 − s)α−1

∣
∣∣
∣∣f(s, u(s))

∣∣ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1
∣∣f(s, u(s))

∣∣ds

≤ (t2 − t1)
m∑

k=1

ck
(k − 1)!

+
L

Γ(α)

∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)
ds

+
L

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

= (t2 − t1)
m∑

k=1

ck
(k − 1)!

+
L

Γ(α)

(∫ t1

0
(t1 − s)α−1ds −

∫ t1

0
(t2 − s)α−1ds +

∫ t2

t1

(t2 − s)α−1ds
)

= (t2 − t1)
m∑

k=1

ck
(k − 1)!

+
L

Γ(1 + α)
[
tα1 + (t2 − t1)α − tα2 + (t2 − t1)α

]

≤ (t2 − t1)
m∑

k=1

ck
(k − 1)!

+
2L

Γ(1 + α)
(t2 − t1)α < δ

m∑

k=1

ck
(k − 1)!

+
2L

Γ(1 + α)
δα = ε.

(2.15)

The Arzela-Ascoli Theorem implies that T is completely continuous. The proof is therefore
completed.

Lemma 2.7. If the operator A : X → X is the contraction mapping, where X is the Banach space,
then A has a unique fixed point in X.

Let f : [0, 1] × [0, l) → R+ be a given function. Take a, b ∈ R+, and a < b < l. For
any y ∈ [a, b] one defines the upper-control function H(t, y) = supa≤η≤yf(t, η), and lower-control
function h(t, y) = infy≤η≤bf(t, η), obviouslyH(t, y), h(t, y) is monotonous nondecreasing on y and
h(t, y) ≤ f(t, y) ≤ H(t, y).
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Definition 2.8. Let ỹ(t), ŷ(t) ∈ K, b ≥ ỹ(t) ≥ ŷ(t) ≥ a, and satisfy

Dα
∗ ỹ(t) ≥ f

(
t, ỹ(t)

)
, ỹ(k)(0) ≥ ck, m < α ≤ m + 1, 1 ≤ k ≤ m, ck ≥ 0,

(

or ỹ(t) ≥
m∑

k=0

tk

k!
ck + Iαf

(
t, ỹ(t)

)
, m < α ≤ m + 1

)

,

Dα
∗ ŷ(t) ≤ f

(
t, ŷ(t)

)
, ŷ(k)(0) ≤ ck, m < α ≤ m + 1, 1 ≤ k ≤ m, ck ≥ 0,

(

or ŷ(t) ≤
m∑

k=0

tk

k!
ck + Iαf

(
t, ŷ(t)

)
, m < α ≤ m + 1

)

,

(2.16)

then the functions ỹ(t), ŷ(t) are called a pair of order upper and lower solutions for (1.2).

3. Existence and Uniqueness of Positive Solution

Now, we give and prove the main results of this paper.

Theorem 3.1. Assume f : [0, 1] × [0, l) → [0,+∞) is continuous, and ỹ(t), ŷ(t) are a pair of
order upper and lower solutions of (1.2), then the boundary value problem (1.2) exists one solution
y(t) ∈ C[0, 1]; moreover,

ỹ(t) ≥ y(t) ≥ ŷ(t), t ∈ [0, 1]. (3.1)

Proof. Let

S =
{
z(t) | z(t) ∈ K, ŷ(t) ≤ z(t) ≤ ỹ(t), t ∈ [0, 1]

}
, (3.2)

endowed with the norm ‖z‖ = maxt∈[0,1]z(t), then we have ‖z‖ ≤ b. Hence S is a convex,
bounded, and closed subset of the Banach space X. According to Lemma 2.6, the operator
T : K → K is completely continuous. Then we need only to prove T : S → S.

For any z(t) ∈ S, we have ỹ(t) ≥ z(t) ≥ ŷ(t), then

Tz(t) =
m∑

k=0

tk

k!
ck + Iαf(t, z(t))

=
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, z(s))ds

≤
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1H(s, z(s))ds

≤
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1H(

s, ỹ(s)
)
ds

≤ ỹ(t),
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Tz(t) =
m∑

k=0

tk

k!
ck + Iαf(t, z(t))

=
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, z(s))ds

≥
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1h(s, z(s))ds

≥
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1h(s, ŷ(s))ds

≥ ŷ(t).
(3.3)

Hence ỹ(t) ≥ Tz(t) ≥ ŷ(t), 1 > t > 0, that is, T : S → S. According to Schauder fixed point
theorem, the operator T exists at least one fixed point y(t) ∈ S, 0 < t < 1. Therefore the
boundary value problem (1.2) exists at least one solution y(t) ∈ C[0, 1], and ỹ(t) ≥ y(t) ≥
ŷ(t), t ∈ [0, 1].

Corollary 3.2. Assume f : [0, 1]× [0, l) → [0,+∞) is continuous, and there exist p2 > p1 ≥ 0, such
that

p1 ≤ f(t, s) ≤ p2, (t, s) ∈ [0, 1] × [0, l), (3.4)

then the boundary value problem (1.2) exists at least one positive solution y(t) ∈ C[0, 1], moreover

m∑

k=0

tk

k!
ck +

p1 t
α

Γ(α + 1)
≤ y(t) ≤

m∑

k=0

tk

k!
ck +

p2 t
α

Γ(α + 1)
. (3.5)

Proof. By assumption (3.4) and the definition of control function, we have

p1 ≤ h(t, s) ≤ H(t, s) ≤ p2, (t, s) ∈ [0, 1] × [a, b]. (3.6)

Now, we consider the equation

Dα
∗w(t) = p2, w(k)(0) = ck, m < α ≤ m + 1, 1 ≤ k ≤ m, ck ≥ 0. (3.7)
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Obviously, (3.7) has a positive solution

w(t) =
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1p2ds =

m∑

k=0

tk

k!
ck +

p2t
α

Γ(α + 1)
, t ∈ [0, 1],

w(t) =
m∑

k=0

tk

k!
ck +

p2t
α

Γ(α + 1)

=
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1p2ds

≥
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1H(t,w(t))ds,

(3.8)

namely,w(t) is a upper solution of (1.2). In the similar way, we obtain v(t) =
∑m

k=0((t
k/k!)ck)+

p1t
α/Γ(α+ 1) is the lower solution of (1.2). An application of Theorem 3.1 now yields that the

boundary value problem (1.2) exists at least one positive solution y(t) ∈ C[0, 1], moreover

m∑

k=0

tk

k!
ck +

p1t
α

Γ(α + 1)
≤ y(t) ≤

m∑

k=0

tk

k!
ck +

p2t
α

Γ(α + 1)
. (3.9)

Corollary 3.3. Assume f : [0, 1] × [0,+∞) → [c,+∞) is continuous, where c > 0, moreover

c < lim
y→+∞

f
(
t, y

)
< +∞, t ∈ [0, 1], (3.10)

then the boundary value problem (1.2) has at least one positive solution u(t) ∈ C[0, 1].

Proof. By assumption (3.9), there are positive constantsN, R, such that f(t, y) ≤N whenever
u > R. LetM = max0≤t≤1,0≤y≤Rf(t, y), then f(t, y) ≤ N +M, 0 ≤ y < +∞. By the definition of
control function, one hasH(t, y) ≤N +M, 0 ≤ t ≤ 1, 0 ≤ y < +∞.

Now, we consider the equation

Dα
∗w(t) =N +M, w(k)(0) = ck, m < α ≤ m + 1, 1 ≤ k ≤ m, ck ≥ 0. (3.11)
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Obviously, (3.11) has a positive solution

w(t) =
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1(N +M)ds =

m∑

k=0

tk

k!
ck +

(N +M)tα

Γ(α + 1)
, t ∈ [0, 1],

w(t) =
m∑

k=0

tk

k!
ck +

(N +M)tα

Γ(α + 1)

=
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1(N +M)ds

≥
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1H(t,w(t))ds,

(3.12)

namely, w(t) is the upper solution of (1.2). In the similar way, we obtain v(t) =∑m
k=0(t

k/k!)ck + ctα/Γ(α + 1) is the lower solution of (1.2). Therefore, the boundary value
problem of (1.2) has at least one positive solution y(t) ∈ C[0, 1], what is more, we have

m∑

k=0

tk

k!
ck +

ctα

Γ(α + 1)
≤ y(t) ≤

m∑

k=0

tk

k!
ck +

(N +M)tα

Γ(α + 1)
. (3.13)

Corollary 3.4. Assume f : [0, 1] × [0,+∞) → [c,+∞) is continuous, where c > 0, moreover

c < lim
u→+∞

max
0≤t≤1

f
(
t, y

)

y
=M < Γ(α + 1), (3.14)

then the boundary value problem (1.2) exists at least at one positive solution u(t) ∈ C[0, 1].

Proof. According to c < limy→+∞ max0≤t≤1(f(t, y)/y) =M < +∞, there existsD > 0, such that
for any y(t) ∈ X, we have

f
(
t, y(t)

) ≤My(t) +D. (3.15)

By the definition of control function, we have

H
(
t, y(t)

) ≤My(t) +D. (3.16)

We now consider the equation

Dα
∗w(t) =My(t) +D, w(k)(0) = ck, m < α ≤ m + 1, 1 ≤ k ≤ m, ck ≥ 0. (3.17)
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According to Lemma 2.5, (3.17) is equivalent to the integral equation

y(t) =
m∑

k=0

tk

k!
ck + Iα

(
My(t) +D

)

=
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1(My(s) +D

)
ds, m < α ≤ m + 1.

(3.18)

Let A : K → K be an operator as follows:

A
(
y
)
(t) =

m∑

k=0

tk

k!
ck + Iα

(
My(t) +D

)

=
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1(My(s) +D

)
ds, m < α ≤ m + 1.

(3.19)

by Lemma 2.6, the operator A is completely continuous.
Let

BR =
{
u(t) ∈ K |

∥∥∥∥u − Dtα

Γ(α + 1)

∥∥∥∥ ≤ R < +∞
}
, (3.20)

where R > 0 and satisfies that
∑m

k=0(ck/k!) + (M/Γ(α + 1))[(D/Γ(α + 1)) + R] − R ≤ 0, then
BR is convex, bounded, and closed subset of the Banach space C[0, 1]. For any y(t) ∈ BR, we
have

‖u‖ ≤ D

Γ(α + 1)
+ R, (3.21)

then

∥∥∥∥Ay(t) −
Dtα

Γ(α + 1)

∥∥∥∥ =

∥∥∥∥∥

m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1(My(s) +D

)
ds − Dtα

Γ(α + 1)

∥∥∥∥∥

=

∥∥∥∥∥

m∑

k=0

tk

k!
ck +

M

Γ(α)

∫ t

0
(t − s)α−1y(s)ds

∥∥∥∥∥

≤
m∑

k=0

tk

k!
ck +M

∥∥y(t)
∥∥ tα

Γ(α + 1)

≤
m∑

k=0

ck
k!

+
M

Γ(α + 1)

(
R +

D

Γ(α + 1)

)
≤ R,

(3.22)

thus
∥∥∥∥Ay(t) −

Dtα

Γ(α + 1)

∥∥∥∥ ≤ R. (3.23)
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Hence, the Schauder fixed theorem assures that the operator A has at least one fixed point
and then (3.17) has at least one positive solution y∗(t), therefore we have

y∗(t) =
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1(My∗(s) +D

)
ds, m < α ≤ m + 1. (3.24)

Combining condition (3.16), we have

y∗(t) ≥
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1H(

s, y∗(s)
)
ds, m < α ≤ m + 1. (3.25)

Obviously, y∗(t) is the upper solution of initial value problem (1.2), and v(t) =
∑m

k=0(ck/k!) +
ctα/Γ(α + 1) is the lower solution. By Theorem 3.1, system (1.2) has at least one positive
solution u(t) ∈ C[0, 1].

Corollary 3.5. Assume f : [0, 1] × [0,+∞) → [c,+∞) is continuous and there exists d > 0, e > 0,
such that

max
{
f(t, l) : (t, l) ∈ [0, 1] × [0, d]

} ≤ e, (3.26)

then the boundary value problem (1.2) has at least one positive solution y(t) ∈ C[0, 1], moreover

m∑

k=0

tk

k!
ck +

c tα

Γ(α + 1)
≤ y(t) ≤

m∑

k=0

tk

k!
ck +

etα

Γ(α + 1)
. (3.27)

Proof. By the definition of control function, we have

c ≤ h(t, l) ≤ H(t, l) ≤ e, (t, l) ∈ [0, 1] × [0, d]. (3.28)

By Corollary 3.2, the boundary value problem (1.2) has at least one positive solution y(t) ∈
C[0, 1], moreover

m∑

k=0

tk

k!
ck +

ctα

Γ(α + 1)
≤ y(t) ≤

m∑

k=0

tk

k!
ck +

etα

Γ(α + 1)
. (3.29)

Theorem 3.6. Let the conditions in Theorem 3.1 hold. Moreover for any y1(t), y2(t) ∈ X, 0 < t < 1,
there exists l > 0, such that

∣∣f
(
t, y1

) − f(t, y2
)∣∣ ≤ l∣∣y1 − y2

∣∣, (3.30)

then when l/Γ(α + 1) < 1, the boundary value problem (1.2) has a unique positive solution y(t) ∈ S.
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Proof. According to Theorem 3.1, if the conditions in Theorem 3.1 hold, then the boundary
value problem (1.2) has at least one positive solution in S. Hence we need only to prove that
the operator T defined in (2.10) is the contraction mapping in X. In fact, for any y1(t), y2(t) ∈
X, by assumption (3.30), we have

∣
∣Ty1(t) − Ty2(t)

∣
∣ =

∣∣
∣
∣
∣

m∑

k=0

tk

k!
ck + Iαf

(
t, y1(t)

) −
m∑

k=0

tk

k!
ck − Iαf

(
t, y2(t)

)
∣∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
Γ(α)

∫ t

0
(t − s)α−1f(s, y1(s)

)
ds − 1

Γ(α)

∫ t

0
(t − s)α−1f(s, y2(s)

)
ds

∣
∣
∣
∣
∣

≤ 1
Γ(α)

∫ t

0
(t − s)α−1∣∣f(s, y1(s)

) − f(s, y2(s)
)∣∣ds

≤ ltα

Γ(α + 1)

∣∣y1 − y2
∣∣ <

l

Γ(α + 1)

∣∣y1 − y2
∣∣.

(3.31)

Thus, when l/Γ(α + 1) < 1, the operator T is the contraction mapping. Then by Lemma 2.7,
the boundary value problem (1.2) has a unique positive solution y(t) ∈ S.

4. Maximal and Minimal Solutions Theorem

In this section, we consider the existence of maximal and minimal solutions for (1.2).

Definition 4.1. Letm(t) be a solution of (1.2) in [0, 1], thenm(t) is said to be amaximal solution
of (1.2), if for every solution y(t) of (1.2) existing on [0, 1] the inequality y(t) ≤ m(t), t ∈ [0, 1]
holds. A minimal solution may be defined similarly by reversing the last inequality.

Theorem 4.2. Let f : [0, 1] × [0,+∞) → [0,+∞) be a given continuous and monotone nondecreas-
ing with respect to the second variable. Assume that there exist two positive constants λ, μ (μ > λ)
such that

λ ≤ f(t, y) ≤ μ. (4.1)

Then there exist maximal solution ϕ(t) and minimal solution η(t) of (1.2) on [0, 1], moreover

m∑

k=0

tk

k!
ck +

λtα

Γ(α + 1)
≤ η(t) ≤ ϕ(t) ≤

m∑

k=0

tk

k!
ck +

μtα

Γ(α + 1)
, 0 ≤ t ≤ 1. (4.2)

Proof. It is easy to know that
∑m

k=0((t
k/k!)ck) + ((μtα)/Γ(α + 1)) and

∑m
k=0((t

k/k!)ck) +
((λtα)/Γ(α + 1)) are the upper and lower solutions of (1.2), respectively. Then by using
y(0) =

∑m
k=0((t

k/k!)ck) + μtα/Γ(α + 1), y(0) =
∑m

k=0((t
k/k!)ck) + λtα/Γ(α + 1) as a pair of
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coupled initial iterations we construct two sequences {y(m)}, {y(m)}from the following linear
iteration process:

y(m)(t) =
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1f

(
s, y(m−1)(t)

)
ds,

y(m)(t) =
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1f

(
s, y(m−1)(t)

)
ds.

(4.3)

It is easy to show from themonotone property of f(t, y) and condition (4.1) that the sequences
{y(m)}, {y(m)} possess the following monotone property:

m∑

k=0

tk

k!
ck +

λtα

Γ(α + 1)
= y(0) ≤ y(m) ≤ y(m+1) ≤ y(m+1) ≤ y(m) ≤ y(0)

=
m∑

k=0

tk

k!
ck +

μtα

Γ(α + 1)
(m = 1, 2, . . .).

(4.4)

The above property implies that

lim
m→∞

y(t)(m) = ϕ(t), lim
m→∞

y(t)(m) = η(t) (4.5)

exist and satisfy the relation

m∑

k=0

tk

k!
ck +

λtα

Γ(α + 1)
≤ η(t) ≤ ϕ(t) ≤

m∑

k=0

tk

k!
ck +

μtα

Γ(α + 1)
, 0 ≤ t ≤ 1. (4.6)

Lettingm → ∞ in (4.3) shows that ϕ(t) and η(t) satisfy the equations

ϕ(t) =
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, ϕ(t))ds,

η(t) =
m∑

k=0

tk

k!
ck +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, η(t))ds.

(4.7)

It is easy to verify that the limits ϕ(t) and η(t) are maximal and minimal solutions of (1.2) in
S∗ = {ψ(t) | ψ(t) ∈ K,

∑m
k=0((t

k/k!)ck) + λtα/Γ(α + 1) ≤ ψ(t) ≤ ∑m
k=0((t

k/k!)ck) + μtα/Γ(α +
1), st ∈ [0, 1], ‖ψ(t)‖ = max0≤t≤1 ψ(t)}, respectively, furthermore, if ϕ(t) = η(t) (≡ ζ(t)) then
ζ(t) is the unique solution in S∗, and hence the proof is completed.
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