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The stability problem is proposed for a new class of stochastic Markovian jump reaction-diffusion
neural networks with partial information on transition probability and mixed time delays. The
new stability conditions are established in terms of linear matrix inequalities (LMIs). To reduce the
conservatism of the stability conditions, an improved Lyapunov-Krasovskii functional and free-
connection weighting matrices are introduced. The obtained results are dependent on delays and
the measure of the space AND, therefore, have less conservativeness than delay-independent and
space-independent ones. An example is given to show the effectiveness of the obtained results.

1. Introduction

During the last decades, neural networks (NNs)with time delays have received considerable
attention, because time delays existed in many fields, for instance, finite switching speeds
of amplifiers and transmission of signals in a network, which affect the system performance
[1–4]. Therefore, the stability analysis of NNs with time delays has attracted more and more
attention of the researchers. Various sufficient conditions, either delay-dependent or delay-
independent, have been derived to ensure the stability for NNs [1–3]. On the other hand,
Markovian jump systems (MJSs) involve both time-evolving and event-driven mechanisms,
which can be employed to model the abrupt phenomena such as random failures and repairs
of the components, changes in the interconnections of subsystems, and sudden environment
changes. The issues of stability, stabilization, control, and filtering for the systems have
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been well investigated [5–8]. In such systems, the transition probabilities of the jumping
process are crucial, almost all the issues on MJSs have been investigated assuming the
complete knowledge of these transition probabilities. However, in most cases the transition
probabilities of MJSs are not exactly known. Whether in theory or in practice, it is necessary
to further consider more general MJSs with partial information on transition probabilities.
Recently, considerable attention has been devoted to the research on MJSs with partial
information on transition probability [9–11].

As it is well known, the diffusion phenomena could not be ignored in NNs and
electric circuits when electrons are moving in a nonuniform electromagnetic field. Therefore,
it is essential to consider the state variables varying with the time and space variables.
The NNs with diffusion terms can commonly be expressed by partial differential equations
[12–28]. In the real world, a real system is usually affected by unknown disturbances,
which may be regarded as stochastic processes [20, 24, 29, 30]. Consequently, it is of
significant importance to study stochastic effects for the NNs. In recent years, the dynamic
behaviors of stochastic NNs, especially the stability of stochastic NNs, have become a
hot study topic. Recently, several kinds of NNs with delays and stochastic effects have
been investigated [20, 24, 29]. For example, the authors in [20] have obtained some
criteria to guarantee the almost sure exponential stability, and mean square exponential
stability of an equilibrium solution for reaction-diffusion neural networks (RDNNs) with
continuously distributed delays and stochastic influence. However, in these papers, due to
the complicated behavior for stochastic Markovian jump RDNNs with partial information
on transition probability and mixed time delays, very few results on such systems
have appeared.

Based on the above discussions, we are interested in the asymptotic stability of the
equilibrium point in the mean square sense for a new class of stochastic Markovian jump
RDNNs with partial information on transition probability and mixed time delays. To the best
of our knowledge, till now, this is the first attempt to introduce and investigate stochastic
Markovian jump RDNNs with partial information on transition probability and mixed time
delays. In this paper, the contribution of our note is two-fold. Firstly, the proposed RDNNs
systems will be more general and cover the cases of systems with completely unknown or
known transition probabilities. Secondly, based on the Lyapunov stability theory combined
with linear matrix inequality (LMI) technique some novel stability conditions in terms of
LMIs are derived by introducing some free-connection weighting matrices which can be
selected properly to leadmuch less conservative results. Some asymptotic stability criteria are
dependent on delays and the measure of the space, therefore, they have less conservativeness
than delay-independent and space-independent ones. Furthermore, the results depend on the
reaction-diffusion terms. The criteria of our paper are new and they complement previously
known results. Hence, it is shown that the newly obtained results are less conservative and
more applicable than the existing corresponding ones. An example is given to illustrate the
effectiveness of the proposed method.

Notation. In this paper, the superscript “T” stands for matrix transposition; R
n denotes the

n-dimensional Euclidean space. Vector X ∈ R
n, its norm is defined as |X| =

√
XTX. For

symmetric matrices A and B, the notation A > B(A ≥ B) means that the A − B is positive
definite (semipositive-definite). The symmetric terms in a symmetric matrix are denoted by ∗.
Mathematical expectation will be denoted by E[·]. tr(·) denotes the trace of the corresponding
matrix.
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For u(t, x) = (u1(t, x), u2(t, x), ..., un(t, x))
T ∈ R

n, we define

‖u(t, x)‖2 =
n∑
i=1

‖ui(t, x)‖2 =
n∑
i=1

[∫
Ω
|ui(t, x)|2dx

]1/2
. (1.1)

Let PC[(−τ̃ , 0]×Ω;Rn] denote the family of right continuous function ϕ from (−τ̃ , 0]×Ω
to R

n with the uniform norm ‖ϕ(s, x)‖τ̃ = sup−τ̃≤s≤0
∑n

i=1 ‖ϕi(s, x)‖2. Denote by L2
Ft
[(−τ̃ , 0] ×

Ω;Rn] the family of all Ft measurable, PC[(−τ̃ , 0] × Ω;Rn]-valued stochastic variables ξ =
{ξ(θ, x) : θ ∈ (−τ̃ , 0]} such that

∫
Ω

∫0
−τ̃ E|ξ(s, x)|2dsdx < ∞.

2. Problem Formulation and Preliminaries

In this paper, we consider the following stochastic Markovian jumping RDNNs with partial
information on transition probability and mixed time delays:

du(t, x) =
m∑
l=1

∂

∂xl

(
D
∂u(t, x)
∂xl

)
dt

+

[
−A(r(t))u(t, x) + B(r(t))f(u(t, x))

+C(r(t))g(u(t − d(t), x)) + E(r(t))
∫ t

t−τ(t)
h(u(s, x))ds + J

]
dt

+ σ

(
t, x, u(t, x), u(t − d(t), x),

∫ t

t−τ(t)
h(u(s, x))ds, r(t)

)
dw(t),

t ≥ t0 ≥ 0, x ∈ Ω, u(t, x) = 0, (t, x) ∈ [0,+∞) × ∂Ω,

u(t0 + s, x) = ϕ(s, x), (s, x) ∈ (−τ̃ , 0] ×Ω,

(2.1)

where {r(t), t ≥ 0} is a right-continuous Markovian chain on the probability space which
takes values in the finite space S = {1, 2, ...,N} with generator Γ = (γij)N×N given by

P
{
r(t + δ) = j | r(t) = i

}
=

{
γijδ + o(δ), if i /= j,

1 + γijδ + o(δ), if i = j,
(2.2)

with δ > 0 and limδ→ 0o(δ)/δ = 0, γij ≥ 0 is the transition rate from i to j if i /= j and γii =
−∑i /= j γij . Assume that x = (x1, x2, ..., xm)

T ∈ Ω,Ω is a compact set with smooth boundary ∂Ω

and mesΩ > 0 in space R
m,Ω = ∂Ω∪Ω; u(t, x) = (u1(t, x), ..., un(t, x))

T ∈ R
n denotes the state

vector associated with the n neurons at time t and in space x; the diagonal matrix A(r(t)) =
diag(a1(r(t)), .., an(r(t))) has positive entries ai(r(t)) > 0, B(r(t)) = (bij(r(t)))n×n, C(r(t)) =
(cij(r(t)))n×n and E(r(t)) = (eij(r(t)))n×n are the interconnection matrices representing the
weight coefficients of the neurons; f(u(t, x)) = (f1(u1(t, x)), ..., fn(un(t, x)))

T , g(u(t, x)) =
(g1(u1(t, x)), ..., gn(un(t, x)))

T and h(u(s, x)) = (h1(u1(s, x)), ..., hn(un(s, x)))
T are the neuron
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activation functions, and J = (J1, J2, ..., Jn)
Tdenotes a constant external input vector. d(t)

and τ(t) denote the discrete time-varying delay and the distributed time-varying delay,
respectively. Time-delays are assumed to satisfy 0 ≤ d(t) ≤ d0, 0 ≤ τ(t) ≤ τ0, where d0

and τ0 are positive constants, max{τ0, d0} = τ̃ , τ̇(t) ≤ μ < 1, ḋ(t) ≤ d < 1, where d and μ
are constants; D = diag(D1, D2, ..., Dn)Di = Di(t, x, u) ≥ 0, i = 1, 2, ...n stand for transmission
diffusion operator along the ith neurons. The noise perturbation σ(·) = σ(t, x, u(t, x), u(t −
d(t), x),

∫ t
t−τ(t) h(u(s, x))ds, r(t)) is the noise intensity matrix; w(t) = (w1(t), ..., wn(t))

T is
an n-dimensional standard Brownian motion defined on a complete probability space
(Ω, F, {Ft}t≥0, P) with a filtration {Ft}t≥0 generated by {w(s) : 0 ≤ s ≤ t}, where we associate
Ωwith the canonical space generated by all {wi(t)} and denote by F the associated σ-algebra
generated by {w(t)}with the probability measure P . Moreover, we assume that the Brownian
motion {w(t) : t ≥ 0} is independent from the Markov chain {r(t) : t ≥ 0}. n is the outer
normal vector of ∂Ω, ϕi(s, x) is given bounded and continuous on (−τ̃ , 0] ×Ω, i, j = 1, 2, ..., n.

Since the transition probability depends on the transition rates for the continuous-time
MJSs, the transition rates of the jumping process are considered to be partly available, namely,
some elements in matrixΘ are unknown in this paper. For example, the transition rate matrix
Θ for system (2.1) withN operation modes may be expressed as

Θ =

⎡⎢⎢⎢⎣
γ11 ? γ13 . . . γ1N
? ? γ23 . . . γ2N
...

...
...

. . .
...

? γN2 ? . . . γNN

⎤⎥⎥⎥⎦, (2.3)

where “?” represents the unknown transition rate. For notation clarity, for all i ∈ S, the set Ξi

denotes Ξi = Ξi
k
∪ Ξi

uk
with Ξi

k
= {j : γij is known for j ∈ S}, Ξi

uk
= {j : γij is unknown for

j ∈ S}.
Furthermore, when Ξi

k /=φ, it is further described as

Ξi
k =
{
ki
1, k

i
2 . . . , k

i
n

}
, (2.4)

where 1 ≤ n ≤ N, n ∈ N∗ and ki
j ∈ N∗, 1 ≤ ki

j ≤ N, j = 1, 2, ..., n represent the jth known
element of the set Ξi

k
in the ith row of the transition rate matrix Θ.

Remark 2.1. It is noted that the jumping process is commonly assumed to be completely
available (Ξi

uk
= φ,Ξi

k
= Ξi) or completely unavailable (Ξi

uk
= Ξi,Ξi

k
= φ). However,

in most cases the transition probabilities of MJSs are not exactly known. Whether in
theory or in practice, it is necessary to further consider more general jump systems with
partial information on transition probabilities. Recently, a considerable amount of attention
has been paid to studying the stability and stabilization of general MJSs governed by
ordinary differential equations with partly unknown transition probabilities [9–11]. It is well
known that the stability analysis of partial differential equations with partial information
on transition probabilities is more complicated, very few results on such systems have
appeared. In this paper, the new stability criteria for a new class of novel stochasticMarkovian
jump RDNNs with partial information on transition probability and mixed time delays are
investigated.
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For the sake of simplicity, we write r(t) = i ∈ S, and

du(t, x) =
n∑
l=1

∂

∂xl

(
D
∂u(t, x)
∂xl

)
dt

+

[
−Aiu(t, x) + Bif(u(t, x)) + Cig(u(t − d(t), x)) + Ei

∫ t

t−τ(t)
h(u(s, x))ds + J

]
dt

+ σi

(
t, x, u(t, x), u(t − d(t), x),

∫ t

t−τ(t)
h(u(s, x))ds

)
dw(t), t ≥ t0 ≥ 0, x ∈ Ω,

(2.5)

Throughout this paper, the following assumptions are made.

(A1) There exist positive diagonal matrices Lf =diag(Lf

1 , ..., L
f
n), Lg =diag(Lg

1 , ..., L
g
n), Lh=

diag(Lh
1 , ..., L

h
n), such that

0 ≤ fj(ξ1) − fj(ξ2)
ξ1 − ξ2

≤ L
f

j , 0 ≤ gj(ξ1) − gj(ξ2)
ξ1 − ξ2

≤ L
g

j , 0 ≤ hj(ξ1) − hj(ξ2)
ξ1 − ξ2

≤ Lh
j , (2.6)

for all ξ1, ξ2 ∈ R, ξ1 /= ξ2, j = 1, 2, ..., n.

(A2) There exist diagonal matrices
∑

i1,
∑

i2 and
∑

i3(i ∈ S) such that

tr
[
(σi(t, x, ζ1, ζ2, ζ3))

T (σi(t, x, ζ1, ζ2, ζ3))
]
≤
∣∣∣∣∣∑

i1

ζ1

∣∣∣∣∣
2

+

∣∣∣∣∣∑
i2

ζ2

∣∣∣∣∣
2

+

∣∣∣∣∣∑
i3

ζ3

∣∣∣∣∣
2

, (2.7)

for all ζ1, ζ2, ζ3 ∈ R
n.

(A3) There exist constants D∗
i such that Di ≥ D∗

i ≥ 0, i = 1, 2, ..., n.

(A4) σi(t, x, u∗, u∗,
∫ t
t−τ(t) h(u

∗(s, x))ds) = 0, where u∗ is the equilibrium point of system
(2.1).

Remark 2.2. By assumption (A1)–(A4), it is not difficult to prove that there exists a unique
equilibrium point u∗ for system (2.1) based on Mawhin’s continuation theorem [31].
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The main aim of this paper is to investigate the asymptotic stability in the mean square
sense of system (2.1). Let u∗ = (u∗

1, u
∗
2, ..., u

∗
n)

T be the equilibrium point of system (2.1). Now,
we set z(t) � u(t, x) − u∗, which yields the following system:

dz(t) =
n∑
l=1

∂

∂xl

(
D
∂z(t)
∂xl

)
dt

+

[
−Aiz(t) + Bif(z(t)) + Cig(z(t − d(t))) + Ei

∫ t

t−τ(t)
h(z(s))ds

]
dt

+ σi

(
t, x, z(t), z(t − d(t)),

∫ t

t−τ(t)
h(z(s))ds

)
dw(t), t ≥ t0, x ∈ Ω,

z(t) = 0, t ≥ t0, x ∈ ∂Ω, z(t0 + s) = ϕ(s) − u∗,

(s, x) ∈ (−τ̃ , 0] ×Ω,

(2.8)

where f(z(t)) = f(z(t) + u∗) − f(u∗), g(z(t)) = g(z(t) + u∗) − g(u∗), h(z(s)) = h(z(s) +

u∗)−h(u∗), f(z(t)) = (f1(z1(t)), ..., fn(zn(t)))
T
, g(z(t)) = (g1(z1(t)), ..., gn(zn(t)))

T , h(z(s)) =

(h1(z1(s)), ..., hn(zn(s)))
T
.

Clearly, fj(zj(t)), gj(zj(t)), and hj(zj(s)) satisfy (A1). Thus, the stability problem of
system (2.1) is equivalent to the stability problem of system (2.8).

Definition 2.3. The equilibrium point u∗ = (u∗
1, u

∗
2, ..., u

∗
n)

T of system (2.1) is said to be
asymptotic stability in the mean square sense if there exists a constant δ > 0 and for any
ε > 0 satisfying that E‖u(t, x) − u∗‖22 < ε and limt→∞E‖u(t, x) − u∗‖22 = 0 when t ≥ t0 ≥ 0 and
‖ϕ(s, x) − u∗‖τ < δ, where ‖ϕ − u∗‖τ = sup−τ̃≤s≤0‖ϕ(s, x) − u∗‖2.

Lemma 2.4 (see [2] (Jensen inequality)). Consider the following. (i) For any constant matrix Ξ ∈
R

n×n,Ξ > 0, scalar function d(t) : 0 < d(t) < d, and vector function ω : [0, d] → R
n such that the

integrations concerned are well defined, then

(∫d(t)

0
ω(s)ds

)T

Ξ

(∫d(t)

0
ω(s)ds

)
≤ d(t)

∫d(t)

0
ω(s)TΞω(s)ds. (2.9)

(ii) For any constant matrix Ξ ∈ Rn×n,Ξ > 0,Ω ⊂ R
n,mesΩ > 0, if ω : Ω → R

n is vector
function such that the integration is well defined, then

(∫
Ω
ω(s)ds

)T

Ξ
(∫

Ω
ω(s)ds

)
≤ |Ω|

∫
Ω
ω(s)TΞω(s)ds. (2.10)
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Lemma 2.5 (see [24]). Let Ω be a bounded open domain in R
m with smooth boundary ∂Ω. If h =

h(x) define on Ω is a smooth function with h|∂Ω = 0, then the following inequality holds:

∫
Ω
h2(x)dx ≤ α

∫
Ω

(
∂h(x)
∂x

)2

dx, (2.11)

where |Ω| denotes the volume of Ω, α = (|Ω|/ωm)
1/m > 0, ωm denotes the surface area of unit ball in

R
m.

3. Main Results

Theorem 3.1. Under assumptions (A1)–(A4), if there exist positive definite diagonal matrices Pi,
Λi = ΛT

i , positive definite symmetry matricesQ1, Q2, G,W, K1, K2, positive definite diagonal matrices
M1,M2 with appropriate dimensions, and scalar ρi > 0, such that the following Linear matrix
inequalities (LMIs) hold:

Ξ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 0 0 α14 α15 α16 0 0
∗ α22 0 0 0 0 0 0
∗ ∗ α33 0 0 0 0 0
∗ ∗ ∗ α44 0 0 0 0
∗ ∗ ∗ ∗ α55 0 0 0
∗ ∗ ∗ ∗ ∗ α66 0 0
∗ ∗ ∗ ∗ ∗ ∗ α77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ α88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

Pi ≤ ρiI,

Pj −Λi ≤ 0, j ∈ Ξi
uk, j /= i,

Pi −Λi ≥ 0, j ∈ Ξi
uk, j = i,

(3.1)

where

α11 = −PiAi −AiPi − PiR − RPi +Q1 +Q2 + LgGLg +
∑
j∈Ξi

k

γij
(
Pj −Λi

)

+ ρi
T∑
i1

∑
i1

+τ0LhWLh + τ0|Ω|LhK1L
h + d0|Ω|LgK2L

g,

α14 = PiBi + LfMT
1 , α15 = PiCi, α16 = PiEi,
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α22 = −(1 − μ
)
Q1, α33 = LgM2L

g + ρi
T∑
i2

∑
i2

− (1 − d)Q2,

α44 = −2M1, α55 = −(1 − d)G −M2, α66 = ρi
T∑
i3

∑
i3

−τ0W,

α77 = −τ−10 K1, α88 = −d−1
0 K2,

(3.2)

R = diag{−D∗
1/α, ...,−D∗

n/α}, then equilibrium point u∗ of system (2.1) with a partly known
transition rate matrix (2.3) is an asymptotic stability in the mean square sense.

Proof. Consider the Lyapunov-Krasovskii functional:

V (t, z(t), i) =
∫
Ω
z(t)TPiz(t)dx +

∫
Ω

∫ t

t−τ(t)
z(s)TQ1z(s)dsdx

+
∫
Ω

∫ t

t−d(t)
z(s)TQ2z(s)dsdx +

∫
Ω

∫ t

t−d(t)
g(z(s))TGg(z(s))dsdx

+
∫
Ω

∫0

−τ0

∫ t

t+θ
h(z(s))TWh(z(s))dsdθ dx

+
∫0

−d0

∫ t

t+θ

(∫
Ω
g(z(s))dx

)T

K2

(∫
Ω
g(z(s))dx

)
dsdθ

+
∫0

−τ0

∫ t

t+θ

(∫
Ω
h(z(s))dx

)T

K1

(∫
Ω
h(z(s))dx

)
dsdθ.

(3.3)

Define an operator L associated with (2.8) acting on V (t, z(t), i) by

LV (t, z(t), i) = Vt(t, z(t), i) + Vz(t, z(t), i)

×
[

n∑
l=1

∂

∂xl

(
D
∂z(t)
∂xl

)
dt −Aiz(t) + Bif(z(t)) + Cig(z(t − d(t)))

+Ei

∫ t

t−τ(t)
h(z(s))ds

]
+
1
2
trace

[
σi

T (·)Vzz(t, z, i)σi(·)
]
+

N∑
j=1

γijV
(
t, z(t), j

)
,

(3.4)

where Vt(t, z(t), i) = ∂V (t, z(t), i)/∂t, Vz(t, z(t), i)=(∂V (t, z(t), i))/∂z1, . . . , (∂V (t, z(t), i))/∂zn,
Vzz(t, z(t), i) = (∂2V (t, z(t), i)/∂zi∂zj)n×n.
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The weak infinitesimal generator LV (t, z, i) along with (2.8), leads to

LV (t, z, i) =
∫
Ω

⎧⎨⎩2z(t)TPi

(
∂z(t)
∂t

)
+

N∑
j=1

γijz(t)TPjz(t) + trace
[
σi

T (·)Piσi(·)
]⎫⎬⎭dx

+
∫
Ω

[
z(t)TQ1z(t) − (1 − τ̇(t))z(t − τ(t))TQ1z(t − τ(t))

]
dx

+
∫
Ω

[
z(t)TQ2z(t) −

(
1 − ḋ(t)

)
z(t − d(t))TQ2z(t − d(t))

]
dx

+
∫
Ω

[
g(z(t))TGg(z(t)) − (1 − ḋ(t)

)
g(z(t − d(t)))TGg(z(t − d(t)))

]
dx

+
∫
Ω

[
τ0h(z(t))TWh(z(t)) −

∫ t

t−τ(t)
h(z(s))TWh(z(s))ds

]
dx

+
∫0

−τ0

(∫
Ω
h(z(t))dx

)T

K1

(∫
Ω
h(z(t))dx

)
dθ

−
∫0

−τ0

(∫
Ω
h(z(t + θ))dx

)T

K1

(∫
Ω
h(z(t + θ))dx

)
dθ

+
∫0

−d0

(∫
Ω
g(z(t))dx

)T

K2

(∫
Ω
g(z(t))dx

)
dθ

−
∫0

−d0

(∫
Ω
g(z(t + θ))dx

)T

K2

(∫
Ω
g(z(t + θ))dx

)
dθ.

(3.5)

Considering the situation that the information of transition probabilities is not
accessible completely, the following equalities satisfy for arbitrary matrices Λi = ΛT

i , due
to
∑N

j=1 γij = 0

−z(t)T
N∑
j=1

γijΛiz(t) = 0, (3.6)

From (A1), we have

∫
Ω
f(z(t))TM1L

fz(t) − f(z(t))TM1f(z(t))dx ≥ 0,

∫
Ω
z(t − d(t))TLgM2L

gz(t − d(t)) − g(z(t − d(t)))TM2g(z(t − d(t)))dx ≥ 0,

(3.7)

where M1 and M2 are positive definite diagonal matrices.
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According to Lemma 2.4, we derive

∫0

−τ0

(∫
Ω
h(z(t))dx

)T

K1

(∫
Ω
h(z(t))dx

)
dθ

−
∫0

−τ0

(∫
Ω
h(z(t + θ))dx

)T

K1

(∫
Ω
h(z(t + θ))dx

)
dθ

≤ τ0|Ω|
∫
Ω
h(z(t))TK1h(z(t))dx

− τ−10

(∫ t

t−τ(t)

∫
Ω
h(z(s))dx ds

)T

K1

(∫ t

t−τ(t)

∫
Ω
h(z(s))dx ds

)
,

(3.8)

∫0

−d0

(∫
Ω
g(z(t))dx

)T

K2

(∫
Ω
g(z(t))dx

)
dθ

−
∫0

−d0

(∫
Ω
g(z(t + θ))dx

)T

K2

(∫
Ω
g(z(t + θ))dx

)
dθ

≤ d0|Ω|
∫
Ω
g(z(t))TK2g(z(t))dx

− d−1
0

(∫ t

t−d(t)

∫
Ω
g(z(s))dx ds

)T

K2

(∫ t

t−d(t)

∫
Ω
g(z(s))dx ds

)
,

(3.9)

−
∫
Ω

∫ t

t−τ(t)
h(z(s))TWh(z(s))dsdx

≤ −τ−10
∫
Ω

[∫ t

t−τ(t)
h(z(s))ds

]T
W

[∫ t

t−τ(t)
h(z(s))ds

]
dx.

(3.10)

According to the boundary condition, Di ≥ 0 and Lemma 2.5, applying Green’s formula, we
get

∫
Ω

m∑
l=1

zi(t)
∂

∂xl

(
Di

∂zi(t)
∂xl

)
dx =

m∑
l=1

∫
Ω

∂

∂xl

(
Di

∂zi(t)
∂xl

zi(t)
)
dx −

m∑
l=1

∫
Ω
Di

(
∂zi(t)
∂xl

)2

dx

=
∫
∂Ω

Dizi(t)
∂zi(t)
∂ν

ds −
m∑
l=1

∫
Ω
Di

(
∂zi(t)
∂xl

)2

dx

≤ − D∗
i

α

∫
Ω
zi(t)2dx,

(3.11)

where α = (|Ω|/ωm)
1/m > 0.
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From (3.6)–(3.11), we have

LV (t, z(t), i) ≤
∫
Ω
z(t)T

⎛⎝−PiAi −AiPi − PiR − RPi +Q1 +Q2 + LgGLg +
∑
j∈Ξi

k

γij
(
Pj −Λi

)

+ρi
T∑
i1

∑
i1

+ τ0L
hWLh + τ0|Ω|LhK1L

h + d0|Ω|LgK2L
g

)
z(t)dx

+
∫
Ω
z(t)T

(
PiBi + LfM

T

1

)
f(z(t))dx

+
∫
Ω
z(t)T

∑
j∈Ξi

uk

γij
(
Pj −Λi

)
z(t)dx +

∫
Ω
f(z(t))T

(
BT
i Pi +M1L

f
)
z(t)dx

+
∫
Ω
z(t)T (PiCi)g(z(t − d(t)))dx +

∫
Ω
g(z(t − d(t)))T

(
CT

i Pi

)
z(t)dx

+
∫
Ω
z(t)TPiEi

∫ t

t−τ(t)
h(z(s))dsdx +

∫
Ω

(∫ t

t−τ(t)
h(z(s))ds

)T

ET
i Piz(t)dx

+
∫
Ω
z(t − τ(t))T

[−(1 − μ
)
Q1
]
z(t − τ(t))dx

−
∫
Ω
g(z(t − d(t)))T [(1 − d)G +M2]g(z(t − d(t)))dx

− 2
∫
Ω
f(z(t))TM1f(z(t))dx +

∫
Ω
z(t − d(t))T

×
(
LgMT

2L
g + ρi

T∑
i2

∑
i2

−(1 − d)Q2

)
z(t − d(t))dx

+
∫
Ω

(∫ t

t−τ(t)
h(z(s))ds

)T(
ρi

T∑
i3

∑
i3

−τ−10 W

)(∫ t

t−τ(t)
h(z(s))ds

)
dx

− τ−10

(∫ t

t−τ(t)

∫
Ω
h(z(s))dxds

)T

K1

(∫ t

t−τ(t)

∫
Ω
h(z(s))dxds

)

− d−1
0

(∫ t

t−d(t)

∫
Ω
g(z(s))dxds

)T

K2

((∫ t

t−d(t)

∫
Ω
g(z(s))dxds

))

=
∫
Ω
ςT1Ξ1ς1dx,

(3.12)
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where

ς1 =

⎛⎝z(t)T , z(t − τ(t))Tz(t − d(t))T , f(z(t))Tg(z(t − d(t)))T

(∫ t

t−τ(t)
h(z(s))ds

)T(∫ t

t−τ(t)

∫
Ω
h(z(s))dx ds

)T(∫ t

t−d(t)

∫
Ω

∫
g(z(s))dx ds

)T
⎞⎠T

.

(3.13)

From the conditions of Theorem 3.1, noting that γii = −∑N
j=1,j /= i γij and γij ≥ 0 for all j /= i, that

is γii < 0 for all i ∈ S. Hence, when i ∈ Ξi
k
, from (3.1) and ς1 /= 0, we can derive

LV (t, z(t), i) < 0. (3.14)

On the other hand, if i ∈ Ξi
uk
, according to (3.1) and ς1 /= 0, we have (3.14) holds.

Therefore, if ‖u(t0, x) − u∗‖2 < δ and k → ∞, limt→∞E‖u(t, x) − u∗‖2 = 0, which
implies that system (2.1) is asymptotic stability in the mean square sense. This completes
the proof.

Remark 3.2. In proof of above Theorem 3.1, the new Lyapunov functional to construct is more
general. It is easy to see that our results expanded the model in [23]. The obtained results
in [23] are independent on the measure of the space and diffusion effects. The results of
this paper are dependent on the measure of the space and diffusion effects. Besides delays
and stochastic effects, it is necessary to further consider more general MJSs with partial
information on transition probabilities. Searching for stability analysis issue for stochastic
Markovian jump RDNNs with partial information on transition probability and mixed time
delays is obviously more preferable and challenging. However, no such results have been
available up to now. Moreover, in this paper, the idea of free-connection weighting matrix is
introduced, this method may lead to derive an improved feasible region for delay-dependent
and space-dependent stability criteria. Therefore, it is shown that the newly obtained results
are less conservative and more applicable than the existing corresponding ones.

Remark 3.3. In [8, 26], free weighting matrix was introduced via Newton Leibniz formula and
system transformation, respectively. Theorems 3.2 and 4.1 in [26] and Corollary 3.2 in [8]
have no restriction on the derivative of time-varying delays. The same way can be directly
applied into our paper to cancel the restricted on the derivative of the time-varying delays.
In order to simplify and avoid repeating the technique in [26], we do not do so. While
new free-connection weighting matrices are introduced in (3.6) by using the relationship
of the transition rates among various subsystems, that is,

∑N
j=1 γij = 0, for all i ∈ S, in

this paper, which may develop less-conservative results. This is quite different from free
weighting matrices in [8, 26], we introduced free-connection weighting matrices lead to the
obtained criteria are dependent on delays, the measure of the space and the reaction-diffusion
terms, therefore, have less conservativeness than delay-independent, space-independent, and
diffusion terms independent ones [15, 22, 23, 25], respectively.
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When the smooth operatorDi = 0, i = 1, 2, ..., n, model (2.2) is reduced to the following
model:

du(t) =

[
−Aiu(t) + Bif(u(t)) + Cig(u(t − d(t))) + Ei

∫ t

t−τ(t)
h(u(s))ds + J

]
dt

+ σi

(
t, u(t), u(t − d(t)),

∫ t

t−τ(t)
h(u(s))ds

)
dw(t), t ≥ t0 ≥ 0,

u(t0 + s) = ϕ(s), s ∈ (−τ̃ , 0].

(3.15)

Remark 3.4. The system (3.15) is a special case of system (2.1). In [32], the authors consider
the following model:

u̇ = −Au + Bf(u(t)) + Cg(u(t − d(t))) + E

∫ t

t−τ(t)
h(u(s))ds + J. (3.16)

However, To the best of our knowledge, the LMI technique to guarantee the asymptotic
stability of stochastic Markovian jumpNNswith partial information on transition probability
and discrete and distributed time-varying delays is not studied which is very important in
both theories and applications and is also a very challenging problem.

From (3.15), we have the following corollary.

Corollary 3.5. Suppose that, (A1)-(A2) and (A4) hold. If there exist positive definite diagonal
matrices Pi, Λi = ΛT

i , positive definite symmetry matrices Q1, Q2, G,W, K1, K2, positive definite
diagonal matrices M1,M2 with appropriate dimensions, and scalar ρi > 0, such that the following
LMIs hold:

Ξ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 0 0 α14 α15 α16 0
∗ α22 0 0 0 0 0
∗ ∗ α33 0 0 0 0
∗ ∗ ∗ α44 0 0 0
∗ ∗ ∗ ∗ α55 0 0
∗ ∗ ∗ ∗ ∗ α66 0
∗ ∗ ∗ ∗ ∗ ∗ α77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

Pi ≤ ρiI,

Pj −Λi ≤ 0, j ∈ Ξi
uk, j /= i,

Pi −Λi ≥ 0, j ∈ Ξi
uk, j = i,

(3.17)

where α11 = −PiAi − AiPi − PiR − RPi + Q1 + Q2 + LgGLg +
∑

j∈Ui
k
γij(Pj − Λi) + ρi

∑T
i1
∑

i1 +

τ0L
hK1L

h + d0L
gK2L

g , α66 = ρi
∑T

i3
∑

i3 −τ−10 K1, α77 = −d−1
0 K2, the other notations are the same

as those in Theorem 3.1, then system (3.15) with a partly unknown transition rate matrix (2.3) is
asymptotic stability in the mean square sense.
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Proof . By constructing the following Lyapunov functional:

V (t, z(t), i) = z(t)TPiz(t) +
∫ t

t−τ(t)
z(s)TQ1z(s)ds

+
∫ t

t−d(t)
z(s)TQ2z(s)ds +

∫ t

t−d(t)
g(z(s))TGg(z(s))ds

+
∫0

−d0

∫ t

t+θ
g(z(s))TK2g(z(s))dsdθ

+
∫0

−τ0

∫ t

t+θ

(
h(z(s))

)T
K1

(
h(z(s))

)
dsdθ,

(3.18)

Similarly, calculate the derivative along the system (3.15). By a minor modification of the
proof of Theorem 3.1, we can easily obtain that system (3.15) is asymptotic stability in the
mean square sense.

4. An Illustrative Example

In this section, we provide the effectiveness of the proposed stability criteria through solving
a numerical example. Here, we consider the system (2.1)with three modes described as

A1 =
[
6 0.1
0.6 13

]
, A2 =

[
15 0.6
0.7 10

]
, A3 =

[
10 0.5
0.6 11

]
,

B1 =
[
0.1 0.2
0.2 0.1

]
, B2 =

[
0.5 0.3
0.5 0.1

]
, B3 =

[
0.3 0.4
0.2 0.1

]
,

C1 = C2 = C3 =
[
0.5 0
0 0.5

]
,

E1 = E2 = E3 =
[
0.1 0
0 0.1

]
,

Σ11 = Σ12 = Σ13 = 1.2I, Σ21 = Σ22 = Σ23 = 0.8I, Σ31 = Σ32 = Σ33 = 1.1I,

τ0 = d0 = 0.6, μ = d = 0.2, |Ω| = ωm = π,

Lf = Lg = Lh = I, D1 = D2 = D3 = D∗
1 = D∗

2 = D∗
3 = 1, R = −I.

(4.1)

The transition probability matrices of form (2.5) are given by

Θ =

⎡⎣−0.3 ? ?
? 0.1 ?
? ? 0.15

⎤⎦. (4.2)
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In (3.1), by applying the MATLAB LMI Control Toolbox, we obtain the feasible solution as
follows:

P1 =
[
1.9466 0

0 1.9466

]
, P2 =

[
1.9072 0

0 1.9072

]
, P3 =

[
1.7064 0

0 1.7064

]
,

Q1 =
[
1.3124 0.1123
0.1123 3.3850

]
, Q2 =

[
5.1903 0.1019
0.1019 7.1036

]
, G =

[
0.8189 0.0984
0.0984 2.6072

]
,

Λ1 =
[
3.6542 0.3005
0.3005 22.2842

]
Λ2 =

[
0.9530 −0.0010
−0.0010 0.9875

]
, Λ3 =

[
0.8493 0.0014
0.0014 0.8382

]
,

W =
[
5.2683 0.1424
0.1424 7.9714

]
, K1 =

[
0.6909 0.0599
0.0599 1.8031

]
, K2 =

[
0.7028 0.0597
0.0597 1.8035

]
,

A1 =
[
3.9211 0

0 3.9211

]
, A2 =

[
1.2151 0

0 1.2151

]
.

(4.3)

Therefore, it follows from Theorem 3.1 that system (2.1) is asymptotic stability in the mean
square sense.

5. Conclusions

In this paper, we have dealt with an interesting and important problem of asymptotic
stability in the mean square sense for a new class of stochastic Markovian jump RDNNs
with unknown transition rates and mixed time delays based on LMI and free-connection
weighting matrix techniques. By applying the Lyapunov stability analysis approach, the
novel stability criteria for that system are proposed. The obtained criteria are dependent
on delays, the measure of the space, and the reaction-diffusion terms, therefore, they
have less conservativeness than delay-independent, space-independent, and diffusion terms
independent ones, respectively. So, it is shown that the newly obtained results are less
conservative andmore applicable than the existing corresponding ones. A numerical example
has been given to show the effectiveness of the obtained results.
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