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We study the value distribution of a special class difference polynomial about finite order
meromorphic function. Our methods of the proof are also different from ones in the previous
results by Chen (2011), Liu and Laine (2010), and Liu and Yang (2009).

1. Introduction and Results

A function f(z) is called meromorphic function, if it is analytic in the complex plane C except
at isolated poles. It is assumed that the reader is familiar with the standard symbols and
fundamental results of Nevanlinna theory such as the characteristic function T(r, f), pro-
ximity function m(r, f), counting function N(r, f), and the first and second main theorem
(see [1–3]). The notation S(r, f) denotes any quantity that satisfies the condition: S(r, f) =
o(T(r, f)) as r → ∞ possibly outside an exceptional set of r of finite linear measure. We use
the notation τ(f) to denote the exponent of convergence of zeros of f(z), and use the nota-
tion σ(f) to denote the order of growth of the meromorphic function f(z). Also, we give an
estimate of numbers of b-points, namely, τ(f − b) for every b ∈ C.

Next, we will introduce the notation of Borel exceptional value (see [1]).



2 Discrete Dynamics in Nature and Society

Definition 1.1. Let f be a transcendental meromorphic function in C with the order σ(f). A
complex number a is said to be a Borel exceptional value if

lim
log+n

(
r, 1/

(
f − a

))

log r
< σ

(
f
)
. (1.1)

Here log+n(r, 1/(f − a)) can be replaced by log+N(r, 1/(f − a)).

In 1959, Hayman [4] proved the following Theorem.

Theorem A. Let f be a meromorphic function in C, if f ′ − afn /= b, where n is a positive integer and
a, b are two finite complex numbers such that n ≥ 5 and a/= 0, then f is a constant.

On the other hand, Mues [5] showed that for n = 3, 4 the conclusion is not valid.
Recently, as the significant results on Nevanlinna theory with respect to difference

operators, see the papers [6, 7] by Halburd and Korhonen and [8] by Chiang and Feng. Many
papers (see [2–4, 9–17]) have focused on complex differences and given many difference
analogues in value distribution theory of entire functions.

In 2010, replacing f ′ by f(z + c) − f(z) in Theorem A, Liu and Laine [17] obtained the
following result.

Theorem B (see [17]). Let f be a transcendental entire function of finite order, not of period c, where
c is a nonzero constant, and let s(z) be a nonzero small function of f . Then the difference polynomial
fn(z) + f(z + c) − f(z) − s(z) has infinitely many zeros in the complex plane, provided that n ≥ 3.

In 2011, Chen [18] considered the difference counterpart of Theorem A and proved an
almost direct difference analogue of Hayman’s Theorem.

Theorem C (see [18, Theorem 1.1]). Let f be a transcendental entire function of finite order, not of
period c, and let a(/= 0), b, c(/= 0) be three complex numbers. ThenΨn(z) = f(z+ c)−f(z)−afn(z)
assumes all finite values infinitely often, provided that n ≥ 3 and τ(Ψn(z) − b) = σ(f) for every b.

In 1994, Ye [19] considered a similar problem and obtained that if f is a transcendental
meromorphic function and a is a nonzero finite complex number, then f + a(f ′)n assumes
every finite complex value infinitely often for n ≥ 3. Ye [19] also askedwhether the conclusion
remains valid for n = 2.

In 2008, Fang and Zalcman [20] solved this problem and obtained the following result.

Theorem D. Let f be a transcendental meromorphic function and a be a nonzero complex number.
Then f + a(f ′)n assumes every complex value infinitely often for each positive integer n ≥ 2.

Just like Theorem B, it is natural to ask whether Theorem D can be improved by
the ideas of difference operator. The purpose of this paper is to study value distribution of
meromorphic function with respect to difference. Our methods of proof are also different
from ones in previous Theorems (see [17, 18, 21]). We obtain the following results.

Theorem 1.2. Let f be a transcendental meromorphic function of finite order, not of period c, where
c is a nonzero constant, and let s(z) be a small function of f , let a be a nonzero constant. Then
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the difference polynomial afn(z + c) + f(z) − s(z) has infinitely many zeros in the complex plane,
provided that n ≥ 5.

Corollary 1.3. Let f be a transcendental entire function of finite order, not of period c, where c is a
nonzero constant, and let s(z) be a small function of f , let a be a nonzero constant. Then the difference
polynomial afn(z + c) + f(z) − s(z) has infinitely many zeros in the complex plane, provided that
n ≥ 3.

Recently, Qi and Liu [22] obtained the following result.

Theorem E (see [22, Theorem 2]). Let f be a transcendental entire function of finite order, c be a
nonzero constant, m and n be integers satisfying n ≥ m > 0, and let λ, μ be two complex numbers
such that |λ|+ |μ|/= 0. If n ≥ 2, then either fn(z)(λfm(z+ c) +μfm(z)) assumes every nonzero finite
value infinitely often or f(z) = exp{(log t/c)z}g(z), where t = (−μ/λ)1/m, and g(z) is periodic
function with period c.

Thus, it is natural to ask, what happens if n = 1 in Theorem E?
By the same method of [18, 23], we investigate this problem and obtain the following

results.

Theorem 1.4. Let f be a transcendental entire function with finite order with a Borel exceptional
value 0, c be a nonzero complex constant, and let λ, μ be two complex numbers such that |λ| + |μ|/= 0
and λf(z + c) + μf(z)/≡ 0, then H(z) := f(z)(λf(z + c) + μf(z)) assumes every nonzero value
a ∈ C infinitely often and τ(H − a) = σ(f).

Theorem 1.5. Let f(z) be a transcendental entire function of finite order, c ∈ C \ {0} be a complex
constant, and let λ, μ be two complex numbers such that |λ| + |μ|/= 0 and λf(z + c) + μf(z)/≡ 0. If
f(z) has infinitely many multiple zeros, then H(z) := f(z)(λf(z + c) + μf(z)) takes every value
a ∈ C infinitely often.

Example 1.6. f(z) = ez satisfies f(z + 1) − ef(z) ≡ 0. However, f(z)(λf(z + c) + μf(z)) cannot
assume any nonzero value a ∈ C.

Remark 1.7. From the Example 1.6, the condition (λf(z + c) + μf(z))/≡ 0 is necessary in
Theorems 1.4 and 1.5.

Remark 1.8. Some ideas in this paper are based on [18, 23–25].

2. Some Lemmas

In order to prove our theorems, we need the following Lemmas.
The Lemma 2.1 is a difference analogue of the logarithmic derivative lemma, given by

Halburd and Korhonen [7] and Chiang and Feng [8], independently.

Lemma 2.1 (see [7, Theorem 2.1]). Let f(z) be a meromorphic function of finite order, and let c ∈ C

and δ ∈ (0, 1). Then

m

(
r,
f(z + c)
f(z)

)
+m

(
r,

f(z)
f(z + c)

)
= O

(
T
(
r, f

)

rδ

)

= S
(
r, f

)
. (2.1)
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Lemma 2.2 (see [1, Theorem 1.12]). Let f(z) be a nonconstant meromorphic function, and let
P(f) = a0f

n + a1f
n−1 + · · ·an, where a0(/= 0), a1, . . . , an are small function of f . Then

T
(
r, P

(
f
))

= nT
(
r, f

)
+ S

(
r, f

)
. (2.2)

By using the formulation (12) in [13], it is easy to get the following lemma.

Lemma 2.3. Let f(z) be a meromorphic function of finite order, c ∈ C. Then

N
(
r, f(z + c)

)
= N

(
r, f(z)

)
+ S

(
r, f(z)

)
. (2.3)

Lemma 2.4. Let f(z) be a transcendental entire function of finite order ρ with a Borel exceptional
value 0, c ∈ C \ {0} be complex constant, and let λ, μ be two complex numbers such that |λ| + |μ|/= 0
and λf(z + c) + μf(z)/≡ 0, then σ(H) = σ(f), whereH(z) := f(z)[λf(z + c) + μf(z)].

Proof. Rewrite H(z) as the form

H(z) = f(z)2
λf(z + c) + μf(z)

f(z)
. (2.4)

For each ε > 0, by Lemma 2.1 and (2.4), we get that

m(r,H) ≤ 2m
(
r, f

)
+m

(
r,
λf(z + c)

f(z)

)
+O

(
rρ−1+ε

)
= 2m

(
r, f

)
+O

(
rρ−1+ε

)
, (2.5)

2T
(
r, f

)
= T

(
r, f2

)
≤ T(r,H) + T

(
r,

f

λf(z + c) + μf(z)

)

= T(r,H) + T

(
r,
λf(z + c) + μf(z)

f(z)

)
+O(1)

= T(r,H) +N

(
r,
f(z + c)
f(z)

)
+O

(
rρ−1+ε

)
+O(1)

= T(r,H) +N

(
r,

1
f

)
+N

(
r, f(z + c)

)
+O

(
rρ−1+ε

)
+O(1).

(2.6)

Because f(z) is a transcendental entire function of finite order ρ with a Borel excep-
tional value 0. Then we obtain

T
(
r, f

) ≤ T(r,H) +O
(
rρ−1+ε

)
. (2.7)

Thus, (2.5) and (2.7) give that σ(H) = σ(f).

Lemma 2.5 (see [1]). Let fj(z) (j = 1, . . . , n) (n ≥ 2) be meromorphic functions, gj(z) (j =
1, . . . , n) be entire functions, and satisfy

(i)
∑n

j=1 fj(z)e
gj (z) ≡ 0,
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(ii) when 1 ≤ j < k ≤ n, gj(z) − gk(z) is not a constant,

(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T(r, fj) = o{T(r, egh−gk)}(r → ∞, r /∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.
Then fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.6 (see [1]). Let f be a transcendental meromorphic function of order σ(f) and τ(f) be the
convergence exponent of its zeros. Then τ(f) ≤ σ(f).

Lemma 2.7 (see [1], Hadamard’s factorization theorem). Let f be a transcendental entire func-
tion of finite order σ(f) with zeros {z1, z2, . . .} ⊂ C \ {0} and a k-fold zero at origin. Then

f(z) = zkE(z)eQ(z), (2.8)

where E(z) is the canonical product of f formed with the nonnull zeros of f , andQ(z) is a polynomial
of degree ≤ σ(f).

Lemma 2.8 (see [1]). Let λ(E) be the order of the canonical product E(z). We use τ(E) to denote the
exponent of convergence of zeros of E(z). Then λ(E) = τ(E).

3. Proofs of Theorems

Proof of Theorem 1.2. SetΦ(z) := afn(z+c)+f(z)−s(z). Obviously,Φ(z)/≡C. If it is false, then
afn(z + c) ≡ s(z) + C − f(z). Thus we have that

T
(
r, fn(z + c)

)
= nT

(
r, f(z + c)

)
= T

(
r, f(z)

)
+ S

(
r, f

)
, (3.1)

where n ≥ 5. Using Lemmas 2.1 and 2.3, we deduce that

T
(
r, f(z + c)

)
= m

(
r, f(z + c)

)
+N

(
r, f(z + c)

)

≤ m
(
r, f(z)

)
+m

(
r,
f(z + c)
f(z)

)
+N

(
r, f(z)

)
+ S

(
r, f(z)

)

= T
(
r, f(z)

)
+ S

(
r, f(z)

)
,

T
(
r, f(z)

)
= m

(
r, f(z)

)
+N

(
r, f(z)

)

≤ m
(
r, f(z + c)

)
+m

(
r,

f(z)
f(z + c)

)
+N

(
r, f(z)

)
+ S

(
r, f(z)

)

= m
(
r, f(z + c)

)
+N

(
r, f(z + c)

)
+ S

(
r, f(z)

)

= T
(
r, f(z + c)

)
+ S

(
r, f(z)

)
,

(3.2)

Equations (3.1) and (3.2) imply T(r, f(z+c)) = S(r, f(z)), a contradiction, thereforeΦ(z)/≡C.
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Furthermore, we claim that

(
fn(z + c)

)′

fn(z + c)
− Φ′

Φ
/≡ 0. (3.3)

Otherwise, (fn(z + c))′/fn(z + c) − Φ′/Φ ≡ 0. By integration, we obtain Φ(z) = bfn(z + c),
where b is a constant, hence (b − a)fn(z + c) = f(z) − s(z).

If b = a, we can deduce T(r, f(z)) = T(r, s(z)). This contradicts the hypothesis.
If b /=a, by the same arguments of the proof of Case Φ(z) ≡ C, we get the same con-

tradiction.
By a simple calculation we get that

afn(z + c) =
(Φ′/Φ)

[
f(z) − s(z)

] − [
f(z) − s(z)

]′
(
fn(z + c)

)′
/
(
fn(z + c)

) −Φ′/Φ
. (3.4)

From Lemmas 2.1 and 2.2 and some results of Nevanlinna Theory, we obtain that

T
(
r, afn(z + c)

)
= nT

(
r, f(z + c)

)
+ S

(
r, f(z + c)

)

= T

(

r,
(Φ′/Φ)

[
f(z) − s(z)

] − [
f(z) − s(z)

]′
(
fn(z + c)

)′
/
(
fn(z + c)

) −Φ′/Φ

)

≤ m
(
r, f(z)

)
+N

(
r,
Φ′

Φ
[
f(z) − s(z)

] − [
f(z) − s(z)

]′
)

+m

(

r,
Φ′

Φ
−
[
f(z) − s(z)

]′
[
f(z) − s(z)

]

)

+m

(

r,

(
fn(z + c)

)′

fn(z + c)
− Φ′

Φ

)

+N

(

r,

(
fn(z + c)

)′

fn(z + c)
− Φ′

Φ

)

+ S
(
r, f(z)

)
.

(3.5)

Next, we will estimateN(r, (Φ′/Φ)[f(z)−s(z)]−[f(z) − s(z)]′) andN(r, (fn(z + c))′/
fn(z + c) −Φ′/Φ).

The poles of ϕ1(z) = (Φ′/Φ)[f(z) − s(z)] − [f(z) − s(z)]′ come from the zeros of Φ(z),
the poles of f(z + c), the poles of f(z), and the poles of s(z). By the hypothesis, we ignore
the poles of s(z). If z0 is a zero of Φ(z) or a pole of f(z + c) but not a pole of f(z), then z0 is
a simple pole of ϕ1(z). If z0 is a common pole of f(z + c) and f(z), and the multiplicity is k
and l, respectively, then z0 is a pole of ϕ1(z) with the multiplicity of no more than l + 1. If z0
is a pole of f(z) but not a pole of f(z + c), we obtain that z0 is at most a simple pole of ϕ1(z)
because of (3.4). Using the Lemma 2.3, we can get that

N

(
r,
Φ′

Φ
[
f(z)−s(z)] − [

f(z)−s(z)]′
)

≤ N

(
r,

1
Φ(z)

)
+N

(
r, f(z+c)

)
+N

(
r, f(z)

)
+S

(
r, f(z)

)

= N

(
r,

1
Φ(z)

)
+N

(
r, f(z)

)
+N

(
r, f(z)

)
+ S

(
r, f(z)

)
.

(3.6)
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We deal with the poles of s(z) as above. The zeros of Φ(z), the poles of f(z + c), the
poles of f(z), and the zeros of f(z + c) compose the poles of ϕ2(z) = (fn(z + c))′/fn(z + c) −
Φ′/Φ. If z0 is a zero of Φ(z), zero of f(z+ c), or pole of f(z), then z0 is a simple pole of ϕ2(z).
If z0 is a pole of f(z+ c) but not a pole of f(z), using the Laurent series, we can get that ϕ2(z)
is analytic at z0. Therefore, we conclude that

N

(

r,

(
fn(z + c)

)′

f(z + c)
− Φ′

Φ

)

≤ N

(
r,

1
Φ(z)

)
+N

(
r,

1
f(z + c)

)
+N

(
r, f(z)

)
+ S

(
r, f(z)

)
.

(3.7)

Combining (3.2), (3.4), (3.5), and (3.6), we have that

nT
(
r, f(z + c)

) ≤ 2m
(
r,
Φ′

Φ

)
+m

(
r, f(z)

)
+m

(

r,

(
fn(z + c)

)′

fn(z + c)

)

+m

(

r,

[
f(z) − s(z)

]′

f(z) − s(z)

)

+ 2N
(
r,

1
Φ(z)

)
+N

(
r, f(z + c)

)
+N

(
r, f(z)

)

+N

(
r,

1
f(z + c)

)
+N

(
r, f(z)

)
+ S

(
r, f(z)

)
.

(3.8)

From (3.2) and Lemma 2.2, we deduce that T(r,Φ(z)) = O(T(r, f(z)). Therefore, we
get that

m

(
r,
f ′(z + c)
f(z + c)

)
= S

(
r, f(z)

)
, m

(
r,
Φ′

Φ

)
= S(r,Φ(z)) = S

(
r, f(z)

)
. (3.9)

By (3.2), (3.7), (3.9), and the First Fundamental Theorem, we can simplify (3.8) to be

(n − 4)T
(
r, f(z)

) ≤ 2N
(
r,

1
Φ(z)

)
+ S

(
r, f(z)

)
. (3.10)

Because n ≥ 5, we deduce that

T
(
r, f(z)

) ≤ CN

(
r,

1
afn(z + c) + f(z) − s(z)

)
+ S

(
r, f(z)

)
. (3.11)

If afn(z + c) + f(z) − s(z) has finite zeros, then T(r, f(z)) = S(r, f(z)), a contradiction.
We complete the proof of the Theorem 1.2.

Proof of Corollary 1.3. The proof of Corollary 1.3 is the same as the proof of Theorem 1.2; note
that f(z) is entire, some different places are stated below.
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The poles of ϕ1(z) = (Φ′/Φ)[f(z) − s(z)] − [f(z) − s(z)]′ come from the zeros of Φ(z).
By the hypothesis, we ignore the poles of s(z). If z0 be a zero of Φ(z), then z0 is a simple pole
of ϕ1(z). Using the Lemma 2.3, we can get that

N

(
r,
Φ′

Φ
[
f(z) − s(z)

] − [
f(z) − s(z)

]′
)

≤ N

(
r,

1
Φ(z)

)
+ S

(
r, f(z)

)
. (3.12)

The zeros of Φ(z) and the zeros of f(z + c) compose the poles of ϕ2(z) = (fn(z + c))′/
fn(z + c) − Φ′/Φ. If z0 is a zero of Φ(z) or zero of f(z + c), then z0 is a simple pole of ϕ2(z).
Therefore, we conclude that

N

(

r,

(
fn(z + c)

)′

f(z + c)
− Φ′

Φ

)

≤ N

(
r,

1
Φ(z)

)
+N

(
r,

1
f(z + c)

)
+ S

(
r, f(z)

)
.

(3.13)

Combining (3.2), (3.4), (3.5), and (3.12), we have that

nT
(
r, f(z + c)

) ≤ 2m
(
r,
Φ′

Φ

)
+m

(
r, f(z)

)
+m

(

r,

(
fn(z + c)

)′

fn(z + c)

)

+m

(

r,

[
f(z) − s(z)

]′

f(z) − s(z)

)

+ 2N
(
r,

1
Φ(z)

)
+N

(
r,

1
f(z + c)

)
+ S

(
r, f(z)

)
.

(3.14)

By (3.2), (3.13), (3.9), and the First Fundamental Theorem, we can simplify (3.14), to
be

(n − 2)T
(
r, f(z)

) ≤ 2N
(
r,

1
Φ(z)

)
+ S

(
r, f(z)

)
. (3.15)

Because n ≥ 3, we deduce that

T
(
r, f(z)

) ≤ CN

(
r,

1
afn(z + c) + f(z) − s(z)

)
+ S

(
r, f(z)

)
. (3.16)

If afn(z + c) + f(z) − s(z) has finite zeros, then T(r, f(z)) = S(r, f(z)), a contradiction.
The proof of Corollary 1.3 is complete.

Proof of Theorem 1.4. By Lemma 2.7, we write f(z) as follows

f(z) = zkE(z)eQ(z), (3.17)

where E(z) is the canonical product of f formed with the nonnull zeros of f , and Q(z) is a
polynomial of degree ≤ σ(f).
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Since 0 is the Borel exceptional value of f(z), by Definition 1.1 and Lemmas 2.6 and
2.8, we can rewrite f(z) as the form

f(z) = P(z)esz
k

, (3.18)

where P(z) is an entire function with σ(P) < σ(f) = k, s(/= 0) is a constant, k is a positive
integer. Thus

f(z + c) = P(z + c)P1(z)esz
k

, (3.19)

where

P1(z) = eskz
k−1+···+sck , σ(P1) = k − 1. (3.20)

Now we suppose that τ(H − b) < σ(f). By Lemma 2.1, we see that σ(H) = σ(f) = σ(H − b),
so that τ(H − b) < σ(H − b) = σ(f) = k andH(z) − b can be rewritten as the form

H(z) − b = q(z)eβz
k

, (3.21)

where β(/= 0) is a constant, q(z) is an entire function of

σ
(
q
) ≤ max{τ(H − b), k − 1}. (3.22)

By (3.18)–(3.20), we get

(
λP(z)P(z + c)P1(z) + μP 2(z)

)
e2sz

k − b = q(z)eβz
k

. (3.23)

Since P(z)P(z+ c)P1(z)/≡ 0 and q(z)/≡ 0, by comparing growths of both sides of (3.23), we see
that β = 2s. Thus, by (3.23), we have

[
λP(z)P(z + c)P1(z) + μP 2(z) − q(z)

]
e2sz

k − b = 0. (3.24)

By Lemma 2.5 and (3.24), we get that b = 0. This contradicts our assumption that b /= 0. Hence
τ(H − b) = σ(f).

The proof of Theorem 1.4 is complete.

Proof of Theorem 1.5. We suppose that f(z) has infinitely many multiple zeros. If a = 0, then
H(z) has obviously infinitely many zeros. Now we suppose that a/= 0. If H(z) − a has only
finitely many zeros, then H(z) − a can be rewritten as the form

H(z) − a = f(z)
[
λf(z + c) + μf(z)

] − a = p(z)eq(z), (3.25)

where p(z), q(z) are polynomials, and p(z)/≡ 0, deg q(z) ≥ 1.
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Differentiating (3.25), we obtain

[
f(z)

(
λf(z + c)

)
+ μf(z)

]′ =
(
p′(z) + P(z)q′(z)

)
eq(z). (3.26)

From (3.25), we get eq(z) = (f(z)[λf(z + c) + μf(z)] − a)/p(z). Substituting eq(z) =
(f(z)[λf(z + c) + μf(z)] − a)/p(z) into (3.26), we have

[
f(z)

(
λf(z + c)

)
+ μf(z)

]′

f(z)
(
λf(z + c) + μf(z)

) =
p′(z) + p(z)q′(z)

p(z)

− a
p′(z) + p(z)q′(z)

p(z)
1

f(z)
(
λf(z + c)

)
+ μf(z)

.

(3.27)

Since f(z) has infinitely many multiple zeros, there is a multiple zero z0 such that |z0|
is sufficiently large and p(z0)/= 0, p′(z0) + p(z0)q′(z0)/= 0. Thus, the right side of (3.27) has
a multiple pole at z0, but the left side of (3.27) has only a simple pole at z0. This is a con-
tradiction.

Hence H(z) takes any value a ∈ C infinitely often.
The proof of Theorem 1.5 is complete.

At last, for further study, we pose a question.

Question. If n ≤ 4 in Theorem 1.2, what will happen?
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