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Being inspired by the Hopfield neural networks (Hopfield (1982) and Hopfield and Tank (1985)) and the nonlinear sigmoid power
control algorithm for cellular radio systems inUykan andKoivo (2004), in this paper, we present a novel discrete recurrent nonlinear
systemand extend the results inUykan (2009), which are for autonomous linear systems, to nonlinear case.Theproposed systemcan
be viewed as a discrete-time realization of a recently proposed continuous-time network in Uykan (2013). In this paper, we focus on
discrete-time analysis and provide various novel key results concerning the discrete-time dynamics of the proposed system, some
of which are as follows: (i) the proposed system is shown to be stable in synchronous and asynchronous work mode in discrete
time; (ii) a novel concept called Pseudo-SINR (pseudo-signal-to-interference-noise ratio) is introduced for discrete-time nonlinear
systems; (iii) it is shown that when the system states approach an equilibrium point, the instantaneous Pseudo-SINRs are balanced;
that is, they are equal to a target value. The simulation results confirm the novel results presented and show the effectiveness of the
proposed discrete-time network as applied to various associative memory systems and clustering problems.

1. Introduction

Artificial neural networks have been an important research
area since 1970s. Since then, various biologically inspired neu-
ral network models have been developed. Hopfield Neural
Networks [1, 2] have been one of the most widely used neural
networks since the early 1980s whose applications vary from
combinatorial optimization (e.g., [3, 4]) to image restoration
(e.g., [5]) and from various control engineering optimization
problems in robotics (e.g., [6]) to associativememory systems
(e.g., [7, 8]). For a tutorial and further references about
Hopfield neural networks, see, for example, [9, 10].

In [11], we introduce a novel pseudo-signal-to-interfer-
ence-noise ratio concept for discrete-time autonomous linear
systems. Our main motivation in this paper is to investigate
a nonlinear extension of [11]. Furthermore, the proposed
system can be viewed as a discrete-time realization of a very
recently proposed continuous-time network called double-
sigmoid continuous-time Hopfield neural network in a brief
letter [12]. And our investigations in this paper yield various
interesting key novel results in discrete time, some of which

are as follows: (i) a novel concept called Pseudo-SINR
(pseudo-signal-to-interference-noise ratio) is introduced for
discrete-time nonlinear systems; (ii) it is shown that when
the network approaches to one of its equilibrium points,
the instantaneous Pseudo-SINRs are balanced; that is, they
are equal to a target value; (iii) the proposed network
outperforms its Hopfield neural network counterpart as
applied to various associativememory systems and clustering
applications. The disadvantage of the proposed network is
that it increases the computational burden.

The paper is organized as follows.The proposed recurrent
network and its stability features are analyzed in Section 2.
Simulation results are presented in Section 3, followed by
conclusions in Section 4.

2. Discrete Pseudo-SINR-Balancing Recurrent
Neural Networks

Being inspired by the nonlinear sigmoid power control
algorithm for cellular radio systems in [13] and the Hopfield
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neural networks [2], we propose the following discrete
nonlinear recurrent network:

x (𝑘 + 1) = x (𝑘) + 𝛼 (𝑘) f
1
(−Ax (𝑘) +W𝑓

2
(x (𝑘)) + b) ,

(1)

where 𝑘 represents the iteration step, A, W, and b are
defined as in (2), and f

𝑚
(⋅), 𝑚 = 1, 2, represents a vectoral

mapping from R𝑁 to R𝑁. For an 𝑁-dimensional vector
e = [𝑒

1
𝑒
2
⋅ ⋅ ⋅ 𝑒
𝑁
]
𝑇, f
𝑚
(e) = [𝑓

𝑚
(𝑒
1
)𝑓
𝑚
(𝑒
2
) ⋅ ⋅ ⋅ 𝑓
𝑚
(𝑒
𝑁
)]
𝑇 where

𝑓
𝑚
(⋅) is chosen as the sigmoid function; that is, for a real

number 𝑒
𝑖
, the output is𝑓

𝑚
(𝑒
𝑖
) = 𝜅
𝑚
(1−(2/(1+exp(−𝜎

𝑚
𝑒
𝑖
)))),

where 𝜅
𝑚
> 0, 𝜎

𝑚
> 0. We will call the network in (1)

as discrete sigmoid-pseudo-SINR-balancing recurrent neural
network (D-SP-SNN). The name comes from the fact that
the proposed network balances an entity called Pseudo-
SINR, as will be seen in the following. In this paper, we
choose sigmoid function because it’s used both in Hopfield
neural network and the power control algorithm in [13].
Furthermore, the proposed D-SP-SNN can be viewed as a
discrete-time implementation of a very recently proposed
continuous-time network called double-sigmoid continuous-
time Hopfield neural network in the brief [12]. In this paper,
we focus on discrete-time analysis and provide various novel
key results concerning the discrete-time dynamics of the
proposed system:

A =
[
[
[
[

[

𝑎
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22
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... d 0
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,

W =

[
[
[
[

[

0 𝑤
12

⋅ ⋅ ⋅ 𝑤
1𝑁

𝑤
21

0 ⋅ ⋅ ⋅ 𝑤
2𝑁

... d
...

𝑤
𝑁1

𝑤
𝑁2

⋅ ⋅ ⋅ 0

]
]
]
]

]

,

b =
[
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[

𝑏
1

𝑏
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...
𝑏
𝑁

]
]
]
]

]

.

(2)

In (2), A shows the self-state-feedback matrix, W with
zero diagonal shows the interneurons connection weight
matrix, and b is a threshold vector.

The proposed network includes both the sigmoid power
control in [13] and the traditional Hopfield neural network
(HNN) as its special cases by choosing the 𝑓

1
(⋅) and 𝑓

2
(⋅)

appropriately. The Euler approximation of the continuous-
time HNN is given as

x (𝑘 + 1) = x (𝑘) + 𝛼 (𝑘) (−Ax (𝑘) +W𝑓
2
(x (𝑘)) + b) .

(3)

Let us call the network in (3) HNN-Euler, which is a
special case of the proposed D-SP-SNN in (1). From (1),

𝑥
𝑗
(𝑘 + 1) = 𝑥

𝑗
(𝑘) + 𝛼 (𝑘)

× 𝑓
1
(−𝑎
𝑗𝑗
𝑥
𝑗
(𝑘) + 𝑏

𝑗
+

𝑁

∑
𝑖=1,𝑖 ̸= 𝑗

𝑤
𝑖𝑗
𝑓
2
(𝑥
𝑖
(𝑘))) ,

𝑗 = 1, . . . , 𝑁,

(4)

where 𝛼(𝑘) is the step size at time 𝑘. Let’s define the error
signal 𝑒

𝑖
(𝑘) as

𝑒
𝑖
(𝑘) = −𝑎

𝑖𝑖
𝑥
𝑖
+ 𝐼
𝑖
(𝑘) ,

where 𝐼
𝑖
(𝑘) = 𝑏

𝑖
+

𝑁

∑
𝑗=1,𝑗 ̸= 𝑖

𝑤
𝑖𝑗
𝑓
2
(𝑥
𝑗
(𝑘)) , 𝑖 = 1, . . . , 𝑁.

(5)

Then, the performance index is defined as 𝑙
1
-norm of the

error vector in (5) as follows:

𝑉 (𝑘) = ‖e (𝑘)‖1 =
𝑁

∑
𝑖

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑘)
󵄨󵄨󵄨󵄨 (6)

=

𝑁

∑
𝑖

󵄨󵄨󵄨󵄨−𝑎𝑖𝑖𝑥𝑖 + 𝐼𝑖
󵄨󵄨󵄨󵄨 ,

where 𝐼
𝑖
= 𝑏
𝑖
+

𝑁

∑
𝑗=1,𝑗 ̸= 𝑖

𝑤
𝑖𝑗
𝑓
2
(𝑥
𝑗
) .

(7)

In what follows, we examine the evolution of the energy
function in (6) in synchronous and asynchronous work
modes. Asynchronous mode means that at every iteration
step, at most only one state is updated, whereas synchronous
mode refers to the case that all the states are updated at every
iteration step according to (4).

Proposition 1. In asynchronousmode of the proposed network
D-SP-SNN in (4) with a symmetric matrix W, for a nonzero
error vector, the 𝑙

1
-norm of the error vector in (6) decreases at

every step; that is, the error vector goes to zero for any 𝛼(𝑘) such
that

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
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1
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(8)

if

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ 𝑘
2

𝑁

∑
𝑖=1,(𝑖 ̸= 𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, (9)

where 𝑘
2
= 0.5𝜎

2
is the global Lipschitz constant of 𝑓

2
(⋅) as

shown the in Appendix A.

Proof. In asynchronous mode, only one state is updated at
an iteration time. Let 𝑗 show the index of the state which is
updated at time 𝑘 whose error signal is different than zero;
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that is, 𝑒
𝑗
= −𝑎
𝑗𝑗
𝑥
𝑗
+𝐼
𝑗
̸= 0, where 𝐼
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+∑
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𝑤
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𝑓
2
(𝑥
𝑖
),

as defined in (5). Writing (5) in vector form for steps 𝑘 and
𝑘 + 1 results in

e (𝑘 + 1) − e (𝑘) =
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(𝑓
2
(𝑥
𝑗
(𝑘 + 1)) − 𝑓

2
(𝑥
𝑗
(𝑘))) .

(10)

Using the error signal definition of (5) in (4) gives

𝑥
𝑗
(𝑘 + 1) − 𝑥

𝑗
(𝑘) = 𝛼 (𝑘) 𝑓

1
(𝑒
𝑗
(𝑘)) . (11)

So, the error signal for state 𝑗 is obtained using (10) and
(11) as follows:

𝑒
𝑗
(𝑘 + 1) − 𝑒

𝑗
(𝑘) = −𝑎

𝑗𝑗
(𝑥
𝑗
(𝑘 + 1) − 𝑥

𝑗
(𝑘)) (12)

= −𝑎
𝑗𝑗
𝛼 (𝑘) 𝑓

1
(𝑒
𝑗
(𝑘)) . (13)

From (12) and (13), if 𝛼(𝑘) is chosen to satisfy |𝑒
𝑗
(𝑘)| >

|𝑎
𝑗𝑗
𝛼(𝑘)𝑓

1
(𝑒
𝑗
(𝑘))|, then

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
, for 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑘)

󵄨󵄨󵄨󵄨 ̸= 0, (14)

where 𝑓
1
(⋅) is a sigmoid function, which is lower and upper

bounded. Since the sigmoid function 𝑓
1
(⋅) has the same sign

as its argument and 𝑓
1
(𝑒
𝑗
) = 0 if and only if 𝑒

𝑗
= 0, then it is

seen that 𝛼(𝑘) can easily be chosen small enough to satisfy
|𝑒
𝑗
(𝑘)| > 𝛼(𝑘)𝑎

𝑗𝑗
|𝑓
1
(𝑒
𝑗
(𝑘))| according to the parameter 𝑎

𝑗𝑗

and the slope of sigmoid function 𝑓
1
(⋅).

Above, we examined only the state 𝑗 and its error signal
𝑒
𝑗
(𝑘). In what follows, we examine the evolution of the norm

of the complete error vector e(𝑘+1) in (10). From the point of
view of the 𝑙

1
norm of the e(𝑘+1), the worst case is that when

|𝑒
𝑗
(𝑘)| decreases, all other elements |𝑒

𝑖
(𝑘)|, 𝑖 ̸= 𝑗, increase. So,

using (10), (12), and (14), we obtain that if
󵄨󵄨󵄨󵄨󵄨
−𝑎
𝑗𝑗
(𝑥
𝑗
(𝑘 + 1) − 𝑥

𝑗
(𝑘))

󵄨󵄨󵄨󵄨󵄨
≥
󵄨󵄨󵄨󵄨󵄨
𝑓
2
(𝑥
𝑗
(𝑘 + 1)) − 𝑓

2
(𝑥
𝑗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

×

𝑁

∑

𝑖=1,(𝑖 ̸= 𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

(15)

then

‖e (𝑘 + 1)‖1 {
< ‖e (𝑘)‖1 if ‖e (𝑘)‖1 ̸= 0,
= 0 if ‖e (𝑘)‖1 = 0.

(16)

The sigmoid function 𝑓
2
(⋅) is a Lipschitz continuous

function as shown in Appendix A. So,

𝑘
2

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑘 + 1) − 𝑥

𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
≥
󵄨󵄨󵄨󵄨󵄨
𝑓
2
(𝑥
𝑗
(𝑘 + 1)) − 𝑓

2
(𝑥
𝑗
(𝑘))

󵄨󵄨󵄨󵄨󵄨
,

(17)

where 𝑘
2
= 0.5𝜎

2
is 𝑓
2
(⋅)’s global Lipschitz constant as

shown in Appendix A. From (15) and (17), choosing |𝑎
𝑗𝑗
| >

𝑘
2
∑
𝑁

𝑖=1,(𝑖 ̸= 𝑗)
|𝑤
𝑖𝑗
| yields (15), which implies (16). This com-

pletes the proof.

Definition 2 (pseudo-SINR). We define the following system
variable, which will be called pseudo-SINR, for the D-SP-
SNN in (4):

𝜃
𝑖

𝜃
tgt
𝑖

=
𝑎
𝑖𝑖
𝑓 (𝑥
𝑖
)

𝑏
𝑖
+ ∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑤
𝑖𝑗
𝑓 (𝑥
𝑗
)
, 𝑖 = 1, . . . , 𝑁, (18)

where 𝑓(⋅) represents the sigmoid function, that is, 𝑓(𝑒) =
𝜅(1− (2/(1+ exp(−𝜎𝑒)))), and 𝜃tgt

𝑖
is a constant, which we call

target 𝜃
𝑖
.

Examining the 𝜃
𝑖
in (18), we observe that it resembles the

traditional signal-to-interference-noise ratio (SINR) defini-
tion in cellular radio systems (see, e.g., [14, 15]); therefore we
call it Pseudo-SINR.

Definition 3 (prototype vectors). Prototype vectors are
defined as those x’s which make 𝜃

𝑖
= 𝜃

tgt
𝑖
, 𝑖 = 1, . . . , 𝑁, in

(18). So, from (18) and (5), the prototype vectors make the
error signal zero; that is, 𝑒

𝑖
= 0, 𝑖 = 1, . . . , 𝑁 given that 𝑥

𝑖
̸= 0

and 𝐼
𝑖
̸= 0.

Proposition 4. In asynchronous mode, choosing the slope of
𝑓
2
(⋅) relatively small as compared to 𝑓

1
(⋅) and choosing 𝑎

𝑗𝑗
> 0

and 𝛼(𝑘) satisfying (8), the D-SP-SNN in (4)with a symmetric
matrix W is stable and there exists a finite time constant such
that the 𝑙

1
-norm of the error vector in (6) approaches to an 𝜖-

vicinity of the zero as its steady state, where 𝜖 is a relatively
small positive number. If 𝜃

𝑖
= 𝜃

tgt
𝑖

at the converged point, then
it corresponds to a prototype vector as defined above.

Proof. Since it is asynchronous mode, (10)–(14) hold where
𝑎
𝑗𝑗
> 0. So, if 𝛼(𝑘) at time 𝑘 is chosen to satisfy |𝑒

𝑗
(𝑘)| >

|𝑎
𝑗𝑗
𝛼(𝑘)𝑓

1
(𝑒
𝑗
(𝑘))| as in (8), then

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
, for 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑘)

󵄨󵄨󵄨󵄨 ̸= 0. (19)

Note that it is straightforward to choose a sufficiently
small 𝛼(𝑘) to satisfy (8) according to 𝑎

𝑗𝑗
and the slope 𝜎

1
of

sigmoid 𝑓
1
(⋅). Using (10), (12), and (19), it is seen for 𝑒

𝑗
(𝑘) ̸= 0

that if
󵄨󵄨󵄨󵄨󵄨
−𝑎
𝑗𝑗
(𝑥
𝑗
(𝑘 + 1) − 𝑥

𝑗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
−𝑎
𝑗𝑗
𝛼 (𝑘) 𝑓

1
(𝑒
𝑗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

(20)

>
󵄨󵄨󵄨󵄨󵄨
𝑓
2
(𝑥
𝑗
(𝑘 + 1)) − 𝑓

2
(𝑥
𝑗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

×

𝑁

∑
𝑖=1,(𝑖 ̸= 𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

(21)



4 Discrete Dynamics in Nature and Society

then

‖e (𝑘 + 1)‖
1
< ‖e (𝑘)‖1. (22)

We observe from (12), (20), (21), and (22) the following.
(1) If the 𝑥

𝑖
(𝑘), 𝑖 = 1, . . . , 𝑁, approach to either of the

saturation regimes of its sigmoid function 𝑓
2
(⋅), then

󵄨󵄨󵄨󵄨󵄨
𝑓
2
(𝑥
𝑗
(𝑘 + 1)) − 𝑓

2
(𝑥
𝑗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

𝑁

∑
𝑖=1,(𝑖 ̸= 𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
≈ 0,

𝑗 = 1, . . . , 𝑁,

(23)

since |𝑓
2
(𝑥
𝑗
(𝑘 + 1)) − 𝑓

2
(𝑥
𝑗
(𝑘))| ≈ 0, 𝑖 = 1, . . . , 𝑁. That

satisfies (20) and (21).Therefore, the norm of the error vector
in (6) does not go to infinity and is finite for any x.

(2) x(𝑘 + 1) = x(𝑘) if and only if e(𝑘) = 0; that is,

𝑥
𝑗
(𝑘 + 1) = 𝑥

𝑗
(𝑘) if and only if 𝑓

1
(𝑒
𝑗
(𝑘)) = 0,

𝑗 = 1, . . . , 𝑁.

(24)

(3) Examining the (11), (12), and (13) taking the observa-
tions (1) and (2) into account, we conclude that any of the
𝑥
𝑗
(𝑘), 𝑗 = 1, . . . , 𝑁, does not go to infinity and is finite for

any 𝑘. So, the D-SP-SNN in (4) with a symmetric matrix W
is stable for the assumptions in Proposition 4. Because there
is a finite number of insaturation states (i.e., the number of
all possible insaturation state combinations is finite), which is
equal to 2𝑁, there exists a finite time constant such that the 𝑙

1
-

norm of the error vector in (6) approaches to an 𝜖-vicinity of
the zero as its steady state, where 𝜖 is a relatively small positive
number.

From (18), if 𝜃
𝑖
= 𝜃

tgt
𝑖

at the converged point, then it
corresponds to a prototype vector as defined in the previous
section, which completes the proof.

In what follows, we examine the evolution of pseudo-
SINR 𝜃

𝑖
(𝑘) in (18). From (18), let us define the following error

signal at time 𝑘:

𝜉
𝑗
(𝑘) = −𝜃

𝑗
(𝑘) + 𝜃

tgt
𝑗
, 𝑗 = 1, . . . , 𝑁. (25)

Proposition 5. In asynchronous mode, in the D-SP-SNN in
(4) with a sufficiently small 𝛼(𝑘) and with a symmetric matrix
W, the 𝜃

𝑗
(𝑘) is getting closer to 𝜃tgt

𝑗
at those iteration steps 𝑘

where 𝐼
𝑗
(𝑘) ̸= 0; that is, |𝜉

𝑗
(𝑘 + 1)| < |𝜉

𝑗
(𝑘)|, where index 𝑗

shows the state being updated at iteration 𝑘.

Proof. Let 𝑗 show the state which is updated at time 𝑘. The
pseudo-SINR defined by (18) for nonzero 𝐼

𝑗
(𝑘) is equal to

𝜃
𝑗
(𝑘) =

𝑎
𝑖𝑖
𝑥
𝑗
(𝑘)

𝐼
𝑗
(𝑘)

, where 𝐼
𝑗
(𝑘) = 𝑏

𝑗
+

𝑁

∑
𝑖=1,𝑖 ̸= 𝑗

𝑤
𝑗𝑖
𝑓 (𝑥
𝑗
(𝑘)) .

(26)

Without loss of generality, and for the sake of simplicity,
let is take 𝜃tgt

𝑖
= 1. Then, from (26) and (25)

𝜉
𝑗
(𝑘) = −𝜃

𝑗
(𝑘) + 1 =

−𝑎
𝑖𝑖
𝑥
𝑗
(𝑘) + 𝐼

𝑗
(𝑘)

𝐼
𝑗
(𝑘)

. (27)

In asynchronous mode, from (26), 𝐼
𝑚
(𝑘) = 𝐼

𝑚
(𝑘 + 1).

Using this observation and (27),

𝜉
𝑗
(𝑘 + 1) − 𝜉

𝑗
(𝑘) =

−𝑎
𝑖𝑖
(𝑥
𝑗
(𝑘 + 1) − 𝑥

𝑗
(𝑘))

𝐼
𝑗
(𝑘)

. (28)

From (4) and (28),

𝜉
𝑗
(𝑘 + 1) − 𝜉

𝑗
(𝑘) =

−𝑎
𝑖𝑖
𝛼 (𝑘) 𝑓

1
(𝑒
𝑗
(𝑘))

𝐼
𝑗
(𝑘)

. (29)

Provided that 𝐼
𝑗
(𝑘) ̸= 0, we write, from (5) and (27),

𝑒
𝑗
(𝑘) = 𝐼

𝑗
(𝑘) 𝜉
𝑗
(𝑘) . (30)

Writing (30) in (29) gives

𝜉
𝑗
(𝑘 + 1) − 𝜉

𝑗
(𝑘) =

−𝑎
𝑖𝑖
𝛼 (𝑘) 𝑓

1
(𝐼
𝑗
(𝑘) 𝜉
𝑗
(𝑘))

𝐼
𝑗
(𝑘)

. (31)

From (31), since sigmoid function𝑓
1
(⋅) is an odd function,

and 𝑎
𝑖𝑖
> 0 and 𝛼(𝑘) > 0,

𝜉
𝑗
(𝑘 + 1) = 𝜉

𝑗
(𝑘) − 𝛽 sign (𝜉

𝑗
(𝑘)) ,

where 𝛽 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑎
𝑖𝑖
(𝛼 (𝑘) 𝑓

1
(𝐼
𝑗
(𝑘) 𝜉
𝑗
(𝑘)))

𝐼
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(32)

As seen from (32), for a nonzero 𝜉
𝑗
(𝑘), choosing a

sufficiently small 𝛼(𝑘) satisfying |𝜉
𝑗
(𝑘)| > 𝛽 assures that

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

if 𝐼
𝑚
(𝑘) ̸= 0 (33)

which completes the proof.

Proposition 6. The results in Propositions 1 and 4 for asyn-
chronous mode hold also for synchronous mode.

In synchronous mode, all the states are updated at every
step 𝑘 according to (5). So, from (5)

e (𝑘 + 1) − e (𝑘)

=

𝑁

∑
𝑖=1

(
(
(

(

[
[
[
[
[
[
[
[
[

[

0

0
...

−𝑎
11
(𝑥
𝑖
(𝑘 + 1) − 𝑥

𝑖
(𝑘))

...
0

]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[

[

𝑤
1𝑖

𝑤
2𝑖

...
0
...
𝑤
𝑁𝑖

]
]
]
]
]
]
]
]
]

]

(𝑓
2
(𝑥
𝑖
(𝑘 + 1)) − 𝑓

2
(𝑥
𝑖
(𝑘)))

)
)
)

)

.

(34)
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Using (5) in (34) and writing it elementwise give

𝑒
𝑖
(𝑘 + 1) = 𝑒

𝑖
(𝑘) − 𝑎

𝑖𝑖
𝛼 (𝑘) 𝑓

1
(𝑒
𝑖
(𝑘))

+

𝑁

∑
𝑗=1,(𝑗 ̸= 𝑖)

𝑤
𝑖𝑗
(𝑓
2
(𝑥
𝑗
(𝑘 + 1) − 𝑓

2
(𝑥
𝑗
(𝑘))) ,

𝑖 = 1, . . . , 𝑁.

(35)

From (34) and (35), we obtain
󵄨󵄨󵄨󵄨−𝑎𝑖𝑖 (𝑥𝑖 (𝑘 + 1) − 𝑥𝑖 (𝑘))

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨−𝑎𝑖𝑖𝛼 (𝑘) 𝑓1 (𝑒𝑖 (𝑘))

󵄨󵄨󵄨󵄨

>
󵄨󵄨󵄨󵄨𝑓2 (𝑥𝑖 (𝑘 + 1)) − 𝑓2 (𝑥𝑖 (𝑘))

󵄨󵄨󵄨󵄨

×

𝑁

∑

𝑗=1,(𝑗 ̸= 𝑖)

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
, 𝑖 = 1, . . . , 𝑁,

(36)

which is equal to (15) in Proposition 1 and (20) in
Proposition 4.

It is well known that the performance ofHopfield network
may highly depend on the parameter setting of the weight
matrix (e.g., [8]). There are various ways for determining
the weight matrix of the Hopfield networks: gradient-descent
supervised learning (e.g., [16]), solving linear inequalities
(e.g., [17, 18] among others), Hebb learning rule [19, 20], and
so forth. How to design D-SP-SNN is out of the scope of this
paper.Themethods used for traditionalHopfieldNN can also
be used for the proposed networks D-SP-SNN. As far as the
simulation results in Section 3 are concerned, we determine
the matrices A, W, and b by using a Hebb learning-based
algorithm [19] presented in Appendix B.

3. Simulation Results

In the simulation part, we examine the performance of
the proposed D-SP-SNN in the area of associative memory
systems and clustering problem. In Examples 7 and 8, we
present some toy examples one with 8 neurons and one
with 16 neurons, respectively, where the desired vectors are
orthogonal. Lyapunov function of the HNN at time 𝑘 is given
as

𝐿 (𝑘) = −x(𝑘)𝑇Wx (𝑘) + x(𝑘)𝑇b. (37)

In Examples 7 and 8, we use discrete-time HNN just for
comparison reasons, which is given by

x (𝑘 + 1) = sign (Wx (𝑘)) , (38)

where W is the weight matrix and x(𝑘) is the state at time 𝑘,
and at most one state is updated at a time.

Example 7. In this example of discrete-time networks, there
are 8 neurons. The desired prototype vectors are as follows:

D = [

[

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

]

]

. (39)

Discrete Hopfield networks D-SP-SNN FSP-SNN
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80
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100

(%
)

Hamming dist. = 2
Hamming dist. = 3

Hamming dist. = 1

Correctly recovered prototype vectors (%),𝑁 = 8

Figure 1: The figure shows the percentage of correctly recovered
desired patterns for all possible initial conditions in Example 7 for
the proposed D-SP-SNN and FSP-SNN as compared to traditional
Hopfield network (8-neuron case).

The weight matrices A and W and the threshold vector
b are obtained as follows by using the outer-product-based
design (Hebb-learning [19]) presented in Appendix B and the
slopes of sigmoid functions 𝑓

1
(⋅) and 𝑓

2
(⋅) are set to 𝜎

1
= 10,

𝜅
1
= 10, and 𝜎

2
= 2, 𝜅

2
= 1, respectively, and 𝜌 = 0, 𝛼 = 0.1:

A = 3I,

W =

[
[
[
[
[
[
[
[
[
[

[

0 1 1 −1 1 −1 −1 −3

1 0 −1 1 −1 1 −3 −1

1 −1 0 1 −1 −3 1 −1

−1 1 1 0 −3 −1 −1 1

1 −1 −1 −3 0 1 1 −1

−1 1 −3 −1 1 0 −1 1

−1 −3 1 −1 1 −1 0 1

−3 −1 −1 1 −1 1 1 0

]
]
]
]
]
]
]
]
]
]

]

,

b = 0.

(40)

Figure 1 shows the percentages of correctly recovered
desired patterns for all possible initial conditions x(𝑘) ∈

(−1, +1)
8, for the proposed networks D-SP-SNN as compared

to traditional discrete Hopfield network. In the proposed
network D-SP-SNN, 𝑓

1
(⋅) is a sigmoid function. Establishing

an analogy to the traditional fixed step 1-bit increase/decrease
power control algorithm (e.g. [21, 22]), we replace the sigmoid
function by the sign function and call corresponding network
as fixed-step pseudo-SINR neural network (FSPSNN). For
comparison reason its performance is also shown in Figure 1.

As seen from Figure 1 the performance of the proposed
network D-SP-SNN is remarkably better than that of the
traditional discrete Hopfield network for all Hamming dis-
tance cases. The FSP-SNN also considerably outperforms the
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Discrete Hopfield networks D-SP-SNN FSP-SNN
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Figure 2: The figure shows the percentage of correctly recovered desired patterns for all possible initial conditions in Example 8 for the
proposed D-SP-SNN and its 1-bit version FSP-SNN as compared to traditional Hopfield network (16-neuron case).

Hopfield network for 1 and 2 Hamming distance cases while
the all the networks perform poorly (less than 20%) at 3-
Hamming distance case.

Example 8. The desired prototype vectors are

D =
[
[
[

[

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

]
]
]

]

. (41)

The weight matrices A andW and threshold vector b are
obtained as follows by using the outer-product-based design
(Hebb-learning [19]) in Appendix B:

A = 4I, W =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 2 2 0 2 0 0 −2 2 0 0 −2 0 −2 −2 −4

2 0 0 2 0 2 −2 0 0 2 −2 0 −2 0 −4 −2

2 0 0 2 0 −2 2 0 0 −2 2 0 −2 −4 0 −2

0 2 2 0 −2 0 0 2 −2 0 0 2 −4 −2 −2 0

2 0 0 −2 0 2 2 0 0 −2 −2 −4 2 0 0 −2

0 2 −2 0 2 0 0 2 −2 0 −4 −2 0 2 −2 0

0 −2 2 0 2 0 0 2 −2 −4 0 −2 0 −2 2 0

−2 0 0 2 0 2 2 0 −4 −2 −2 0 −2 0 0 2

2 0 0 −2 0 −2 −2 −4 0 2 2 0 2 0 0 −2

0 2 −2 0 −2 0 −4 −2 2 0 0 2 0 2 −2 0

0 −2 2 0 −2 −4 0 −2 2 0 0 2 0 −2 2 0

−2 0 0 2 −4 −2 −2 0 0 2 2 0 −2 0 0 2

0 −2 −2 −4 2 0 0 −2 2 0 0 −2 0 2 2 0

−2 0 −4 −2 0 2 −2 0 0 2 −2 0 2 0 0 2

−2 −4 0 −2 0 −2 2 0 0 −2 2 0 2 0 0 2

−4 −2 −2 0 −2 0 0 2 −2 0 0 2 0 2 2 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, b = 0. (42)

Figure 2 shows the percentage of correctly recovered
desired patterns for all possible initial conditions x(𝑘) ∈

(−1, +1)
16, in the proposed D-SP-SNN and FSP-SNN as

compared to discrete Hopfield network.
The total number of different possible combinations for

the initial conditions for this example is 64, 480, 2240

and 7280 for 1-, 2-, 3-, and 4-Hamming distance cases,
respectively, which could be calculated by 𝑚

𝑑
× 𝐶(16, 𝐾),

where𝑚
𝑑
= 4 and𝐾 = 1, 2, 3, and 4.

As seen from Figure 2 the performance of the proposed
networks D-SP-SNN and FSP-SNN is the same as that of
discrete Hopfield Network for 1-Hamming and 2-Hamming
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Figure 3: Typical plot for evolutions of states (a) 1 to 8 and (b) 9 to 16 in Example 8 by the D-SP-SNN.
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Figure 4: Evolutions of pseudo-SINRs for the states in Figure 3 in Example 8 by theD-SP-SNN. (a) Pseudo-SINRs 1 to 8 and (b) pseudo-SINRs
9 to 16.

distance cases (%100 for all networks). However, the D-SP-
SNN and FSP-SNN give better performance than the discrete
Hopfield network does for 3- and 4-Hamming distance cases.

Typical plots for evolution of states in Example 8 by
the D-SP-SNN are shown in Figure 3. The evolution of
corresponding pseudo-SINRs is given by Figure 4.The figure
shows that the pseudo-SINRs approach to constant value 1 as
states converge to the equilibrium point.

Evolutions of the Lyapunov function in (37) for the states
of Figure 3 in Example 8 are given in Figure 5. The figure
shows that the proposed D-SP-SNNminimizes the Lyapunov
function of Hopfield neural network with the same weight
matrix.

Example 9. In Examples 7 and 8, the desired vectors are
orthogonal. In this example, the desired vectors represent

numbers 1, 2, 3, and 4, which are not orthogonal to each
other.Thenumbers are represented by 25 neurons.Theweight
matrix is determined by the Hebb learning as in the previous
examples. In the rest of the examples in this paper, we set
𝜎
1
= 1, 𝜅

1
= 10, 𝜎

2
= 10, 𝜅

2
= 1, and 𝛼(𝑘) = 0.01, for all

𝑘.
Figure 6 shows desired pattern 1, a distorted pattern 1

where the Hamming Distance (HD) is 5, the result of HNN-
Euler, and the result of the D-SP-SNN using the distorted
pattern as initial condition. As seen from the figure, the
proposed D-SP-SNN succeeds to recover the number while
the HNN-Euler fails for the same parameters and weight
matrix.

The evolutions of the Lyapunov function in (37) and
the norm of the difference between the state vector and
equilibrium point for pattern 1 in Figure 6 are shown in
Figure 7. As seen from the figure, (i) the proposed D-SP-SNN
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Figure 5: Evolution of Lyapunov function in (37) in Example 8 (𝑁 = 16).
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Figure 6: (a) Desired pattern 1, distorted pattern 1 (HD = 5), result of HNN-Euler, and result of D-SP-SNN in Example 9.
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Figure 7: Evolution of (a) Lyapunov function in (37) and (b) norm of the difference between the state vector and equilibrium point in
Example 9 for pattern 1 (𝑁 = 25).
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Figure 8: (a) Desired pattern 2, (b) distorted pattern 2 (HD = 5), (c) result of HNN-Euler, and (d) Result of D-SP-SNN in Example 9.

minimizes the Lyapunov function of Hopfield neural net-
work, and (ii) the proposed D-SP-SNN converges faster than
its HNN-Euler counterpart with the same weight matrix for
this example.

Figure 8 shows desired pattern 2, a distorted pattern 2
where the HD is 5, the result of HNN-Euler, and the result
of D-SP-SNN using the distorted pattern as initial condition.
As seen from the figure, the proposed D-SP-SNN succeeds to
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Figure 9: Evolutions of states (a) 1 to 8, (b) 9 to 16, and (c) 17 to 24 in Example 9 for pattern 2 by HNN-Euler.

recover the number while the HNN-Euler fails for the same
parameters and weight matrix.

Evolutions of states in Example 9 for pattern 2 by HNN-
Euler and by D-SP-SNN are shown in Figures 9 and 10,
respectively. The figures show that the states of proposed
D-SP-SNN converge faster than those of its HNN-Euler
counterpart for the same parameter settings.

Figure 11 shows the evolutions of pseudo-SINRs of states
in Example 9 for pattern 2 by D-SP-SNN. The figure shows
that the pseudo-SINRs approach to constant value 1 as states
converge to the equilibrium point.

The evolutions of the norm of the difference between
the state vector and equilibrium point for pattern 2 in
Figure 8 are shown in Figure 12. As seen from the figure, the
proposed D-SP-SNN converges much faster than its HNN-
Euler counterpart.

Figure 13 shows desired pattern 3, a distorted pattern 3
where the HD is 5, the result of HNN-Euler, and the result of
theD-SP-SNNusing the distorted pattern as initial condition.
As seen from the figure, the proposed D-SP-SNN succeeds to
recover the numberwhile its HNN-Euler counterpart fails for
the same parameters and weight matrix.

The evolutions of the Lyapunov function and the norm
of the difference between the state vector and equilibrium
point for pattern 3 in Figure 13 are shown in Figure 14. As
seen from the figure, (i) the proposed D-SP-SNN minimizes
the Lyapunov function of Hopfield neural network, and (ii)
the proposedD-SP-SNNconverges faster than itsHNN-Euler
counterpart with the same weight matrix for this example.

Figure 15 shows desired pattern 4, a distorted pattern 4
where the HD is 5, the result of HNN-Euler, and the result of
theD-SP-SNNusing the distorted pattern as initial condition.
As seen from the figure, the proposed D-SP-SNN succeeds to
recover the number while its HNN-Euler counterpart fails for
the same parameters settings.

The evolutions of the Lyapunov function and the norm
of the difference between the state vector and equilibrium
point for pattern 4 in Figure 15 are shown in Figure 16. As
seen from the figure, (i) the proposed D-SP-SNN minimizes
the Lyapunov function of Hopfield Neural Network, and (ii)
the proposedD-SP-SNNconverges faster than itsHNN-Euler
counterpart with the same weight matrix for this example.

Example 10. In this and in the following example, we examine
the performance of the proposed D-SP-SNN in clustering



Discrete Dynamics in Nature and Society 11
𝑥
1
(𝑘
)

𝑥
2
(𝑘
)

𝑥
3
(𝑘
)

𝑥
5
(𝑘
)

𝑥
7
(𝑘
)

𝑥
4
(𝑘
)

𝑥
6
(𝑘
)

𝑥
8
(𝑘
)

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

−10
−5

0

−4
−2

0

−10
−5

0

−10
−5

0

00

0
5

10

2
4 5

0

5

States for D-SP-SNN States for D-SP-SNN

(a)

𝑥
9
(𝑘
)

𝑥
1
0
(𝑘
)

𝑥
1
1
(𝑘
)

𝑥
1
2
(𝑘
)

𝑥
1
3
(𝑘
)

𝑥
1
4
(𝑘
)

𝑥
1
5
(𝑘
)

𝑥
1
6
(𝑘
)

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

−10
−5

0

−10
−5

0

−10
−5

0

−10
−5

0

−4
−2

−5

0

0
5

−5
0
5

0
2
4

States for D-SP-SNN States for D-SP-SNN

(b)

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

0 100 200 300 400
𝑘

𝑥
1
7
(𝑘
)

𝑥
1
8
(𝑘
)

𝑥
1
9
(𝑘
)

𝑥
20
(𝑘
)

𝑥
21
(𝑘
)

𝑥
22
(𝑘
)

𝑥
23
(𝑘
)

𝑥
24
(𝑘
)

−4
−2

0

−10
−5
0

0

−10

−10

−5
0

0
5

10

0
5

10

0
5

10

10

0
−10

10
States for D-SP-SNNStates for D-SP-SNN

(c)

Figure 10: Evolutions of states (a) 1 to 8, (b) 9 to 16, and (c) 17 to 24 in Example 9 for pattern 2 by D-SP-SNN.

problem. Clustering is used in a wide range of applica-
tions, such as engineering, biology, marketing, information
retrieval, social network analysis, image processing, textmin-
ing, finding communities, influencers, and leaders in online
or offline social networks. Data clustering is a technique that
enables dividing large amounts of data into groups/clusters
in an unsupervised manner such that the data points in the
same group/cluster are similar and those in different clusters
are dissimilar according to some defined similarity criteria.
The clustering problem is an NP-complete, and its general
solution even for 2-clustering case is not known. It is well
known that the clustering problem can be formulated in the
form of the Lyapunov function of the HNN. The weight
matrix is chosen as the distance matrix of the dataset and is
the same for both HNN-Euler and D-SP-SNN.

In what follows, we compare the performance of the pro-
posed D-SP-SNN as compared to its HNN-Euler counterpart
as applied to clustering problems for the very same parameter
settings. Two-dimensional 16 data points to be bisected are
shown in Figure 17. The clustering results are also shown in
Figure 17. As seen from the figure, the D-SP-SNN finds the

optimum solution for this toy example. HNN-Euler also gives
the same solution.

The evolutions of states in the clustering by HNN-
Euler and by D-SP-SNN are shown in Figures 18 and 19,
respectively. As seen from the figures, the states of the
proposed D-SP-SNN converge faster that those of its HNN-
Euler counterpart.

The evolutions of psuedo-SINRs of states in the clustering
by D-SP-SNN in Example 10 (𝑁 = 16) are given by Figure 20.
Thefigure shows that the pseudo-SINRs approach to constant
value 1 as states converge to the equilibrium point.

The evolutions of Lyapunov function and the norm of the
difference between the state vector and equilibrium point in
Example 10 are given in Figure 21.The figure confirms that (i)
the proposed D-SP-SNN minimizes the Lyapunov function
of Hopfield neural network and (ii) the proposed D-SP-SNN
converges faster than its HNN-Euler counterpart with the
same weight matrix.

Example 11. In this example, there are 40 data points as shown
in Figure 22. The figure also shows the bisecting clustering
results by 𝑘-means algorithm and the proposed D-SP-SNN.
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Figure 11: Evolutions of pseudo-SINRs of states (a) 1 to 8, (b) 9 to 16, and (c) 17 to 24 in Example 9 for pattern 2 by D-SP-SNN.
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Figure 13: (a) Desired pattern 3, (b) distorted pattern 3 (HD = 5), (c) result of HNN-Euler, and (d) result of D-SP-SNN in Example 9.
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Figure 14: Evolution of (a) Lyapunov function and (b) norm of the difference between the state vector and equilibrium point in Example 9
for pattern 3 (𝑁 = 25).
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Figure 15: (a) Desired pattern 4, (b) distorted pattern 4 (HD = 5), (c) result of HNN-Euler, and (d) result of D-SP-SNN in Example 9.
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Figure 16: Evolutions of (a) Lyapunov function and (b) norm of the difference between the state vector and equilibrium point in Example 9
for pattern 4 (𝑁 = 25).
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Figure 18: Evolutions of states (a) 1 to 8 and (b) 9 to 16 in the clustering by HNN-Euler in Example 10 (𝑁 = 16).
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Figure 19: Evolutions of states (a) 1 to 8 and (b) 9 to 16 in the clustering by D-SP-SNN in Example 10 (𝑁 = 16).
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Figure 20: Evolutions of psuedo-SINRs of states (a) 1 to 8 and (b) 9 to 16 in the clustering by D-SP-SNN in Example 10 (𝑁 = 16).

0 20 40 60 80

0

−10

−20

−30

−40

−50

𝐿
(𝑘
)

Step number [𝑘]

HNN-Euler
D-SP-SNN

Energy function 𝐿(𝑘)

(a)

14

12

10

8

6

4

2

0
0 100 200 300 400

Step number [𝑘]

HNN-Euler
D-SP-SNN

‖
𝑥
(𝑘
)
−
𝑥
∗
‖

(b)

Figure 21: Evolution of (a) Lyapunov function and (b) norm of the difference between the state vector and equilibrium point in Example 10
(𝑁 = 16).
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Figure 22: Bisecting clustering results by (a) 𝑘-means and (b) D-SP-SNN in Example 11 (𝑁 = 40).
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Figure 23: Evolution of pseudo-SINRs of states 1 to 8 in Example 11 by the D-SP-SNN, (𝑁 = 40).
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Figure 24: Evolution of (a) Lyapunov function and (b) norm of the difference between the state vector and equilibrium point in Example 11
(𝑁 = 40).

As seen from the figure, while 𝑘-means fail to find the
optimum clustering solution for this example (for a randomly
given initial values), the proposed D-SP-SNN succeeds in
finding the optimum solution (for the same initial values).

Figure 23 shows the evolution of pseudo-SINRs of states
by the D-SP-SNN. The figure shows that the pseudo-SINRs
approach to constant value 1 as states converge to the
equilibrium point, as before.

Evolutions of the Lyapunov function and the norm of
the difference between the state vector and equilibrium point
are shown in Figure 24. The figure confirms the superior
convergence speed of the D-SP-SNN as compared to its
HNN-Euler counterpart.

4. Conclusions

In this paper, we present and analyze a discrete recurrent non-
linear system which includes the Hopfield neural networks
[1, 2] and the nonlinear sigmoid power control algorithm for
cellular radio systems in [13], as special cases by properly

choosing the functions. This paper extends the results in
[11], which are for autonomous linear systems, to nonlinear
case. The proposed system can be viewed as a discrete-time
realization of a recently proposed continuous-time network
in [12]. In this paper, we focus on discrete-time analysis and
present various novel key results concerning the discrete-
time dynamics of the proposed system, some of which are
as follows: (i) the proposed network is shown to be stable in
synchronous and asynchronous work mode in discrete time;
(ii) a novel concept called Pseudo-SINR (pseudo-signal-
to-interference-noise ratio) is introduced for discrete-time
nonlinear systems; (iii) it is shown that when the network
approaches one of its equilibrium points, the instantaneous
Pseudo-SINRs become equal to a constant target value.

The simulation results confirm the novel results (e.g.,
Pseudo-SINR convergence, etc.) presented and show a supe-
rior performance of the proposed network as compared to its
Hopfield network counterpart in various associative memory
systems and clustering examples. Moreover, the results show
that the proposed network minimizes the Lyapunov function
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of the Hopfield neural networks. The disadvantage of the D-
SP-SNN is that it increases the computational burden.

Appendices

A. Lipschitz Constant of the Sigmoid Function

In what follows, we will show the sigmoid function (𝑓(𝑎) =
1 − (2/(1 + exp(−𝜎𝑎))), 𝜎 > 0) that has the global Lipschitz
constant 𝑘 = 0.5𝜎. Since 𝑓(⋅) is a differentiable function, we
can apply the mean value theorem:

𝑓 (𝑎) − 𝑓 (𝑏) = (𝑎 − 𝑏) 𝑓
󸀠
(𝜇𝑎 + (1 − 𝜇) (𝑏 − 𝑎))

with 𝜇 ∈ [0, 1] .
(A.1)

The derivative of𝑓(⋅) is𝑓󸀠(𝑎) = −2𝜎/𝑒𝜎𝑎(1+𝑒−𝜎𝑎)2 whose
maximum is at the point 𝑎 = 0; that is, |𝑓󸀠(𝑎)| ≤ 0.5𝜎. So we
obtain the following inequality:

󵄨󵄨󵄨󵄨𝑓 (𝑎) − 𝑓 (𝑏)
󵄨󵄨󵄨󵄨 ≤ 𝑘 |𝑎 − 𝑏| , (A.2)

where 𝑘 = 0.5𝜎 is the global Lipschitz constant of the sigmoid
function.

B. Outer Product-Based Network Design

Let us assume that 𝐿 desired prototype vectors are orthogonal
and each element of a prototype vector is either −1 or +1.

Step 1. Calculate the sum of outer products of the prototype
vectors (Hebb Rule, [19])

Q =

𝐿

∑
𝑠=1

d
𝑠
d𝑇
𝑠
. (B.1)

Step 2. Determine the diagonal matrix A andW as follows:

𝑎
𝑖𝑗
= {

𝑞
𝑖𝑖
+ 𝜌 if 𝑖 = 𝑗,

0 if 𝑖 ̸= 𝑗,
𝑖, 𝑗 = 1, . . . , 𝑁, (B.2)

where 𝜌 is a real number and

𝑤
𝑖𝑗
= {

0 if 𝑖 = 𝑗,
𝑞
𝑖𝑗

if 𝑖 ̸= 𝑗,
𝑖, 𝑗 = 1, . . . , 𝑁, (B.3)

where 𝑞
𝑖𝑗
shows the entries of matrix Q, 𝑁 is the dimension

of the vector x, and 𝐿 is the number of the prototype
vectors (𝑁 > 𝐿 > 0). In (B.2), 𝑞

𝑖𝑖
= 𝐿 from (B.1)

since {d
𝑠
} is from (−1, +1)

𝑁. It is observed that 𝜌 = 0

gives relatively good performance; however, by examining
the nonlinear state equations in Section 2, it can be seen that
the proposed networks D-SP-SNN and FSP-SNN contain the
prototype vectors at their equilibrium points for a relatively
large interval of 𝜌.

Another choice of 𝜌 in (B.2) is 𝜌 = 𝑁 − 2𝐿 which
yields 𝑎

𝑖𝑖
= 𝑁 − 𝐿. In what follows we show that this choice

also assures that {d
𝑗
}
𝐿

𝑗=1
are the equilibrium points of the

networks.
From (B.1)–(B.3)

[−A +W] = − (𝑁 − 𝐿) I +
𝐿

∑
𝑠=1

d
𝑠
d𝑇
𝑠
− 𝐿I, (B.4)

where I represents the identity matrix. Since d
𝑠
∈ (−1, +1)

𝑁,
then ||d

𝑠
||2
2
= 𝑁. Using (B.4) and the orthogonality properties

of the set {d
𝑠
}
𝐿

𝑠=1
gives the following:

[−A +W] d𝑠 = − (𝑁 − 𝐿) d𝑠 + (𝑁 − 𝐿) d𝑠 = 0. (B.5)

So, the prototype vectors {d
𝑗
}
𝐿

𝑗=1
correspond to equilib-

rium points.
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