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This paper presents a subband approach to financial time series prediction. Multivariate empirical
mode decomposition (MEMD) is employed here for multiband representation of multichannel
financial time series together. Autoregressivemoving average (ARMA)model is used in prediction
of individual subband of any time series data. Then all the predicted subband signals are summed
up to obtain the overall prediction. The ARMA model works better for stationary signal. With
multiband representation, each subband becomes a band-limited (narrow band) signal and hence
better prediction is achieved. The performance of the proposedMEMD-ARMAmodel is compared
with classical EMD, discrete wavelet transform (DWT), and with full band ARMAmodel in terms
of signal-to-noise ratio (SNR) and mean square error (MSE) between the original and predicted
time series. The simulation results show that the MEMD-ARMA-based method performs better
than the other methods.

1. Introduction

Time series prediction is used in a wide range of applications, including the business and
economic environment, currency forecasting, stock exchange operations in order to develop
proper strategies and avoid the risk of potential losses. One step ahead prediction is used in
a number of applications such as stock exchange, traffic, or water stream flow forecast. One
aim is to estimate a time series value s(t) known past values s(t−1), s(t−2), . . . , s(t−k). Most
of the systems are considered linear relationships among the variables to model this type
of time series known as autoregressive (AR) models based on the Box and Jenkins method
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[1, 2]. Recently, stock markets forecasting is interesting field for the investors and it has got
very high concentration in financial time series analysis and financial researchers. To invest
and take proper decision, more precise forecasting of financial environments is an important
issue. In conventional econometric models, the variance of the disturbance is assumed to
be constant. However, financial time series data exhibit periods of unusual large volatility
(nonstationary and noisy) and considered as more challenging task for analysis [3, 4].

There are many forecasting models that have been developed in predicting financial
time series. Among them, most popular technique of linear analysis is perhaps autoregressive
moving average (ARMA) method [2] for stationary time series. Usually, time series
data are nonstationary and appear with noises that reduce the prediction accuracy of
ARMA approach. The efficiency of ARMA model is improved here by using multiband
prediction model. The multiband forecasting performance of financial data is better than full-
band approach. The multiband decomposition is usually performed by employing Fourier
transform (FT) [5–7] or wavelet transform (WT) [8–10] based filter bank. Fourier transform
is not suitable to adapt with the non-stationary signal, whereas wavelet transform is relatively
more data adaptive decomposition [11]. Both of the transformations use priori bases for
signal decomposition. The FT assumes any signal as a sum of sinusoids and WT adapts its
basis with the signal by changing amplitude and scale of the basis. In Fourier spectra, the
existence of energy at a frequency means a component of sinusoidal wave of that frequency
persisted through the time span of the data and it also includes the harmonic distortion
with a nonharmonic signal [12]. Although discrete wavelet leads to nonredundant signal
decomposition [13], the wavelet spectra gives a smeared average frequency range over which
the main signal energy resides [12]. Hence, both transformations have some limitations in
multiband decomposition of nonstationary signal.

Sampling is an important factor for modeling and analysis of financial data because
the analysis is performed in a discrete way. Any financial signal x(t) at time instant t can
be defined as x(t) ⇒ x(nT), where n is a nonnegative number representing the index of
the discrete sample and T is the sampling period. For uniform sampling rate, T can be
omitted and then x(t) ⇒ x(n), with n representing the discrete sample index. The data
used in this study are collected with uniform sampling over total period of acquisition.
The nonuniform sampling/discretization is always better to adapt with the signal variation.
The basic concept of nonuniform sampling is to increase the sampling rate to acquire the
signal with higher variation and the reverse when the lower variation of signal is observed in
acquisition. The current research trend is to apply the nonuniform discretization to increase
the efficiencies of different systems [14, 15]. The stabilization of linear time-invariant dynamic
system is achieved by applying multirate discretization combined with fractional-order hold
[14]. The stabilization of such system is not guaranteed without using multirate sampling.
The controllability and observability are investigated for Caputo fractional differential linear
system of any real order α in [15]. The developed model also supports those properties under
nonuniform sampling. The authors have also proved that the choice of appropriate sampling
instance is not restrictive as a result of the properties of associate Chebyshev’s systems. Since
we are using the secondary data, the sampling rate is kept as it is although the nonuniform
sampling has many advantages.

The proposed method focuses on the study of multiband ARMA model in which the
multiband representation is implemented by using empirical mode decomposition (EMD), a
fully data adaptive decomposition technique. The EMD is a recently developed method for
multiband representation of nonlinear and nonstationary time series [12]. It is also considered
as a dyadic filter bank and the IMF components are all normally distributed [16]. The
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specialty of this decomposition is that its bases are data adaptive and it is fully reversible,
that is, the original data is reconstructed simply by summing up the bases with a negligible
error. Although EMD-based decomposition method is fully a data adaptive method, its mode
mixing is evident between intrinsic mode functions (IMFs) or a single mode is “leaked”
into two IMFs. The extensions of EMD to bivariate and trivariate EMD cases reported in
[17, 18] are limited to handle only two and three variables, respectively. To analyze any
multivariate data it is necessary to make selection of variables to fit the use of BEMD and
TEMD for more than two and three variables, respectively. The performance is very much
dependent on such selection of variables for processing at a time. The MEMD algorithm
is the first generic extension of standard EMD for multivariate data and its important step
to generate multiple n-dimensional envelopes by taking signal projections along different
directions in n-dimensional spaces. It is noted that MEMD reduces the mode mixing problem
of the basis functions obtained frommultivariate data. In this paper, multiband ARMAmodel
with MEMD is introduced in prediction of financial time series. Recently, financial time series
forecasting using classical EMD is introduced in [19] for only single-channel data. Anymodel
to handle multichannel data is not mentioned. There is no guarantee that same number
of IMFs will be produced for different data channels using classical EMD (which leads to
different prediction model for different channels), whereas the use of MEMD ensures this
mater.

The financial data is decomposed into multiband using discrete wavelet transforma-
tion (DWT), EMD, and MEMD. The ARMA parameters are computed for individual band
and the overall prediction is obtained by summing up the predicted signal of all bands.
The prediction error measured in terms of signal-to-noise ratio (SNR), mean square error
(MSE), and the rose histogram of the absolute differences of the computed and actual time
series. The performance of the proposed method is compared with other related techniques.
Regarding the arrangement of this paper, the multiband decomposition techniques using
DWT, EMD, and MEMD are described in Section 2, the prediction model introduced in
Section 3, several performance criteria are described in Section 4, the experimental results
are illustrated Section 5, and finally discussion and concluding remarks are presented in
Section 6.

2. Multiband Decomposition

2.1. Discrete Wavelet Transformation

Discrete wavelet transform (DWT) is also widely used to perform the multiband repre-
sentation of financial data. Reconstruction of the original signal from the details obtained
by wavelet filterbank is more convenient than Fourier-based method. It is also possible
to design perfect reconstruction filterbank in Fourier domain, whereas wavelet filterbank
automatically satisfies such requirement. It is well known in the subband filtering community
that if the same FIR filters are used for reconstruction and decomposition, then symmetry
and exact reconstruction are incompatible [20]. Therefore, biorthogonal wavelet which
incorporates separate bases for decomposition and reconstruction is used here. Two bases
of a biorthogonal are shown in Figure 1.

One wavelet ψ̃ is used in the analysis, and the coefficients of a signal s(t) are given as

c̃j,k =
∑

t

s(t)ψ̃j,k(t), (2.1)
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Figure 1: Biorthogonal wavelet (db8) for decomposition (a) and reconstruction (b).

where j and k are the scaling and shifting factors, respectively. The other wavelet ψ is used
for reconstruction as

s =
∑

j,k

c̃j,kψj,k. (2.2)

Furthermore, the two wavelets are related by duality in the following sense:

∑

t

ψ̃j,k(t)ψj ′,k′(t) = 0 for j /= j ′ or k /= k′. (2.3)

To aid the development, the so-called scaling function ˜φ is used to approximate the signal
up to a particular level of detail. A family of scaling functions for decomposition can be
represented via shifts and power-of-two stretches as

∀j, k, j ∧ k ∈ Z : ˜φj,k(t) = 2−(j/2) ˜φ
(

2−j t − k
)

. (2.4)

The dual scaling function φ is used for reconstruction and the relation between ˜φ and φ can
be represented as

∑

t

˜φ0,k(t)φ0,k′(t) = 0 for k /= k′. (2.5)

Hence the 4-touple (ψ̃, ˜φ, ψ, φ) can be considered as a compactly supported biorthog-
onal wavelets with scaling functions [20]. It becomes apparent, as in [21], that the useful
properties for analysis can be concentrated in the ψ̃ function, whereas the interesting
properties for reconstruction are assigned to the ψ function. ψ̃ and ψ can have very different
regularity properties, ψ being more regular than ψ̃. The ψ̃, ψ, ˜φ, and φ functions are zero
outside the segment. The decomposition of the financial data illustrated in Figure 2(a) into
four sub-bands and original financial data, its reconstructed data, and the reconstruction
error are illustrated by Figure 2(b). The signal-to-noise ratio (SNR) of the reconstructed signal
(with respect to original one) is 305 dB.
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Figure 2: (a) Wavelet decomposition of financial data into four subbands. (b) Original financial data for
channel 1 (top), reconstructed data by simply adding the subbands (middle) and reconstruction error
(bottom). The SNR of the reconstructed signal is 305 dB.
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2.2. Classical EMD

The key benefit of using EMD is that it is an automatic decomposition and fully data adaptive.
The principle of the EMD technique is to decompose a signal s(t) into a finite set of band-
limited functions Cm(t) called intrinsic mode functions (IMFs). Each IMF is considered as a
AM-FM oscillatory component satisfying two basic conditions: (i) in the whole data set, the
number of extrema and the number of zero crossings must be the same or differ at most by
one, (ii) at any point, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero. The first condition is similar to the narrowband
requirement for a stationary Gaussian process and the second condition is a local requirement
induced from the global one and is necessary to ensure that the instantaneous frequency will
not have redundant fluctuations as induced by asymmetric waveforms. However, a special
“sifting” process is employed to extract all of the IMFs and this sifting process is described
as following. Firstly, the upper and lower envelopes of the signals s(t), as well as their mean
value μ1(t), are calculated, respectively. The first step of the sifting process is to calculate the
difference h1(t) = s(t) − μ1(t). However, h1(t) rarely satisfies the two IMF properties and is
not taken as the first IMF of the signals straightway. Therefore, the sifting usually has to be
implemented for more times, where the “difference” obtained in the previous sifting is taken
as “signals” in present sifting. If after (d + 1)th sifting, corresponding difference, h1d(t) =
h1(d−1)(t)−μ1d(t), satisfies the IMF properties, then it can be taken as the first IMF component,
denoted by C1(t), that is, C1(t) = h1d(t). In practice, to determine whether or not h1d(t) well-
satisfies the IMF properties, we usually use so-called standard deviation (δ) criterion, that is,
to check if the following inequality holds [12]:

δd =
∑T

t=1

∣

∣h1(d−1)(t) − hd(t)
∣

∣

2

∑T
t=1

∣

∣h1(d−1)(t)
∣

∣

2
≤ η, (2.6)

where T is the frame length and 0.2 ≤ η ≤ 0.3. Next, taking rest data r1(t) = s(t) − C1(t) as
“new” signals and implementing the sifting process on it, we can obtain the second IMFC2(t).
This procedure should be repeatedly used for M (total number of IMF components) times
until the last residue rM(t) becomes a monotonic function. At the end of the decomposition
the signal s(t) is represented as

s(t) =
M
∑

m=1

Cm(t) + rM(t), (2.7)

where C1(t), C2(t), . . . , CM(t) are all of the IMFs included in the signals and rM(t) is the final
residue.

Another way to explain how EMD works is that it extracts out the highest frequency
oscillation that remains in the signal. Thus locally, each IMF contains lower frequency os-
cillation than the one extracted just before. Being data adaptive, the basis usually offers
a physically meaningful representation of the underlying processes. There is no need of
considering the signal as a stack of harmonics and, therefore, EMD is ideal for analyzing
nonstationary and nonlinear data. Each IMF is considered as a monocomponent contribution
such that the derivation of instantaneous amplitude and frequency provides a physical
significance. The advantage of this time-space filtering is that the resulting band passed
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signals preserve the full nonstationary property in physical space. This filtering method
is intuitive and direct its basis is a posteriori and data adaptive. The completeness of the
decomposition is given by (2.7). The original signal can easily be reconstructed by simply
adding the bases (including the residue) with negligible error term. The EMD of a financial
data is shown in Figure 3(a). As an example consider the 6th IMF contains a part of the
financial data of lower frequency than the signal contained by the 5th IMF. The original signal
and reconstructed signal and error (of the order 10 × e−13) are shown in Figure 3(b). The
signal-to-noise ratio (SNR) of the reconstructed signal (with respect to original one) is 318 dB
which is the very negligible error. It is also observed that higher-order IMFs contain lower
frequency oscillations than that of lower-order IMFs.

2.3. Multivariate EMD

The Empirical Mode Decomposition (EMD) is a signal analysis technique that decomposes
any signal into basis functions modulated in both amplitude and frequency by extracting
all of the oscillatory modes embedded in the signal [12]. The decomposition is a data
adaptive and signal-dependent decomposition and it does not require any condition about
the stationarity and linearity of the signal. The bases extracted by EMD are named intrinsic
mode functions (IMFs). Each IMF is symmetric and it is assumed to yield a meaningful local
frequency traces. Different IMFs do not exhibit the same frequency at the same time.

The multivariate EMD (MEMD) is more generalized extension of the EMD suitable
for dealing with direct processing of multivariate data including synthetic sinusoidal signals
for its real-world applications [22]. Standard EMD revealed that IMFs tend to mimic a filter
bank-like decomposition, similar to wavelet decompositions [16, 23]. Multivariate EMD not
only exposes filter bank structure but also ensures the overlapping of the frequency responses
of the filters associated with the IMFs of the same index from multiple channels. To extend
general idea of multivariate signals for MEMD, input data are straightforwardly processed
in n-dimensional spaces to generate multiple n-dimensional envelopes by taking signal
projections along different directions in n-dimension spaces. The calculation of the local
mean can be considered an approximation of the integral of all the envelopes along multiple
directions in an n-dimensions space [22, 24]. This step is complex to perform due to the lack
of formal definition of maxima and minima in n-dimensional domains in general EMD. The
sampling based on low discrepancy Hammersley sequence is used to generate projections
of input signal in [22]. Once the projections along different directions in multidimensional
spaces are obtained, their extrema are interpolated via cubic spline interpolation to obtain
multiple-signal envelopes. Thus obtained envelopes are then averaged to obtain the local
mean of the multivariate signal. The following algorithm proposed in [25] is employed here
to decompose signal s(t) into a set of IMF components.

(1) Generate the point-set-based on the Hammersley sequence for sampling on an (n−
1)-sphere [22].

(2) Calculate a projection, denoted by {pθk(t)}Tt=1, of the input signal {s(t)}Tt=1} along the
direction vector Xθk , for all k (the whole set of direction vectors), giving {pθk(t)}Kk=1
as the set of projections.

(3) Find the time instants {tθki }Kk=1 corresponding to the maxima of the set of projected
signals {pθk(t)}Kk=1.
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Figure 3: (a) EMD (different IMFs) of financial data. (b) Original financial data for channel 1 (top),
reconstructed data by simply adding the IMFs (middle), and reconstruction error (bottom). The SNR of
the reconstructed signal is 318 dB.
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(4) Interpolate [tθki , s(t
θk
i )], for all values of k, to obtain multivariate envelope curves

{eθk(t)}Kk=1.
(5) For a set of K direction vectors, calculate the mean μ(t) of the envelope curves as

μ(t) =
1
k

K
∑

k=1

eθk(t). (2.8)

(6) Extract the “detail” d(t) using d(t) = X(t) − μ(t). If the “detail” d(t) fulfills the
stoppage criterion for a multivariate IMF, apply the above procedure to X(t)− d(t),
otherwise apply it to d(t).

Consider a sequence of N-dimensional vectors {s(t)}Tt=1 = {s1(t), s2(t), . . . . . . , sN(t)} repre-
senting a multivariate signal with N components, and Xθk = {xk1 , xk2 , . . . . . . , xkN} denoting a
set of direction vectors along the directions given by angles θk = {θk1 , θk2 , . . . . . . , θk(N−1)} on an
(n − 1)-sphere.

Once the first IMF is extracted, it is subtracted from the input signal and the same
process is applied to the resulting signal yielding the second IMF and so on. In the
multivariate case, the residue corresponds to a signal whose projections do not contain
enough extrema to form a meaningful multivariate envelope. The stopping criterion for
MEMD of IMFs is similar to standard EMD [26], the difference being that the condition
for equality of the number of extrema and zero crossings is not imposed, as extrema cannot
be properly defined for multivariate signals [27]. Filter banks represent an array of band-
pass filters designed to isolate input signal into different frequency bands. In this section, we
investigate the filter bank property of MEMD for white noise.

Figure 4 shows the frequency response and the corresponding filter bank property of
EMD and MEMD for white Gaussian noise. In this experiment, we use 12-channel white
Gaussian noise with each of length 5000. The power spectra of its resulting first 9 IMFs
(of channel 1) via standard EMD are plotted in Figure 4(a). Next, the same 12-channels
data are processed via MEMD and the estimated power spectra of its IMFs (of channel-1)
are shown in Figure 4(b). It is observed that the overlapping regions of frequency bands
of different IMFs are reduced in the case of MEMD as compared with standard EMD. The
alignment of frequency bands for individual IMF in case of MEMD provides much better
results than standard EMD as illustrated in Figure 4. The results of EMD- and MEMD-based
decomposition for financial data of channel 1 with an uncorrelated white noise of same length
as that of the input signal are shown in Figure 5 and we observe that larger number of IMFs
is obtained by MEMD than the standard EMD. In standard EMD, mode mixing is evident
in IMFs where either multiple modes are present or a single mode is leaked into IMFs as
compared with MEMD. The original signal, reconstructed signal, and error (of the order
10 × e−13) are shown in Figure 5(b). The signal-to-noise ratio (SNR) of the reconstructed
signal (with respect to original one) is 318 dB and this SNR proves that the original data
is reconstructed simply by summing up the bases with a negligible reconstruction error.

The frequency response is illustrated by MEMD on 5 channel of financial data. The
power spectra of its resulting 6 IMFs (of channel-1) are plotted in the top of Figure 6(b). The
same financial time series (channel-1) is decomposed using standard EMD and the estimated
power spectra of its 6 IMFs are shown in Figure 6(a). It is observed that the alignment of
frequency bands for individual IMF of MEMD provides much better results than standard
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Figure 4: Spectra (smoothed) of IMFs (IMF1–IMF9) of channel 1 obtained for 12 channels white Gaussian
noise via the standard EMD (a) andMEMD (b). Overlapping of the frequency bands of the IMFs is reduced
with MEMD.

EMD. It is already shown in Figure 4 that MEMD of white Gaussian noise properly aligns the
bandpass filters associated with the corresponding IMFs than the standard EMD.

3. Prediction Model

In the business and economic situation, it is very significant to predict various kinds of
economic variables more precisely in order to expand proper strategies and avoid the risk
of potential victims. In the literature, there are some typical techniques that have been
developed in predicting financial time series. Among them, most popular technique of
linear analysis is perhaps autoregressive moving average (ARMA) method, available in the
literature for univariate time series forecasting for stationary time series. The efficiency of the
linear method depends on how much the predicted signal is similar to the original signal.
The linear prediction model is well fitted with stationary signal and hence prediction error
is minimized. When the analyzing signal is decomposed into multiple bands, each band
becomes more stationary and holds narrow bandwidth. Then the efficiency of ARMA-based
prediction with multiband model is improved. Although wavelet-based decomposition
method is treated as a data adaptive technique, it makes the use of priory bases. Whereas
EMD-based method is fully data adaptive and the bases are derived from data. The
interesting property of EMD technique is that the bases are disjoint in terms of instantaneous
frequency at each time instant. With such time-space filtering, IMFs can be filtered without
any contamination by the signals from other IMFs. The multivariate EMD is applied here for
multiband representation of several channels of financial time series together.

In signal processing, ARMAmodels are typically applied to autocorrelated time series
data. It estimates the future value s(t) with given past values s(t − 1), s(t − 2), . . . . . . , s(t − k).
The ARMA (p, q) time series model of signal s(t) is defined as the deterministic relation [28],

s̃(t) = ξ +
q
∑

j=0

βjεt−j +
p
∑

i=1

αis(t − 1), (3.1)
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Figure 5: (a) The results of the EMD and N-A MEMD application for financial data on channel-1. The
left and right column represents the IMFs of EMD and MEMD, respectively. (b) Original financial data
for channel 1 (top), reconstructed signal by simply adding the IMFs (including the residue) of MEMD
(middle) and reconstructed error (bottom). The SNR of the reconstructed signal is 318 dB.
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Figure 6: Spectra (smoothed) of IMFs (IMF1–IMF6) of single financial channel obtained by EMD (a) and
by MEMD (b). The MEMD is applied on 6-channels (5-channels of financial data and 1 channel of WGN).

where ζ is the intercept,
∑p

i=1 αis(t − 1) is autoregressive (AR) part of order p. The order p
of AR model tells how many lagged past values are included and

∑q

j=0 βjεt−j is the moving
average part (MA) of order q in which the time series is regarded as a moving average of
a noise time series εt, where β0, β1, . . . . . . , βq are parameters of MA model with β0 fixed as 1
and εt ∼ (0, δ2) is the white noise with εt mutually independent for all t. The objective of
prediction is to estimate the future value of the time series as accurately as possible from the
current and past values. For a constructed model, the one-step-ahead forecast ŝ(t) given the
past can be computed as

ŝ(t) = ξ +
q
∑

j=1

βjεt−j +
p
∑

i=1

αis(t − 1). (3.2)

To implement the multiband prediction model, the predicted signals of individual
subband are linearly summed up to reconstruct the overall prediction. Let ŝ(t) be the
predicted signal of ith subband si(t) denoted by ŝi(t) the overall prediction can be obtained
as x̂(t) =

∑M
i=1 ŝi(t) corresponding to the time series x(t), where M is the total number of

subbands. It is already mentioned that the original signal is reconstructed with negligible
error by summing up the subbands obtained by MEMD. Hence, no reconstruction error will
be introduced in the implementation of multiband prediction model. The forecasting error
can be determined as the difference between the actual observed value and the one step ahead
forecast at any time t as

ξ(t) = x(t) − x̂(t). (3.3)

A k-step-ahead AR prediction can be made by recursive application of (3.2). In
recursive application, the observed s(1) is used to generate the estimated ŝ(2). That estimate
is then substituted as s(t − 1) to get the estimated ŝ(3) and so on. Prediction is illustrated in
Figure 7 for financial data of channel-2. The observed financial data of length 652 are fitted
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Figure 7: One-step-ahead prediction for single channel (channel-2) financial time series.

with an AR (1) model and the segments of observed and predicted index beginning from
600 is plotted in Figure 7. The observed index ends in 652, and for the days 600–653 the
predicted values plotted are one-step-ahead predictions. For the AR (1) model, this means
that the prediction for day t is made from observed index in the preceding one day. One-
step-ahead predictions in general make use of observed data for times t ≤ (t − 1) to make the
prediction for time t.

4. Performance Analysis

This paper presents several procedures of multichannel financial time series prediction.
The important aspect of any prediction procedure is the properties of the error measure
that is employed, and whether those properties are appropriate with certain objectives. The
difference between the original and reconstructed signals is termed as residual error. In this
section we will examine the performance of the proposed multiband ARMA model in terms
of SNR, MSE, and rose histogram of the absolute differences of the computed and the actual
outputs.

4.1. Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) is a good measure of distortion in time domain between
original and reconstructed signal. The global SNR values of signal x(t) are determined by
the following equation:

SNR = 10 log10

[
∑T−1

t=0 x
2(t)

∑T−1
t=0 |x(t) − x̂(t)|2

]

, (4.1)
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where x(t) and x̂(t) are the original observed and predicted financial data, respectively, and
T is the total number of samples include in data set. This operation is called as global SNR
because the summation is performed over the whole data length and expressed as a ratio or
factor in units of decibels (dB).

4.2. Mean Square Error (MSE)

In statistics and mathematical world, the mean squared error (MSE) is one of many ways to
measure the error rate between the predicted value and the actual data set in time domain.
MSE is a risk function, corresponding to the expected value of the squared error loss or
quadratic loss. The MSE between actual and predicted value is defined as

MSE =
1
T

T−1
∑

t=0
{x(t) − x̂(t)}2, (4.2)

where x̂(t) is considered the predicted value and x(t) is the actual data set value to be
predicted. The measure of MSE is a direct time domain method for performance evaluation
of ARMA algorithm. The objective of any predicted system is to minimize this MSE.

5. Experimental Results

It is well known that most statistical models are restricted on a static character. The
quantified relationships and system parameters remain the same across the observation
and forecasting time period. Therefore, the ability to apply and test more flexible and
sophisticated algorithms in order to achieve better forecasting performance seems to be
very promising. ARMA models show a relative good performance in case of time series
with a strong autoregressive character. In this experiment, the financial data are obtained
from Clayon Financial, Japan representing daily average pricing of different oil companies.
The maximum, minimum, opening, closing pricing data are not available though they are
important factors. This work is confined to only the prediction of next day pricing value and it
is also possible to extend this work for multistep prediction with trend analysis. The financial
time series of five different but homogeneous companies (termed here as five channels) as
shown in Figure 8 are studied to evaluate the performance of the proposed method.

The time series is decomposed into multiple subbands using discrete wavelet
transform (DWT), EMD, and multivariate EMD. The EMD and MEMD are being fully data
adaptive, they need not require any input parameter except the stopping criteria what is set to
0.25. The average number of IMFs obtained by using classical EMD is 7, whereas the number
is 10 for MEMD. The bi-orthogonal wavelet basis db8 is used to decompose the data channels
into four subbands. It is noted (experimentally found) that the more the number of sub-
bands with DWT produces higher reconstruction error. The ARMA parameters are computed
for each subband and the overall prediction is obtained by summing up the predicted data
from each subband. It is noted that the subbands obtained by applying EMD or MEMD are
fully data adaptive without employing any predefined basis function. The original data and
predicted data are shown in Figure 9 in which it is observed that all the predicted data are
almost superimposed to original time series.
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Figure 8: Financial time series of five different (but homogeneous) companies.

The EMD method decomposes a signal based on its intrinsic time scales. The energy
of the IMFs with different local scales is distributed in different frequency bands. It is already
mentioned in the above for white noise that the original EMD acts as a dyadic filter bank,
similar to the dyadic wavelet transform [23].

In this aspect, the research results are presented here on the behavior of the MEMD.
We have taken five channels of financial time series. The whole financial data space is
decomposed into IMFs usingMEMD. Using a k step-ahead AR prediction model, the original
IMFs (for channel-2) and the corresponding predicted signals are shown in Figure 10. It is
observed that the predicted signals (blue) are very close to the original signal at higher-order
IMFs, whereas error is increased with decreasing the order of IMFs, that is, more prediction
errors occurred for the IMFs with higher bandwidth. After applying MEMD, the IMFs are
transformed to frequency domain using FFT. Then, the power spectrum is estimated for each
mode as the average of the squared absolute values of the corresponding Fourier transforms
over all the channels. The average spectra are shown in Figure 11 in which it is observed that
in locally, each IMF contains lower frequency oscillation than the one extracted just before.
This means that each higher-order IMFs contain lower bandwidth than that of lower-order
IMFs. That is why the prediction performance is increased for higher order IMFs.

The proposed algorithm is also evaluated in the financial time series with SNR, MSE,
and absolute difference between the actual and predicted values. The results are summarized
in Figures 12, 13, 14, and 15. In Figures 12 and 13, the rose histogram of the absolute
differences between the actual and the estimated values on the test set, as well as the plot
of the actual and the predicted values, is given for each of the four different approaches. It is
clearly observed from Figures 12 and 13 that the distribution of values is grouped according
to their numeric range. Each group is shown as one bin. The length of each bin reflects the
number of elements of absolute differences of the computed and the actual outputs in an
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Figure 11: The average spectrum of individual IMFs over five channels of financial time series; (a) IMF1–
IMF5, (b) IMF6–IMF10.

angle that falls within a group, which ranges from 0 to the greatest number of elements
deposited in any one bin and it is observed graphically that MEMD provides better result
in comparison with wavelet and EMD-based multiband predictions.

The performance in terms of SNR in dB and MSE corresponding to the EMD, MEMD,
and wavelet-based multiband methods is shown in Figures 14 and 15, respectively. It is
observed from Figures 14 and 15 that the SNR with MEMD-based method is always higher
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Figure 12: The rose histogram of elements of the absolute differences of the predicted and original data
using ARMA (a) and DWT-ARMA (b) for single channel (ch-2).
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Figure 13: The rose histogram of elements of the absolute differences of the predicted and original data
using EMD-ARMA (a) and MEMD-ARMA (b) for single channel (ch-2).

than the EMD and wavelet-based multiband ARMA model, and MSE is always smaller than
wavelet and EMD. It is already showed that original data is reconstructed using DWT, EMD,
and MEMD with a negligible error. All of these criteria explain that the MEMD gives more
effective prediction results and better results than DWT and EMD-based ARMA forecasting
model.
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6. Discussion and Conclusions

A novel method of multiband prediction model of financial data is implemented with
multivariate empirical mode decomposition (MEMD)which is a time domain, data adaptive
filter bank analysis scheme. The predicted data using the proposed model are closest to the
original time series.

The Fourier transform uses priori sinusoidal bases and is suitable only for stationary
signals. The wavelet transform has already become popular as a data adaptive multiband
decomposition method using priori wavelet basis and hence limited in some extend for
non-stationary signals. The EMD-based multiband representation technique is based on
the local characteristic time scale of the data. Its bases (IMFs) used to represent the given
signal are nonlinear functions that are directly extracted from the data. Although EMD-based
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decomposition method is a fully data adaptive method, its mode mixing is evident between
intrinsic mode functions (IMFs) or a single mode is “leaked” into two IMFs. In BEMD and
trivariate EMD, number of channel selection is crucial issue from multiple channels signal
and trivariate EMD takes projections along multiple directions in three-dimensional spaces.
Whereas the MEMD process straightforwardly the multichannel input data in n-dimensional
spaces without any question of channel selection. It aligns better with the corresponding
IMFs from different channels across the same frequency range and effects of mode mixing
have been reduced which is crucial for real-world applications which are discussed above.
Each IMF is a monocomponent in the local scale and hence properly modeled by ARMA
parameters reducing the prediction error. The MEMD works better with the homogeneous
data for different channels. In this experiment, the financial time series of the companies
similar in nature (different oil companies) are used. Moreover, it produces more IMFs
with narrow bandwidth than classical EMD. The increased number of IMFs with narrow
bandwidth is well fitted with ARMA model and hence better prediction is achieved using
the proposed MEMD-ARMA model.

The proposed method has been compared with wavelet-based subband decompo-
sition method using biorthogonal wavelet. It should be noted that biorthogonal wavelet
has the capability to reconstruct the original signal with minimum error compared to the
other wavelets. In wavelet-based filter bank, it is a critical decision to select the proper
wavelet function for decomposition based on the characteristics of analyzing signals. In the
EMD and MEMD-based methods, no input parameter is required for decomposition and
perfect reconstruction is obtained by simply adding the IMFs (also the residue), hence the
proposed one is superior to the other multiband ARMA models. The residual error of EMD-
based multiband ARMA method is always less than the errors introduced by wavelet-based
subband ARMA model. The specialty of EMD-based multiband method is that it is full data
adaptive decomposition without approximation of signal components based on the priori
basis functions.

Generally, the result of the approximation series under the wavelet transforms; EMD
and MEMD is better than the original return data and more stable in variance, mean, and no
outliers. Furthermore, the forecasting using ARMA under multiband decomposition is better
than forecasting directly, and also it gives more accurate results. Finally, all the mentioned
methods are compared (in terms of SNR, MSE, and rose histogram of the absolute differences
of the predicted and the actual data). It is found that the MEMD-based approach performs
better because of its full data adaptive in nature and alignment of the corresponding IMFs
obtained from different homogeneous time series across the same frequency range.
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[6] A. Härmä, “Linear predictive coding with modified filter structures,” IEEE Transactions on Speech and

Audio Processing, vol. 9, no. 8, pp. 769–777, 2001.



Discrete Dynamics in Nature and Society 21

[7] R. A. Finan, R. I. Damper, and A. T. Sapeluk, “Improved data modeling for text-dependent speaker
recognition using sub-band processing,” International Journal of Speech Technology, vol. 4, no. 1, pp.
45–62, 2001.

[8] E. Erzin, A. Enis Cetin, and Y. Yardimci, “Subband analysis for robust speech recognition in the
presence of car noise,” in Proceedings of the 20th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’95), vol. 1, pp. 417–420, May 1995.

[9] W. C. Chen, C. Hsieh, and E. Lai, “Multiband approach to robust text-independent speaker
identification,” Journal of Computational Linguistics and Chinese Language Processing, vol. 9, no. 2, pp.
63–76, 2004.

[10] S. L. Tan and T. R. Fischer, “Linear prediction of subband signals,” IEEE Journal on Selected Areas in
Communications, vol. 12, no. 9, pp. 1576–1583, 1994.

[11] N. E. Huang and S. S. P. Shen, Hilbert-Huang Transform and Its Applications, vol. 5 of Interdisciplinary
Mathematical Sciences, World Scientific, Hackensack, NJ, USA, 2005.

[12] N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society A, vol. 454, no.
1971, pp. 903–995, 1998.

[13] A. H. Tewfik, “Potentials and limitations of wavelets in signal acquisition and processing,” in
Proceedings of the 2nd International IEEE EMBS Conference, pp. 328–329, 1993.

[14] S. Alonso-Quesada andM. De la Sen, “Robust adaptive stabilization of linear time-invariant dynamic
systems by using fractional-order holds andmultirate sampling controls,”Discrete Dynamics in Nature
and Society, vol. 2010, Article ID 620546, 27 pages, 2010.

[15] M. De la Sen, “On Chebyshev’s systems and non-uniform sampling related to Caputo fractional
dynamic time-invariant systems,”Discrete Dynamics in Nature and Society, vol. 2010, Article ID 846590,
24 pages, 2010.
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