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Combining the exponential dichotomy of evolution family, composition theorems for almost automorphic functions with Banach
fixed point theorem, we establish new existence and uniqueness theorems for almost automorphic mild solutions to neutral
parabolic nonautonomous evolution equations with nondense domain. A unified framework is set up to investigate the existence
and uniqueness of almost automorphic mild solutions to some classes of parabolic partial differential equations and neutral
functional differential equations.

1. Introduction

In this paper, we are interested in the existence and unique-
ness of almost automorphic mild solutions to the following
neutral parabolic evolution equations in Banach spaceX:

𝑑

𝑑𝑡
[𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡))] = 𝐴 (𝑡) [𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡))]

+ 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R,

(1)

𝑑

𝑑𝑡
[𝑢 (𝑡) + 𝑓 (𝑡, 𝐵𝑢 (𝑡))] = 𝐴 (𝑡) [𝑢 (𝑡) + 𝑓 (𝑡, 𝐵𝑢 (𝑡))]

+ 𝑔 (𝑡, 𝐶𝑢 (𝑡)) , 𝑡 ∈ R,

(2)

where sectorial operators 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ X → X have
a domain 𝐷(𝐴(𝑡)) not necessarily dense in X and satisfy
“Acquistapace-Terreni” conditions, 𝑓, 𝑔 : R × X → X are
almost automorphic in the first argument and Lipschitz in
the second argument, and 𝐵, 𝐶 : X 󳨃→ X are bounded linear
operators.

Bochner has shown in the seminal work [1] that in certain
situations it is possible to establish the almost periodicity
of an object by first establishing its almost automorphy and
then invoking auxiliary conditions which, when coupled

with almost automorphy, give almost periodicity. From then
on, automorphy has been widely investigated. Fundamental
properties of almost automorphic functions on groups and
abstract almost automorphic minimal flows were studied by
Veech [2, 3] and others. Afterwards, Zaki [4] extended the
notion of scalar-valued almost automorphy to the one of
vector-valued almost automorphic functions, paving the road
to many applications to differential equations and dynamical
systems. Among other things, Shen and Yi [5] showed that
almost automorphy is essential and fundamental in the
qualitative study of almost periodic differential equations in
the sense that almost automorphic solutions are the right
class for almost periodic systems. We refer the readers to the
monographs [6, 7] by N’Guérékata for more information on
this topic.

In the autonomous case, namely 𝐴(𝑡) = 𝐴, the existence
and uniqueness of almost automorphic mild solutions to
evolution equation (1) with 𝑓 = 0 have been successfully
investigated in [6–13] in the framework of semigroups of
bounded linear operators. In [13], N’Guérékata studied the
existence and uniqueness of almost automorphic solutions
for semilinear evolution equation

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (3)
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where 𝐴 generates an exponentially stable semigroup on
Banach spaceX and 𝑔 : R ×X → X is almost automorphic.
The author proved that the unique bounded mild solution
𝑢 : R → X of (3) is almost automorphic. In [8],
Boulite et al. studied the existence and uniqueness of almost
automorphic solutions for evolution equation (3), assuming
that 𝐴 generates a hyperbolic semigroup on Banach space X
and 𝑔 : R × X

𝛼
→ X is almost automorphic, where X

𝛼

is an intermediate space between 𝐷(𝐴) and X. The authors
proved that the unique bounded mild solution 𝑢 : R → X

𝛼

of (3) is almost automorphic. Cieutat and Ezzinbi [9] studied
the existence of bounded and compact almost automorphic
solutions for semilinear evolution equation (3). The main
methods are through the minimizing of some subvariant
functionals. They gave sufficient conditions ensuring the
existence of an almost automorphicmild solution when there
is at least one bounded mild solution on R+.

In the nonautonomous case, almost automorphic mild
solutions to evolution equation (1) with 𝑓 = 0 have been
successfully investigated in [14–16] in the framework of
evolution family. Amongothers, Baroun et al. [14] generalized
the main results of [8] to the nonautonomous case. The
authors proved that the unique bounded mild solution 𝑢 :
R → X

𝛼
of the semilinear evolution equation
𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑡) 𝑢 (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (4)

is almost automorphic, assuming that the evolution family
{𝑈(𝑡, 𝑠)}

𝑡≥𝑠
generated by 𝐴(𝑡) has an exponential dichotomy

and 𝑔 : R × X
𝛼
→ X is almost automorphic. Ding et

al. [15] established the existence and uniqueness theorem of
almost automorphic mild solutions to the evolution equation
(4), where the evolution family {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
generated by 𝐴(𝑡)

has an exponential dichotomy and 𝑔 : R × X → X is
almost automorphic. Liu and Song [16] proved the existence
and uniqueness of an almost automorphic or a weighted
pseudo almost automorphic mild solution to (4), assuming
that the evolution family {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
generated by 𝐴(𝑡) is

exponentially stable and 𝑔 : R × X → X is almost
automorphic or weighted pseudo almost automorphic.

A rich source of the literature exists on almost auto-
morphic mild solutions to linear and semilinear evolution
equations. However, to the best of our knowledge, there
are few results available on the existence and uniqueness
of almost automorphic mild solutions to neutral parabolic
nonautonomous evolution equations (1) and (2), especially
in the case of not necessarily dense domain and bounded
perturbations. Nondensity occurs in many situations, from
restrictions made on the space where the equation is consid-
ered or from boundary conditions. For example, the space
𝐶
2

[0, 𝜋] of twice continuously differential functions with null
value on the boundary is nondense in 𝐶[0, 𝜋], the space of
continuous functions. One can refer for this to [17–19] or
Section 5 for more details. We further remark that our first
main result (Theorem 18) recovers partlyTheorem 2.2 in [15]
and Theorem 3.2 in [16] in the parabolic case. Moreover,
a unified framework is set up in the second main result
(Theorem 21) to study the existence and uniqueness of almost
automorphic mild solutions to some classes of parabolic

partial differential equations and neutral functional differen-
tial equations. As one will see, the additional neutral term
𝑓(𝑡, 𝑢(𝑡)) greatly widens the applications of the main result
since (2) is general enough to incorporate some classes of
parabolic partial differential equations and neutral functional
differential equations as special cases.

As a preparation, in Section 2 we fix our notation and
collect some basic facts on evolution family and almost auto-
morphy. Section 3 deals with the proof of the existence and
uniqueness theorem of almost automorphicmild solutions to
evolution equation (1). In Section 4, we study the existence
and uniqueness of almost automorphic mild solutions to
evolution equation (2) with bounded perturbations. Finally,
the abstract results are applied to some classes of parabolic
partial differential equations and neutral functional differen-
tial equations.

2. Preliminaries

Throughout this paper, N, Z, R, and C stand for the sets
of positive integer, integer, real, and complex numbers, and
(X, ‖ ⋅ ‖) stands for a Banach space. If (Y , ‖ ⋅ ‖Y ) is another
Banach space, the space 𝐵(X,Y ) denotes the Banach space of
all bounded linear operators fromX intoY equippedwith the
uniform operator topology. The resolvent operator 𝑅(𝜆, 𝐴) is
defined by 𝑅(𝜆, 𝐴) := (𝜆 − 𝐴)−1 for 𝜆 ∈ 𝜌(𝐴), the resolvent
set of a linear operator 𝐴.

2.1. Evolution Family and Exponential Dichotomy

Definition 1 (see [20, 21]). A family of bounded linear oper-
ators {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
on a Banach space X is called an evolution

family if

(1) 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝑠) = 𝑈(𝑡, 𝑠) and𝑈(𝑠, 𝑠) = 𝐼 for all 𝑡 ≥ 𝑟 ≥ 𝑠
and 𝑡, 𝑟, 𝑠 ∈ R;

(2) the map (𝑡, 𝑠) 󳨃→ 𝑈(𝑡, 𝑠)𝑥 is continuous for all 𝑥 ∈ X,
𝑡 > 𝑠, and 𝑡, 𝑠 ∈ R.

Definition 2 (see [20, 21]). An evolution family {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

on
a Banach spaceX has an exponential dichotomy (or is called
hyperbolic) if there exist projections 𝑃(𝑡), 𝑡 ∈ R, uniformly
bounded and strongly continuous in 𝑡 and constants 𝑀 >

0, 𝛿 > 0 such that

(1) 𝑈(𝑡, 𝑠)𝑃(𝑠) = 𝑃(𝑡)𝑈(𝑡, 𝑠) for 𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R;
(2) the restriction𝑈

𝑄
(𝑡, 𝑠) : 𝑄(𝑠)X → 𝑄(𝑡)X of𝑈(𝑡, 𝑠) is

invertible for 𝑡 ≥ 𝑠 (and we set 𝑈
𝑄
(𝑠, 𝑡) := 𝑈

𝑄
(𝑡, 𝑠)
−1);

(3) ‖𝑈(𝑡, 𝑠)𝑃(𝑠)‖
𝐵(X) ≤ 𝑀𝑒

−𝛿(𝑡−𝑠)

, ‖𝑈
𝑄
(𝑠, 𝑡)𝑄(𝑡)‖

𝐵(X)
≤

𝑀𝑒
−𝛿(𝑡−𝑠) for 𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R.

Here and below we set 𝑄 := 𝐼 − 𝑃.

Remark 3. Exponential dichotomy is a classical concept in
the study of the long-term behavior of evolution equations,
combining forward exponential stability on some subspaces
with backward exponential stability on their complements.
Its importance relies in particular on the robustness; that
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is, exponential dichotomy persists under small linear or
nonlinear perturbations (see, e.g., [20–24]).

Definition 4 (see [20, 21]). Given an evolution family
{𝑈(𝑡, 𝑠)}

𝑡≥𝑠
with an exponential dichotomy, one defines its

Green’s function by

Γ (𝑡, 𝑠) := {
𝑈 (𝑡, 𝑠) 𝑃 (𝑠) , 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ R,

−𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) , 𝑡 < 𝑠, 𝑡, 𝑠 ∈ R.

(5)

2.2. Almost Automorphy and Bi-Almost Automorphy. Let
𝐶(R,X) denote the collection of continuous functions from
R into X. Let 𝐵𝐶(R,X) denote the Banach space of all
bounded continuous functions fromR intoX equipped with
the sup norm ‖𝑢‖

∞
:= sup

𝑡∈R‖𝑢(𝑡)‖. Similarly, 𝐶(R × X,Y )

denotes the collection of all jointly continuous functions from
R ×X into Y , and 𝐵𝐶(R ×X,Y ) denotes the collection of all
bounded and jointly continuous functions 𝑓 : R ×X → Y .

Definition 5 (Bochner). A function 𝑓 ∈ 𝐶(R,X) is said to
be almost automorphic if for any sequence of real numbers
{𝑠
󸀠

𝑛
}
𝑛∈N, there exists a subsequence {𝑠𝑛}𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
) = 𝑓 (𝑡) (6)

pointwise for each 𝑡 ∈ R. This limit means that

𝑔 (𝑡) = lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
) (7)

is well defined for each 𝑡 ∈ R and

𝑓 (𝑡) = lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
) (8)

for each 𝑡 ∈ R. The collection of all such functions will be
denoted by 𝐴𝐴(X).

Example 6 (Levitan). The function 𝑓(𝑡) = sin(1/(2 + cos 𝑡 +
cos𝜋𝑡)), 𝑡 ∈ R, is almost automorphic but not almost
periodic.

Remark 7. An almost automorphic function may not be
uniformly continuous, while an almost periodic function
must be uniformly continuous.

Lemma 8 (see [6, 7]). Assume that 𝑓, 𝑔 : R → X are almost
automorphic and 𝜆 is any scalar.Then the following holds true:

(1) 𝑓 + 𝑔, 𝜆𝑓 are almost automorphic;
(2) the range 𝑅

𝑓
of 𝑓 is precompact, so 𝑓 is bounded;

(3) 𝑓
𝜏
defined by 𝑓

𝜏
(𝑡) = 𝑓(𝑡 + 𝜏), 𝜏 ∈ R, is almost

automorphic.

Lemma 9 (see [6, 7]). If {𝑓
𝑛
} is a sequence of almost automor-

phic functions and 𝑓
𝑛
→ 𝑓 (𝑛 → ∞) uniformly on R, then

𝑓 is almost automorphic.

Lemma 10 (see [6]). The space 𝐴𝐴(X) equipped with sup
norm ‖𝑢‖

∞
= sup

𝑡∈R‖𝑢(𝑡)‖ is a Banach space.

Definition 11 (see [25]). A function 𝑓 ∈ 𝐶(R × X,X) is said
to be almost automorphic if 𝑓 is almost automorphic in 𝑡 ∈
R for each 𝑢 ∈ X. That is to say, for every sequence of real
numbers {𝑠󸀠

𝑛
}
𝑛∈N, there exists a subsequence {𝑠𝑛}𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑢) = 𝑓 (𝑡, 𝑢) (9)

pointwise onR for each 𝑢 ∈ X. Denote by 𝐴𝐴(R ×X,X) the
collection of all such functions.

Lemma 12 (see [6,Theorem 2.2.6]). Assume that𝑓 ∈ 𝐴𝐴(R×
X,X) and there exists a constant 𝐿

𝑓
> 0 such that for all 𝑡 ∈ R

and 𝑢, V ∈ X,
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)

󵄩󵄩󵄩󵄩 ≤ 𝐿𝑓 ‖𝑢 − V‖ . (10)

If 𝜙(⋅) ∈ 𝐴𝐴(X), then 𝑓(⋅, 𝜙(⋅)) ∈ 𝐴𝐴(X).

Corollary 13 (see [6, Corollary 2.1.6]). Assume that 𝑢 ∈

𝐴𝐴(X) and 𝐵 ∈ 𝐵(X). If for each 𝑡 ∈ R, V(𝑡) = 𝐵𝑢(𝑡), then
V ∈ 𝐴𝐴(X).

Definition 14 (see [26]). A function 𝑓 ∈ 𝐶(R×R,X) is called
bi-almost automorphic if for every sequence of real numbers
{𝑠
󸀠

𝑛
}
𝑛∈N, one can extract a subsequence {𝑠

𝑛
}
𝑛∈N such that

𝑔 (𝑡, 𝑠) = lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) (11)

is well defined for each 𝑡, 𝑠 ∈ R, and
lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
, 𝑠 − 𝑠
𝑛
) = 𝑓 (𝑡, 𝑠) (12)

for each 𝑡, 𝑠 ∈ R. The collection of all such functions will be
denoted by 𝑏𝐴𝐴(R ×R,X).

In other words, a function 𝑓 ∈ 𝐶(R × R,X) is said to be
bi-almost automorphic if for any sequence of real numbers
{𝑠
󸀠

𝑛
}
𝑛∈N, there exists a subsequence {𝑠𝑛}𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑠 + 𝑠
𝑛
− 𝑠
𝑚
) = 𝑓 (𝑡, 𝑠) (13)

pointwise for each 𝑡, 𝑠 ∈ R.

3. Neutral Parabolic Nonautonomous
Evolution Equation

In this section, we will establish the existence and uniqueness
theorem of almost automorphic mild solutions to neu-
tral parabolic nonautonomous evolution equation (1) under
assumptions (H1)–(H5) listed below:
(H1) there exist constants 𝜆

0
≥ 0, 𝜃 ∈ (𝜋/2, 𝜋), 𝐿

0
, 𝐾
0
≥

0, and 𝛼, 𝛽 ∈ (0, 1] with 𝛼 + 𝛽 > 1 such that

Σ
𝜃
∪ {0} ⊂ 𝜌 (𝐴 (𝑡) − 𝜆

0
) ,

󵄩󵄩󵄩󵄩𝑅 (𝜆, 𝐴 (𝑡) − 𝜆0)
󵄩󵄩󵄩󵄩𝐵(X) ≤

𝐾
0

1 + |𝜆|
,

󵄩󵄩󵄩󵄩 (𝐴 (𝑡) − 𝜆0) 𝑅 (𝜆, 𝐴 (𝑡) − 𝜆0)

× [𝑅 (𝜆
0
, 𝐴 (𝑡)) − 𝑅 (𝜆

0
, 𝐴 (𝑠))]

󵄩󵄩󵄩󵄩𝐵(X)

≤ 𝐿
0
|𝑡 − 𝑠|

𝛼

|𝜆|
−𝛽

(14)

for 𝑡, 𝑠 ∈ R, 𝜆 ∈ Σ
𝜃
:= {𝜆 ∈ C \ {0} : | arg 𝜆| ≤ 𝜃},
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(H2) the evolution family {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

generated by𝐴(𝑡) has
an exponential dichotomy with dichotomy constants
𝑀 > 0, 𝛿 > 0, dichotomy projections 𝑃(𝑡), 𝑡 ∈ R,
and Green’s function Γ(𝑡, 𝑠),

(H3) Γ(𝑡, 𝑠)𝑥 ∈ 𝑏𝐴𝐴(R ×R,X) for each 𝑥 ∈ X,

(H4) 𝑓 ∈ 𝐴𝐴(R×X,X), and there exists a constant 𝐿
𝑓
> 0

such that for all 𝑡 ∈ R and 𝑢, V ∈ X,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)
󵄩󵄩󵄩󵄩 ≤ 𝐿𝑓 ‖𝑢 − V‖ , (15)

(H5) 𝑔 ∈ 𝐴𝐴(R×X,X), and there exists a constant 𝐿
𝑔
> 0

such that for all 𝑡 ∈ R and 𝑢, V ∈ X,

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V)
󵄩󵄩󵄩󵄩 ≤ 𝐿𝑔 ‖𝑢 − V‖ . (16)

Remark 15. Assumption (H1) is usually called “Acquistapace-
Terreni” conditions, which was first introduced in [27] for
𝜆
0
= 0. If (H1) holds, then there exists a unique evolution

family {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

on X such that (𝑡, 𝑠) 󳨃→ 𝑈(𝑡, 𝑠) ∈ 𝐵(X)

is strongly continuous for 𝑡 > 𝑠, 𝑈(⋅, 𝑠) ∈ 𝐶1((𝑠,∞), 𝐵(X)),
𝜕
𝑡
𝑈(𝑡, 𝑠) = 𝐴(𝑡)𝑈(𝑡, 𝑠) for 𝑡 > 𝑠. These assertions are

established inTheorem 2.3 of [28]. See also [27, 29, 30].

Definition 16. Amild solution to (1) is a continuous function
𝑢 : R → X satisfying integral equation

𝑢 (𝑡) = − 𝑓 (𝑡, 𝑢 (𝑡)) + 𝑈 (𝑡, 𝑠) [𝑢 (𝑠) + 𝑓 (𝑠, 𝑢 (𝑠))]

+ ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎,

(17)

for all 𝑡 ≥ 𝑠 and all 𝑠 ∈ R.

Lemma 17. Assume that (H1)–(H3) and (H5) hold. Define
nonlinear operator Λ on 𝐴𝐴(X) by

(Λ𝑢) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑃 (𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ R.

(18)

Then Λmaps 𝐴𝐴(X) into itself.

Proof. Combining the ideas from Theorem 4.28 in [22], the
technique of exponential dichotomy, composition theoremof
almost automorphic functions, and the Lebesgue dominated
convergence theorem, we strive for a more self-contained
proof. Let 𝑢 ∈ 𝐴𝐴(X). Then it follows from Lemma 12 [6,
Theorem 2.2.6] that ℎ := 𝑔(⋅, 𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H5).
Hence, (Λ𝑢)(𝑡) can be rewritten as

(Λ𝑢) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑃 (𝑠) ℎ (𝑠) 𝑑𝑠

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ R.

(19)

From triangle inequality and exponential dichotomy of
{𝑈(𝑡, 𝑠)}

𝑡≥𝑠
, it follows that

‖(Λ𝑢) (𝑡)‖ ≤ 𝑀∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

‖ℎ (𝑠)‖ 𝑑𝑠

+𝑀∫

+∞

𝑡

𝑒
−𝛿(𝑠−𝑡)

‖ℎ (𝑠)‖ 𝑑𝑠

≤ 𝑀‖ℎ‖
∞
∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠

+𝑀‖ℎ‖
∞
∫

+∞

𝑡

𝑒
−𝛿(𝑠−𝑡)

𝑑𝑠

≤
2𝑀

𝛿
‖ℎ‖
∞
.

(20)

Hence, Λ is well defined for each 𝑡 ∈ R. To show Λ𝑢 ∈

𝐶(R,X), we will verify that

lim
Δ𝑡→0

‖(Λ𝑢) (𝑡 + Δ𝑡) − (Λ𝑢) (𝑡)‖ = 0, for each 𝑡 ∈ R.

(21)

By ℎ ∈ 𝐶(R,X) and the strong continuity of Γ(𝑡, 𝑠), we have
for each 𝑡 ∈ R, 𝑥 ∈ X, 𝜎 > 0,

lim
Δ𝑡→0

‖ℎ (𝑡 + Δ𝑡) − ℎ (𝑡)‖ = 0,

lim
Δ𝑡→0

‖𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎) 𝑥

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) 𝑥‖ = 0,

lim
Δ𝑡→0

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎) 𝑥

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) 𝑥

󵄩󵄩󵄩󵄩 = 0.

(22)

Transforming (19) into another form, we have, for 𝜎 > 0,

(Λ𝑢) (𝑡) = ∫

+∞

0

𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎) 𝑑𝜎

− ∫

+∞

0

𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎) 𝑑𝜎,

𝑡 ∈ R.

(23)

In view of (23), triangle inequality and exponential
dichotomy of {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
, we have

‖(Λ𝑢) (𝑡 + Δ𝑡) − (Λ𝑢) (𝑡)‖

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎)

× ℎ (𝑡 + Δ𝑡 − 𝜎) 𝑑𝜎

−∫

+∞

0

𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
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+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈
𝑄
(𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎)

× ℎ (𝑡 + Δ𝑡 + 𝜎) 𝑑𝜎

−∫

+∞

0

𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎)

× [ℎ (𝑡 + Δ𝑡 − 𝜎) − ℎ (𝑡 − 𝜎)] 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

[𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎)

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎)] ℎ (𝑡 − 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈
𝑄
(𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎)

× [ℎ (𝑡 + Δ𝑡 + 𝜎) − ℎ (𝑡 + 𝜎)] 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

[𝑈
𝑄
(𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎)

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎)] ℎ (𝑡 + 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀∫

+∞

0

𝑒
−𝛿𝜎

‖ℎ (𝑡 + Δ𝑡 − 𝜎) − ℎ (𝑡 − 𝜎)‖ 𝑑𝜎

+ ∫

+∞

0

‖𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎) ℎ (𝑡 − 𝜎)

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎)‖ 𝑑𝜎

+𝑀∫

+∞

0

𝑒
−𝛿𝜎

‖ℎ (𝑡 + Δ𝑡 + 𝜎) − ℎ (𝑡 + 𝜎)‖ 𝑑𝜎

+ ∫

+∞

0

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎) ℎ (𝑡 + 𝜎)

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎)

󵄩󵄩󵄩󵄩 𝑑𝜎.

(24)

Thus, in the Lebesgue dominated convergence theorem, (22)
leads to (21) and therefore to Λ𝑢 ∈ 𝐶(R,X).

To show Λ𝑢 ∈ 𝐴𝐴(X), let us take a sequence of real
numbers {𝑠󸀠

𝑛
}
𝑛∈N and show that there exists a subsequence

{𝑠
𝑛
}
𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

󵄩󵄩󵄩󵄩(Λ𝑢) (𝑡 + 𝑠𝑛 − 𝑠𝑚) − (Λ𝑢) (𝑡)
󵄩󵄩󵄩󵄩 = 0,

for each 𝑡 ∈ R.

(25)

By ℎ ∈ 𝐴𝐴(X) and (H3), there exists a subsequence {𝑠
𝑛
}
𝑛∈N

such that for each 𝑡 ∈ R, 𝑥 ∈ X, 𝜎 > 0,

lim
𝑚→∞

lim
𝑛→∞

󵄩󵄩󵄩󵄩ℎ (𝑡 + 𝑠𝑛 − 𝑠𝑚) − ℎ (𝑡)
󵄩󵄩󵄩󵄩 = 0,

lim
𝑚→∞

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑈 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 − 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) 𝑥

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) 𝑥‖ = 0,

lim
𝑚→∞

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 + 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) 𝑥

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎) 𝑃 (𝑡 + 𝜎) 𝑥

󵄩󵄩󵄩󵄩 = 0.

(26)

Again, in view of (23), triangle inequality and exponential
dichotomy of {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
, we obtain

󵄩󵄩󵄩󵄩(Λ𝑢) (𝑡 + 𝑠𝑛 − 𝑠𝑚) − (Λ𝑢) (𝑡)
󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) ℎ (𝑡 + 𝑠

𝑛
− 𝑠
𝑚
− 𝜎) 𝑑𝜎

−∫

+∞

0

𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈
𝑄
(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) ℎ (𝑡 + 𝑠

𝑛
− 𝑠
𝑚
+ 𝜎) 𝑑𝜎

−∫

+∞

0

𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

⋅ [ℎ (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) − ℎ (𝑡 − 𝜎)] 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

[𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

− 𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ] ℎ (𝑡 − 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

𝑈
𝑄
(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

⋅ [ℎ (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) − ℎ (𝑡 + 𝜎)] 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

+∞

0

[𝑈
𝑄
(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

− 𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎)] ℎ (𝑡 + 𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀∫

+∞

0

𝑒
−𝛿𝜎 󵄩󵄩󵄩󵄩ℎ (𝑡 + 𝑠𝑛 − 𝑠𝑚 − 𝜎) − ℎ (𝑡 − 𝜎)

󵄩󵄩󵄩󵄩 𝑑𝜎

+ ∫

+∞

0

󵄩󵄩󵄩󵄩𝑈 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 − 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) ℎ (𝑡 − 𝜎)

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎)
󵄩󵄩󵄩󵄩 𝑑𝜎
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+𝑀∫

+∞

0

𝑒
−𝛿𝜎 󵄩󵄩󵄩󵄩ℎ (𝑡 + 𝑠𝑛 − 𝑠𝑚 + 𝜎) − ℎ (𝑡 + 𝜎)

󵄩󵄩󵄩󵄩 𝑑𝜎

+ ∫

+∞

0

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 + 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) ℎ (𝑡 + 𝜎)

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎)

󵄩󵄩󵄩󵄩 𝑑𝜎.

(27)

Thus, in the Lebesgue dominated convergence theorem, (26)
leads to (25) and therefore to Λ𝑢 ∈ 𝐴𝐴(X). Here we used
the translation invariance of almost automorphic functions,
which is collected in Lemma 8(3).The proof is complete.

Now we are in a position to state and prove the first main
result of this paper.

Theorem 18. Suppose that (H1)–(H5) hold. If Θ = 𝐿
𝑓
+

(2𝑀𝐿
𝑔
/𝛿) < 1, then there exists a unique mild solution 𝑢 ∈

𝐴𝐴(X) to (1) such that

𝑢 (𝑡) = − 𝑓 (𝑡, 𝑢 (𝑡)) + ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(28)

Proof. Firstly, define nonlinear operator Γ on 𝐴𝐴(X) by

(Γ𝑢) (𝑡) = − 𝑓 (𝑡, 𝑢 (𝑡)) + ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(29)

Let 𝑢 ∈ 𝐴𝐴(X), then it follows from Lemma 12 [6, Theorem
2.2.6] that 𝑓(⋅, 𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H4). Together with
Lemma 17, we deduce that the operator Γ is well defined and
maps 𝐴𝐴(X) into itself.

Secondly, we will prove that Γ is a strict contraction on
𝐴𝐴(X). Let V, 𝑤 ∈ 𝐴𝐴(X). By (H2), (H4), and (H5), we have

‖(ΓV) (𝑡) − (Γ𝑤) (𝑡)‖

≤ 𝐿
𝑓
‖V (𝑡) − 𝑤 (𝑡)‖

+ 𝑀∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 󵄩󵄩󵄩󵄩𝑔 (𝑠, V (𝑠)) − 𝑔 (𝑠, 𝑤 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+𝑀∫

+∞

𝑡

𝑒
−𝛿(𝑠−𝑡) 󵄩󵄩󵄩󵄩𝑔 (𝑠, V (𝑠)) − 𝑔 (𝑠, 𝑤 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝐿
𝑓
‖V − 𝑤‖

∞
+𝑀𝐿

𝑔
∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

+𝑀𝐿
𝑔
∫

+∞

𝑡

𝑒
−𝛿(𝑠−𝑡)

‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

≤ (𝐿
𝑓
+
2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖

∞
.

(30)

Hence,

‖ΓV − Γ𝑤‖
∞
≤ (𝐿
𝑓
+
2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖

∞
. (31)

If Θ = 𝐿
𝑓
+ (2𝑀𝐿

𝑔
/𝛿) < 1, then the operator Γ becomes

a strict contraction on 𝐴𝐴(X). Since the space 𝐴𝐴(X)
equipped with sup norm ‖𝑢‖

∞
= sup

𝑡∈R‖𝑢(𝑡)‖ is a Banach
space by Lemma 10, an application of Banach fixed point
theorem shows that there exists a unique 𝑢 ∈ 𝐴𝐴(X) such
that (28) holds.

Finally, to prove that 𝑢 satisfies (17) for all 𝑡 ≥ 𝑠, all 𝑠 ∈ R.
For this, we let

𝑢 (𝑠) = − 𝑓 (𝑠, 𝑢 (𝑠)) + ∫

𝑠

−∞

𝑈 (𝑠, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑠

𝑈
𝑄
(𝑠, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(32)

Multiplying both sides of (32) by 𝑈(𝑡, 𝑠) for all 𝑡 ≥ 𝑠, we have

𝑈 (𝑡, 𝑠) 𝑢 (𝑠) = − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))

+ ∫

𝑠

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫

𝑡

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) + 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡))

− ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(33)

Hence, 𝑢 ∈ 𝐴𝐴(X) is a unique mild solution to (1). The proof
is complete.

4. Bounded Perturbations

In this section, we consider neutral parabolic nonau-
tonomous evolution equation (2). For this, we need assump-
tions (H1)–(H5) listed in the previous section and the
following assumption:

(H6) 𝐵, 𝐶 ∈ 𝐵(X) with max{‖𝐵‖
𝐵(X), ‖𝐶‖𝐵(X)} = 𝐾.
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Definition 19. Amild solution to (2) is a continuous function
𝑢 : R → X satisfying integral equation

𝑢 (𝑡) = − 𝑓 (𝑡, 𝐵𝑢 (𝑡)) + 𝑈 (𝑡, 𝑠) [𝑢 (𝑠) + 𝑓 (𝑠, 𝐵𝑢 (𝑠))]

+ ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

(34)

for all 𝑡 ≥ 𝑠 and all 𝑠 ∈ R.

Lemma 20. Let assumptions (H1)–(H3), (H5), and (H6) hold.
Define nonlinear operator Λ

1
on 𝐴𝐴(X) by

(Λ
1
𝑢) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑃 (𝑠) 𝑔 (𝑠, 𝐶𝑢 (𝑠)) 𝑑𝑠

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) 𝑔 (𝑠, 𝐶𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ R.

(35)

Then Λ
1
maps 𝐴𝐴(X) into itself.

Proof. Let 𝑢(⋅) ∈ 𝐴𝐴(X). By (H6) andCorollary 13, we obtain
𝐶𝑢(⋅) ∈ 𝐴𝐴(X). Then it follows from Lemma 12 [6, Theorem
2.2.6] that ℎ

1
:= 𝑔(⋅, 𝐶𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H5). The

left is almost same as the proof of Lemma 17, remembering to
replace Λ, ℎ by Λ

1
, and ℎ

1
, respectively. This ends the proof.

Now we are in a position to state and prove the second
main result of this paper.

Theorem 21. Suppose that (H1)–(H6) hold. If Θ
1
= 𝐾(𝐿

𝑓
+

(2𝑀𝐿
𝑔
/𝛿)) < 1, then there exists a unique mild solution 𝑢 ∈

𝐴𝐴(X) to (2) such that

𝑢 (𝑡) = − 𝑓 (𝑡, 𝐵𝑢 (𝑡)) + ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(36)

Proof. Firstly, define nonlinear operator Γ
1
on 𝐴𝐴(X) by

(Γ
1
𝑢) (𝑡) = − 𝑓 (𝑡, 𝐵𝑢 (𝑡))

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(37)

Let 𝑢 ∈ 𝐴𝐴(X). By (H6) and Corollary 13, we obtain 𝐵𝑢 ∈
𝐴𝐴(X). Hence, it follows from Lemma 12 [6, Theorem 2.2.6]
that 𝑓(⋅, 𝐵𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H4). Together with
Lemma 20, we deduce that the operator Γ

1
is well defined and

maps 𝐴𝐴(X) into itself.

Secondly, we will prove that Γ
1
is a strict contraction on

𝐴𝐴(X) and apply Banach fixed point theorem. Let V, 𝑤 ∈

𝐴𝐴(X). Then it follows from (H2), (H4), (H5), and (H6) that

󵄩󵄩󵄩󵄩(Γ1V) (𝑡) − (Γ1𝑤) (𝑡)
󵄩󵄩󵄩󵄩

≤ 𝐾𝐿
𝑓
‖V (𝑡) − 𝑤 (𝑡)‖

+ 𝑀∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝐶V (𝑠)) − 𝑔 (𝑠, 𝐶𝑤 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+𝑀∫

+∞

𝑡

𝑒
−𝛿(𝑠−𝑡) 󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝐶V (𝑠)) − 𝑔 (𝑠, 𝐶𝑤 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝐾𝐿
𝑓
‖V − 𝑤‖

∞
+𝑀𝐾𝐿

𝑔
∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

+𝑀𝐾𝐿
𝑔
∫

+∞

𝑡

𝑒
−𝛿(𝑠−𝑡)

‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

≤ 𝐾(𝐿
𝑓
+
2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖

∞
.

(38)

Hence,

󵄩󵄩󵄩󵄩Γ1V − Γ1𝑤
󵄩󵄩󵄩󵄩∞ ≤ 𝐾(𝐿𝑓 +

2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖

∞
. (39)

If Θ
1
= 𝐾(𝐿

𝑓
+ (2𝑀𝐿

𝑔
/𝛿)) < 1, then the operator Γ

1

becomes a strict contraction on 𝐴𝐴(X). Since the space
𝐴𝐴(X) equipped with sup norm ‖𝑢‖

∞
= sup

𝑡∈R‖𝑢(𝑡)‖ is a
Banach space by Lemma 10, an application of Banach fixed
point theorem shows that there exists a unique 𝑢 ∈ 𝐴𝐴(X)
such that (36) holds.

Finally, to prove that 𝑢 satisfies (34) for all 𝑡 ≥ 𝑠, all 𝑠 ∈ R.
For this, we let

𝑢 (𝑠) = − 𝑓 (𝑠, 𝐵𝑢 (𝑠)) + ∫

𝑠

−∞

𝑈 (𝑠, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑠

𝑈
𝑄
(𝑠, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(40)

Multiplying both sides of (40) by 𝑈(𝑡, 𝑠) for all 𝑡 ≥ 𝑠, then

𝑈 (𝑡, 𝑠) 𝑢 (𝑠) = − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝐵𝑢 (𝑠))

+ ∫

𝑠

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫

+∞

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝐵𝑢 (𝑠))

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎
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− ∫

+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫

𝑡

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝐵𝑢 (𝑠)) + 𝑢 (𝑡) + 𝑓 (𝑡, 𝐵𝑢 (𝑡))

− ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(41)

Hence, 𝑢 ∈ 𝐴𝐴(X) is a unique mild solution to (2).The proof
is complete.

5. Applications to Parabolic Partial
Differential Equations and Neutral
Functional Differential Equations

In this section, two examples are given to illustrate the effec-
tiveness and flexibility ofTheorem 21. By a mild solution to a
partial or neutral functional differential equation, we mean a
mild solution to the corresponding evolution equation.

Example 22. Consider the following parabolic partial differ-
ential equation:

𝜕

𝜕𝑡
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]

=
𝜕
2

𝜕𝑥2
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]

+ (−3 + sin 𝑡 + sin𝜋𝑡) [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]

+ 𝑔 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥)) , 𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,

[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]
󵄨󵄨󵄨󵄨𝑥=0

= [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]
󵄨󵄨󵄨󵄨𝑥=𝜋 = 0, 𝑡 ∈ R,

(42)

where 𝑞 is continuous on [0, 𝜋].
LetX := 𝐶[0, 𝜋] denote the space of continuous functions

from [0, 𝜋] to R equipped with the sup norm and define the
operator 𝐴 by

𝐷(𝐴) := {𝜑 ∈ 𝐶
2

[0, 𝜋] : 𝜑 (0) = 𝜑 (𝜋) = 0} ,

𝐴𝜑 := 𝜑
󸀠󸀠

, 𝜑 ∈ 𝐷 (𝐴) .

(43)

It is known (see [18, Example 14.4]) that 𝐴 is sectorial, 𝐷(𝐴)
is not dense in 𝐶[0, 𝜋], and 𝐴 is the generator of an analytic
semigroup {𝑇(𝑡)}

𝑡≥0
not strongly continuous at 0. Since the

spectrum of 𝐴 consists of the sequence of eigenvalues 𝜆
𝑛
=

−𝑛
2

, 𝑛 ∈ N, it can be easily checked that ‖𝑇(𝑡)‖ ≤ 𝑒
−𝑡 for

𝑡 ≥ 0, remembering that the spectral bound 𝑠(𝐴) = sup{Re 𝜆 :
𝜆 ∈ 𝜎(𝐴)} of 𝐴 coincides with its growth bound

𝜔
𝐴
= inf {𝛾 ∈ R : ∃𝑀 > 0 s.t. ‖𝑇 (𝑡)‖ ≤ 𝑀𝑒𝛾𝑡, 𝑡 ≥ 0} .

(44)

Define a family of linear operators 𝐴(𝑡), 𝑡 ∈ R by

𝐷(𝐴 (𝑡)) = 𝐷 (𝐴 (0)) = 𝐷 (𝐴) ,

𝐴 (𝑡) 𝜑 = (𝐴 − 3 + sin 𝑡 + sin𝜋𝑡) 𝜑, ∀𝜑 ∈ 𝐷 (𝐴) .
(45)

In the case that 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ X → X have a constant
domain 𝐷(𝐴(𝑡)) ≡ 𝐷(𝐴(0)) and 𝜆

0
= 0, it is known that

[31, 32] assumption (H1) can be replaced by the following
assumption (ST).
(ST) There exist constants 𝜃 ∈ (𝜋/2, 𝜋), 𝐿

0
, 𝐾
0
≥ 0, and

𝛼 ∈ (0, 1] such that

Σ
𝜃
∪ {0} ⊂ 𝜌 (𝐴 (𝑡)) , ‖𝑅 (𝜆, 𝐴 (𝑡))‖

𝐵(X) ≤
𝐾
0

1 + |𝜆|
,

󵄩󵄩󵄩󵄩󵄩
(𝐴 (𝑡) − 𝐴 (𝑠)) 𝐴(𝑟)

−1
󵄩󵄩󵄩󵄩󵄩𝐵(X)

≤ 𝐿
0
|𝑡 − 𝑠|

𝛼

(46)

for 𝑡, 𝑠, 𝑟 ∈ R, 𝜆 ∈ Σ
𝜃
:= {𝜆 ∈ C \ {0} : | arg 𝜆| ≤ 𝜃}.

Now, it is not hard to verify that𝐴(𝑡) satisfy (H1). ByTheorem
2.3 of [28], 𝐴(𝑡) generate an evolution family {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
that

is strongly continuous for 𝑡 > 𝑠. Furthermore,

𝑈 (𝑡, 𝑠) 𝜑 = 𝑇 (𝑡 − 𝑠) 𝑒
∫

𝑡

𝑠
(−3+sin 𝜏+sin𝜋𝜏)𝑑𝜏

𝜑. (47)

Hence,
‖𝑈 (𝑡, 𝑠)‖ ≤ 𝑒

−2(𝑡−𝑠) for 𝑡 ≥ 𝑠, (48)

and (H2) is satisfied with𝑀 = 1, 𝛿 = 2, 𝑃(𝑠) = 𝐼.
As for (H3), it is obvious that𝑈(𝑡, 𝑠)𝜑 ∈ 𝐶(R×R, 𝐶[0, 𝜋])

for each 𝜑 ∈ 𝐶[0, 𝜋].
To show that 𝑈(𝑡, 𝑠)𝜑 ∈ 𝑏𝐴𝐴(R × R, 𝐶[0, 𝜋]) for each

𝜑 ∈ 𝐶[0, 𝜋], let us take a sequence of real numbers {𝑠󸀠
𝑛
}
𝑛∈N

and show that there exists a subsequence {𝑠
𝑛
}
𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑈(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑠 + 𝑠
𝑛
− 𝑠
𝑚
) 𝜑 = 𝑈 (𝑡, 𝑠) 𝜑 (49)

pointwise for each 𝑡, 𝑠 ∈ R.
By−3+sin 𝜏+sin𝜋𝜏 ∈ 𝐴𝐴(R), there exists a subsequence

{𝑠
𝑛
}
𝑛∈N such that pointwise for each 𝜏 ∈ R,

lim
𝑚→∞

lim
𝑛→∞

(−3 + sin (𝜏 + 𝑠
𝑛
− 𝑠
𝑚
) + sin𝜋 (𝜏 + 𝑠

𝑛
− 𝑠
𝑚
))

= −3 + sin 𝜏 + sin𝜋𝜏.
(50)

In view of (47) and (50), an application of the Lebesgue
dominated convergence theorem shows that

lim
𝑚→∞

lim
𝑛→∞

𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑠 + 𝑠
𝑛
− 𝑠
𝑚
) 𝜑

= lim
𝑚→∞

lim
𝑛→∞

𝑇 (𝑡 − 𝑠) 𝑒
∫

𝑡+𝑠𝑛−𝑠𝑚

𝑠+𝑠𝑛−𝑠𝑚

(−3+sin 𝜏+sin𝜋𝜏)𝑑𝜏
𝜑

= 𝑇 (𝑡 − 𝑠)

× 𝑒
lim
𝑚→∞

lim
𝑛→∞
∫

𝑡

𝑠
(−3+sin(𝜏+𝑠

𝑛
−𝑠
𝑚
)+sin𝜋(𝜏+𝑠

𝑛
−𝑠
𝑚
))𝑑𝜏

𝜑

= 𝑇 (𝑡 − 𝑠)

× 𝑒
∫

𝑡

𝑠
lim
𝑚→∞

lim
𝑛→∞
(−3+sin(𝜏+𝑠

𝑛
−𝑠
𝑚
)+sin𝜋(𝜏+𝑠

𝑛
−𝑠
𝑚
))𝑑𝜏

𝜑

= 𝑇 (𝑡 − 𝑠) 𝑒
∫

𝑡

𝑠
(−3+sin 𝜏+sin𝜋𝜏)𝑑𝜏

𝜑 = 𝑈 (𝑡, 𝑠) 𝜑

(51)

pointwise for each 𝑡, 𝑠 ∈ R. Hence, (H3) is satisfied.
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Define the operators 𝐵, 𝐶 by

𝐷(𝐵) = 𝐷 (𝐶) = 𝐶 [0, 𝜋] ,

𝐵𝜑 = 𝐶𝜑 = 𝑞 (𝜉) 𝜑, 𝜉 ∈ [0, 𝜋] , 𝜑 ∈ 𝐶 [0, 𝜋] ,

(52)

then ‖𝐵‖
𝐵(𝐶[0,𝜋])

= ‖𝐶‖
𝐵(𝐶[0,𝜋])

= ‖𝑞‖
∞
:= max

𝜉∈[0,𝜋]
{𝑞(𝜉)}.

In view of the above, (42) can be transformed into the
abstract form (2), and assumptions (H1)–(H3) and (H6) are
satisfied.

We add the following assumptions:

(H4a) 𝑓 : R × 𝐶[0, 𝜋] → 𝐶[0, 𝜋], (𝑡, 𝑢) 󳨃→ 𝑓(𝑡, 𝑢) is almost
automorphic, and there exists a constant 𝐿

𝑓
> 0 such

that for all 𝑡 ∈ R, 𝑢(𝑡, ⋅), V(𝑡, ⋅) ∈ 𝐶[0, 𝜋],
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢 (𝑡, ⋅)) − 𝑓 (𝑡, V (𝑡, ⋅))

󵄩󵄩󵄩󵄩𝐶[0,𝜋] ≤ 𝐿𝑓‖𝑢 (𝑡, ⋅) − V (𝑡, ⋅)‖
𝐶[0,𝜋]

,

(53)

(H5a) 𝑔 : R × 𝐶[0, 𝜋] → 𝐶[0, 𝜋], (𝑡, 𝑢) 󳨃→ 𝑔(𝑡, 𝑢) is almost
automorphic, and there exists a constant 𝐿

𝑔
> 0 such

that for all 𝑡 ∈ R, 𝑢(𝑡, ⋅), V(𝑡, ⋅) ∈ 𝐶[0, 𝜋],
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑢 (𝑡, ⋅)) − 𝑔 (𝑡, V (𝑡, ⋅))

󵄩󵄩󵄩󵄩𝐶[0,𝜋] ≤ 𝐿𝑔‖𝑢 (𝑡, ⋅) − V (𝑡, ⋅)‖
𝐶[0,𝜋]

.

(54)

Now, the following proposition is an immediate conse-
quence of Theorem 21.

Proposition 23. Under assumptions (H4a) and (H5a),
parabolic partial differential equation (42) admits a unique
almost automorphic mild solution if

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩∞ (𝐿𝑓 + 𝐿𝑔) < 1. (55)

Furthermore, if one takes

𝑓 (𝑡, 𝑢) = 𝑢 sin 1

−3 + sin 𝑡 + sin𝜋𝑡
,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] ,

𝑔 (𝑡, 𝑢) =
1

8
𝑢 (1 + sin 1

−3 + sin 𝑡 + sin𝜋𝑡
) ,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] .

(56)

A simple computation shows that 𝑓, 𝑔 ∈ 𝐴𝐴(R ×

𝐶[0, 𝜋], 𝐶[0, 𝜋]), (H4a), and (H5a) are satisfied with 𝐿
𝑓
= 1,

𝐿
𝑔
= 1/4. By Proposition 23, (42) admits a unique almost

automorphic mild solution whenever ‖𝑞‖
∞
< 4/5.

Example 24. Consider neutral functional differential equa-
tion
𝜕

𝜕𝑡
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]

=
𝜕
2

𝜕𝑥2
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]

+ (−3 + sin 𝑡 + sin𝜋𝑡) [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]

+ 𝑔 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥)) , 𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,

[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]
󵄨󵄨󵄨󵄨𝑥=0

= [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]
󵄨󵄨󵄨󵄨𝑥=𝜋 = 0, 𝑡 ∈ R,

(57)

where 𝜏 ∈ R is a fixed constant.
Take X, 𝐴, 𝐴(𝑡), 𝑡 ∈ R, (H4a), and (H5a) as in

Example 22. Define the operators 𝐵, 𝐶 by

𝐷 (𝐵) = 𝐷 (𝐶) = 𝐶 [0, 𝜋] ,

𝐵𝜑 (⋅) = 𝐶𝜑 (⋅) = 𝜑 (⋅ − 𝜏) , 𝜑 (⋅) ∈ 𝐶 [0, 𝜋] ,

(58)

then ‖𝐵‖
𝐵(𝐶[0,𝜋])

= ‖𝐶‖
𝐵(𝐶[0,𝜋])

= 1.
Now, (57) can be transformed into the abstract form (2)

and assumptions (H1)–(H3) and (H6) are satisfied. Hence,
Theorem 21 leads also to the following proposition.

Proposition 25. Under assumptions (H4a) and (H5a), neu-
tral functional differential equation (57) admits a unique
almost automorphic mild solution if

𝐿
𝑓
+ 𝐿
𝑔
< 1. (59)

Furthermore, if one takes

𝑓 (𝑡, 𝑢) =
1

2
𝑢 sin 1

−3 + sin 𝑡 + sin𝜋𝑡
,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] ,

𝑔 (𝑡, 𝑢) =
1

8
𝑢 (1 + sin 1

−3 + sin 𝑡 + sin𝜋𝑡
) ,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] .

(60)

A simple computation shows that 𝑓, 𝑔 ∈ 𝐴𝐴(R ×

𝐶[0, 𝜋], 𝐶[0, 𝜋]), (H4a), and (H5a) are satisfied with 𝐿
𝑓
=

1/2, 𝐿
𝑔
= 1/4. By Proposition 25, (57) admits a unique almost

automorphic mild solution.

Acknowledgments

The authors would like to thank the referees for their careful
reading of this paper. This work is supported by the National
Science Foundation of China (11171314).

References

[1] S. Bochner, “A new approach to almost periodicity,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 48, pp. 2039–2043, 1962.

[2] W. A. Veech, “Almost automorphic functions on groups,”
American Journal of Mathematics, vol. 87, pp. 719–751, 1965.

[3] W.A.Veech, “On a theoremofBochner,”Annals ofMathematics,
vol. 86, pp. 117–137, 1967.

[4] M. Zaki, “Almost automorphic solutions of certain abstract
differential equations,”Annali di Matematica Pura ed Applicata,
vol. 101, pp. 91–114, 1974.

[5] W. Shen and Y. Yi, “Almost automorphic and almost periodic
dynamics in skew-product semi ows,”Memoirs of the American
Mathematical Society, vol. 136, no. 647, 1998.



10 Discrete Dynamics in Nature and Society
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