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Statistical techniques based on scaling indices are applied to detect and investigate
patterns in empirically given time series. The key idea is to use the distribution of scaling
indices obtained from a delay representation of the empirical time series to distinguish
between random and non-random components. Statistical tests for this purpose are
designed and applied to specific examples. It is shown that a selection of subseries by
scaling indices can significantly enhance the signal-to-noise ratio as compared to that of
the total time series.
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1. INTRODUCTION

If the behavior of a system evolving in time shows
features that are "irregular" in some sense, the
observed data series invites statistical modeling as
a stochastic or random process. In such cases it is
often useful and possible to conceptually distin-
guish between some null mode of behavior on one
side and deviations from that null mode on the
other. The notion of a null mode refers to some
knowledge about the basic physical (null)

characteristics of the system, which can be under-
stood in terms of random or deterministic mechan-
isms. If there is no such knowledge, the situation is
more difficult insofar as one has to start with
assumptions as to model classes that may be
appropriate to reproduce the observed data.

There are many approaches that have been
developed in this spirit for many different pur-
poses. Their success generally depends on both the
nature of the deviations and that of the null mode.
Deviations of a pre-conceived sort, such as a shift
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or an abrupt change in the mean or trend of the
process, can be detected efficiently if one uses a
correspondingly tailored procedure, and if the
actual deviation is of the anticipated sort. On the
other hand, if the goal is to detect any deviation, or
deviations one has only a vague notion of, then
less specific procedures of a wider scope may be
more appropriate, even at the risk of losing
precision with respect to the distinction between
different types of specific deviations.

In many practical cases of pattern detection and
pattern recognition, the basic problem is to
distinguish a (more or less) faint regular pattern,
the deviation, in front of a random background,
the null mode. In this framework, the most
ambitious situation for modeling purposes is met
if neither the type of regularity nor the type of
randomness are known. This is the kind of
situation for which a data-analytic method called
scaling index analysis is particularly helpful. It
aims at detecting non-random deviations from a

random null mode and is applicable if the random
process is (approximately) stationary in the null
mode. Non-random contributions can be due to
some (weak) regular signal or pattern super-
imposed on or replacing the null process, or due
to increased correlations between successive mea-

surements reducing the local variability of the time
series. Using scaling indices, one can study this
time variability geometrically by comparing the
density gradients in suitably constructed point sets
on different distance scales. In physical contexts,
scaling indices or "crowding indices" [1] originate
from the dimensional analysis of single fractals
and multifractals ([2-4], for an overview see [5]).
For a mathematically oriented perspective see [6].

Scaling index analysis has primarily been used
as a data-analytic tool so far, i.e., as a numerical
algorithm extracting potentially interesting fea-
tures embedded in a random background (see, e.g.,
[7-11]). The crucial concept in a scaling index
analysis is a so-called Ha histogram (see below)
whose properties can be investigated and discri-
minated against the known or expected null mode
histogram. This is no problem as long as the

deviations from the null behavior are marked
enough to be easily visible. If this is not the case, it
may be difficult to distinguish systematic but small
deviations from deviations due to random fluctua-
tions produced by the null process. Then a

statistical test with an appropriate discriminant
statistics is required, in which the error of the first
kind- to falsely classify a time series as "deviant"
although it is in null mode is well controlled. If
deviations occur only sporadically, it may also be
interesting to single out those time intervals in
which "something deviant seems to go on".
The goal of this paper is to propose methods for

(i) the construction of statistical tests based on

scaling indices, and (ii) the identification of
conspicuous parts of the observed time series,
selected by particular ranges of scaling indices.
In this way, we focus on a precise statistical
formulation of scaling index analyses which was
not addressed in earlier publications listed above.
Section 2.1 indicates the basic definitions and
procedures for a scaling index analysis, Section 2.2
describes the test construction, and Section 2.3
gives a detailed example. Section 3 addresses how
scaling index analyses can be used to enhance the
signal-to-noise-ratio by selecting and investigating
those parts of a time series that are responsible for
deviations from a random null process. Section 4
discusses and summarizes the main results.

2. STATISTICAL SCALING INDEX
ANALYSIS

2.1. Basic Notations and Framework

Consider a (univariate) time series {x(t): 1,... T}
of finite length T. This notation implies a discrete
notion of a parameter time t, which will subse-
quently be utilized to indicate the temporal ordering
of observations x(t). Using the technique of delay
coordinates [12] one can construct an associated
d- dimensional time series,

z(t) (x(t),... ,x(t +
t-- 1,...,T-d+ l.
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For every and pre-defined radii rl,r2(0 < rl < r2)
let a scaling index cx(t) be defined as

log N2 (z(t)) logN (z(t))a(t) (1)
log r2 log r

where N1,2(Zref)--#{t: [z(t)--Zref[<_rl,2} denotes
the number of all points z(t), t= 1,..., T-d+ 1,
whose Euclidean distance to the reference point

Zre does not exceed rl,2.
Any scaling index analysis is based on the

distribution of the scaling indices. This distribu-
tion can be represented by a histogram, the so-
called Ha histogram. Its integrated version, the
(cumulative) empirical distribution function (edf) of
the scaling indices (si)

is more appropriate for our purposes, because of
its improved statistical stability. H(c0 will be
referred to as the si-edf associated with {x(t)}.
The basic idea is to compare this si-edf H(c) with

an appropriate reference distribution function Hrof
characterizing the null process. In cases in which a

continuous time process can be characterized by a
multifractal measure, the limiting Hrof for Toc,
then rl,2--+0, increases in the range of c corre-

sponding to the (set of) dimension(s) on which the
measure is concentrated. (For single fractals, the
increase of Href reduces to a Heaviside step function
corresponding to a f function type histogram.) If
the null process is random, the range of c, over
which Href increases, keeps growing toward larger c
with increasing embedding dimension d. By con-

trast, for regular or chaotic deterministic processes
the increase ofthe reference distribution stays at the
same range of c for increasing d, provided that d is
sufficiently greater than the "true" (set of) dimen-

sion(s) of the process.
In the case of a fixed finite observation segment

and fixed radii, Href is generically broadened. As a

consequence, sharp discriminations as in the limits
T--+ oc, rl,2 0 become impossible (even for single

fractals). Nevertheless, non-random contributions
to a random null process tend to increase the
frequency of small scaling indices also in the finite
case, such that mass of the si-edf is shifted to
smaller values of c. For this reason, discrepancies
between the si-edf and Href in the left wing of the
distributions are of particular interest.
Assume for example that the x(t) are independent

random variables distributed uniformly on the
interval [0,1 ], and d 3. Up to random fluctuations,
{z(t)} then covers the three-dimensional unit cube in
a homogeneous manner. The corresponding scaling
index distribution function increases over a small
range of c centered around a value d* < d where
(d-d*) depends on T and rl,2. Other mechanisms
(random, chaotic, or regular) typically produce
clusters and voids, resulting in a scaling index
distribution whose tails are more pronounced.
The distribution of the scaling indices also

provides us with a clue to more refined analyses.
For example, it allows to sort out, and study in
itself, those parts of the time series corresponding to

small scaling indices, which are of special interest as

potential carriers of signals or patterns. Properly
assessing the statistical significance of effects is
particularly important in such a kind of refined
analysis.
The main ingredients of the statistical frame-

work adopted here are as follows.

(a) It is assumed that the null mode behavior of
the system under study can be described by a

stochastic process {X0(t): t= 1,..., T} having
a certain distribution 7?o.

(b) The given time series {x(t)} is interpreted as the
realization of another stochastic process {X(t):
t= 1,..., T} with distribution 7?. The null
hypothesis 7-{o is that {X(t)} is in null mode,
that is, has the same distribution as X0: 7? 7?o.

(c) In addition, there are n calibration time series

{Xcal,i(t): t= 1,...,T} (i= 1,...,n). They are

assumed to represent a sample of size n from
the null process X0, that is, they are assumed to
be independent and identically distributed
copies of {X0(t): t= 1,... ,T}.
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Some remarks: Subsequently, we drop the
notational distinction between time series consid-
ered as a sequence of measurement data or
considered as a stochastic process. Secondly, it
should be noted that the null hypothesis does not
impose any restriction on the internal structure of
the null process. However, our proposals make
sense only if the process is stationary (or nearly so
at least). Thirdly, 79 denotes the distribution of the
whole stochastic process {x(t)}, not the (marginal)
distribution of a single random variable x(t) at
fixed (and likewise for 790 and {Xcal,i(t)}). Finally,
the "true" null distribution 79o need not be known,
but it is assumed that a reasonable model is
available for the null process which allows us to
generate a sample of auxiliary time series {xau(t):
t- 1,... ,T} (j- 1,..., m) with a distribution close
to Do.
Both calibration data and auxiliary data can be

considered as surrogate data [13], though of
different type. Usually, surrogate data are gener-
ated to simulate the distribution of the test
statistics under the null hypothesis. To serve this
purpose, calibration data from a real physical
system are available in our case. The auxiliary data
are generated for a different purpose, namely to
construct a test statistics adapted to the null
process (see Section 2.2). Furthermore, in our
approach the distribution 79o as a whole should be
matched. This is in contrast to the typical use of
surrogate data (e.g., based on randomized Fourier
phases [14]), where only some characteristics of 79o
are taken into account.

2.2. Test Construction

As indicated above the test of the null hypothesis
7% proposed here will be based on the difference

of the si-edf H(c) associated with the time series

{x(t)} and the reference scaling index distribution
function Hrof. As Hre we use the mean distribu-
tion of the si-edf’s Hca,i as obtained from the

calibration time series {Xcal,i(t)}:

Href(Oz) cal(OZ) n-1 - ncal,i (oz) (3)
i=1

This mean distribution may be regarded as an
estimator of the expected value of H(c0 (with re-

spect to 79o). The test depends on the partial
maxima

M(c) max
OZmi

and a function c(a), henceforth referred to as the
deviation profile. The null hypothesis 7-/0 (i.e.,
{X(t)} is in null mode) is rejected if M(c0 crosses
the deviation profile c(c0 somewhere in the interval
[OZmin, OZmax] i.e., if

M(c) > c(c) for some c E [OZmin, OZmax]. (4)

The deviation profile c(c0 and the interval [OZmin,
Omax] have to be chosen such that the error of the
first kind is (approximately) equal to the desired test
level e (typical choices are e 0.05 and e 0.01),

Po(M(o0 > c(c ) for some E [OZmin, OZmax] .
The notation P0 indicates that the probability of
the event in brackets is computed with respect
to the distribution 79o of the null process.
The deviation profile c(c0 has to account for the

strong c-dependence of the variance (under 7{o) of
the random variables A(c0. Typically this variance
is much larger for c-values in the central part of a

scaling index distribution rather than in its tails.
If c were chosen as a constant, possible weak
systematic deviations in the left wing of H(c0
would be concealed by large chance fluctuations in
the center. For instance, this would be the case for
a classical Kolmogorov-Smirnov type test, which
rejects 7% if maxlA(c01 > c’ or, in terms of the
partial maxima, if M(c0 > c’ for some c.

Using partial maxima M(c0 instead of the
(sometimes strongly fluctuating) function
has a certain regularizing effect, but the essential
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features in the left tail of H(a) are retained because
IA(a)l tends to increase in that range. Another
way to avoid strong fluctuations in A(a) can be
achieved by considering only subintervals [OZmin,
amax]. These intervals have to be adjusted with
respect to the parameters T and r1,2.
The deviation profile c(a) will be constructed to

reflect the local variability of M(a) as expected for
the null process. This can be done in different
ways. Two of them are described as Versions (A)
and (B) below. Both versions use auxiliary time
series {Xauxd(t)} to obtain preliminary profiles. The
final profile has to comply with condition (5),
which is achieved by a simple multiplicative
correction. For that purpose the calibration time
series {Xcal,i(t)} are used. The null hypothesis is
rejected according to (4).

Version (A):

(")

where

m

#() m-’ ZMaux’(a)
j=l

mrn- max IAauxj(/3)t.
j-- Ctmin

(6)

The factor ")/A > 0 is determined (e.g., by trial and
error) such that the (empirical) profile crossing
probability

PA n-l#{i <_ n: mc.l,i(o > CA(OZ
for some a [Ctmin OZmax (7)

with

mcal,i (o) max
Omi 0

calculated from the calibration data. The relative
frequency PA represents a bootstrap estimate of the
corresponding error probability in (5). Of course,
the number of calibration data and auxiliary data
should be large enough to make this a stable
estimate.

Version (B):

where # is the same as in (A), and q(a) is
computed as the root of the empirical variance

m

q(a)2 m-’Maux,j(a)2- #(a)2 (9)
j=l

from the auxiliary data. The factor "B is deter-
mined such that the empirical profile crossing
probability PB, defined analogous to PA, satisfies
(7).

Other variants of this approach in addition to
these two versions may also be worth considering.
For example, one could use the empirical standard

deviations SA,aux(Ct) V/(1/m) )m= Aaux,j(Oz)2 to
construct the preliminary profile and then correct it

by a factor 7zx such that one has (with cx 7zxszx)

PA t/-l/={
_

tt: IAcal,i(o)l > c/x (oz)
for some a [OZmin, OZmax] } ft.

The null hypothesis 7-{o is then rejected if

IA(a)l > czx(a) for some a [amin, amax].

2.3. An Example

Details of the proposed test construction for a

specific example are illustrated in Figures 1-6. We
had n 1320 calibration time series (as described
in [9]) at our disposal, each of length T= 10000. As
a working hypothesis it is assumed that the

Xcal,i(t)(t 1,... ,T; i= 1,... ,n) are independent
random variables, identically distributed accord-
ing to a binomial distribution B(nb,rb) with

rib--200 trials and a probability of success

7rb= 1/2. A number of m=2500 auxiliary time
series (roughly twice as much as the calibration

data) were generated according to this "binomial
model". The embedding dimension is d= 4, and
the radii are rl 4.6, r2-- 12.7.

Figure shows Href together with an individual
si-edf Hcal,i. The a(t)’s can only attain values in a

certain finite set determined by T and rl,2 and are
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FIGURE Distribution functions H(c) of scaling indices c. Left: Reference distribution function Hrer(c)= cl(C) as the
empirical mean over 1320 calibration data sets of finite length T= 10000. Right: Distribution function Hcal,; of a single calibration
data set. Notice the step-like behavior for c < 3 in both distribution functions.
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FIGURE 2 Deviation AcaU( of a single distribution function Hcal,;(c) from the reference distribution function Hrer(C). Left:
Acau(C) for a single calibration time series. The dashed line indicates the lc contour of the calibration data sets used to calculate
Hrer(c). Right: Aca,;(c for a time series generated with an i.i.d, random process of length T- 10000 with a binomial distribution
B(182,0.55). The dashed line is the same la contour as in the left panel.

therefore generically discrete (J: (1)). In the left
tail of H, points with small occupation numbers
Nl,z(Z(t)) produce discrete steps which are clearly
visible in Figure 1. The central part of the
distribution appears to be continuous, however,

since the corresponding occupation numbers are
large.
The difference A(c0 of an individual si-edf H

and Hrer is shown in Figure 2. In both cases H is
computed from a simulated time series where the
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x(t) are independent and identically distributed
random variables with a binomial distribution

B(nb, rr,). The first case corresponds to the binomial
model (n6 200, r 1/2), whereas in the second
case we set n= 182, rr=0.55. This leaves the
expectation value of the x(t)’s (approximately)
unchanged, but it reduces their variance from 50
to 45. The empirical standard error of the A’s
calculated from the calibration data, S,cal(C)=
//(1/n) il Acal,i(c) 2, is also plotted in Figure 2
for comparison. For B(182,0.55) a prominent
deviation from zero can be found within the range
3 < c < 4, whereas for c > 4 A is of the same order
as sx,ca. The partial maxima M(0,c0, with lower
limit Omin-- 0, are shown in Figure 3 for the same
data sets. The notation M(omin,Oe) instead of M(c)
indicates the interval over which the maximum is
taken. The same notation will be adopted for the
empirical error probabilities in (7), e.g., PA--
PA(Omin,Omax).

Figure 4 exhibits the deviation profiles CA and ca
(with the preliminary choice /A /e= 2), and, in
the lower plot, the (empirical) pointwise profile
crossing probabilities QA(CO and Qe(c). They are
defined as the relative frequencies with which
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0.02

0.00

0 2 3 4 5

FIGURE 3 The solid line shows the partial maxima Mcal,i(oz
(Eq. 8) for the case shown in the left panel of Figure 2. The
dashed line represents the case shown in the right panel of
Figure 2.

Mcal,i(0,oz exceeds the profile CA,B(Ct) at a fixed
value of c. The rather erratic behavior of these
probabilities for small values of c is due to small
occupation numbers N,2(z(t)). It prompts us to
set Omi 3 in Eq. (5), which approximates the
"continuity onset" in Figure 1.

Figure 5 shows the (empirical) profile crossing
probabilities PA,e(3, Ctmax) as a function of Omax, for, 2 and "7 3. In all cases PA,e(3, OZmax) is constant
for OZma larger than 3.5. Therefore Oma is set to
the (somewhat arbitrary) value 4. With this choice
of Omi and Omax, and with an error level of e 0.05,
the ,’s satisfying (7) are found to have the
(approximate) values /A=3.42, "e=2.94. The
deviation profiles CA, corresponding to these
specifications are shown in Figure 6.

Similar considerations will be necessary in any
application of the proposed testing procedure. In
particular, since the asymptotic distribution of the
test statistics (under 7-{o) is unknown, a sufficiently
large pool of calibration time series is required
in order to determine the -adjustment of the
deviation profiles.

It might be interesting to mention that Ref. [9]
discusses a concrete (real-world) example in which
a similar, truncated form of Version A is used to
detect non-random contributions in a random
time series. In contrast to the detailed procedure
proposed here, the procedure of [9] includes no
adjustment of , and the profile CA(CO is assumed
as #(c) (-y= 1).

3. ENHANCING THE SIGNAL-TO-NOISE
RATIO

Let us assume that a random null process is

sporadically substituted or superimposed by some
faint regular or deterministic signal. Is it possible
to identify those subseries of the entire time series
which contain the "deviant" non-random contri-
butions? This section deals with the question
whether those subseries can be found by selection
procedures based on scaling indices. If this can be
done, it is an attractive idea to construct tests of
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FIGURE 4 Upper panel: deviation profile c(c0 for the two Versions (A) (dashed line) and (B) (solid line) of Section 2.2 with 3’ 2.
Lower panel: the pointwise profile crossing probabilities QA (dashed line) and Q (solid line) are the relative frequencies with which
Mc,l,(c0 exceeds the deviation profile of the upper panel for a single value c.

the null hypothesis based on the selected subseries
and study their statistical characteristics. Some
preliminary steps in this direction are included at
the end of this section. Details in this respect will
be addressed in future work.

Obviously there are other conceivable methods
to detect deviations from randomness in a time
series; e.g., any type of autocorrelation analysis or,
equivalently, Fourier analysis. If one focuses on
the selection of local subseries containing those

deviations rather than a global characterization of
them, wavelet techniques might be good candidates
for alternative approaches. This, however, would
be beyond the scope of the present paper.
Our main purpose in this paper is to make a

concrete proposal for a selection method based on

scaling index distributions and to investigate, by
simulation, whether it yields a higher signal-to-
noise ratio in the selected subseries than in the origi-
nal time series. In this context, the signal-to-noise
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FIGURE 5 The profile crossing probabilities PA,B are the
relative frequencies (as a function of area) with which the
function Mcaki(a) exceeds the deviation profile, Mc,i(a) > c(a),
somewhere in the range 3 < a <_ a The dashed lines indicate
PA for the deviation profile of Version (A) of Section 2.2, the
solid lines indicate the probability PB for Version (B) of Section
2.2. Thin lines indicate "7 2, thick lines "7- 3.
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FIGURE 6 Deviation profiles CA(a) (dashed line) and cB(a)
(solid line) according to Versions (A) and (B) of Section 2.2.

ratio is defined as the relative number of data
points x(t) due to the non-random signal.

Since non-random signals are basically expected
to be associated with small scaling indices, the key

idea is to select all data points x(t) whose scaling
index c(t) falls below some threshold value A1. In
order to avoid the discreteness problems discussed
in Section 2.3, a lower threshold value A0 is
required in addition. Since c(t) depends on the d-
tuple z(t)=(x(t),...,x(t+ d-1)) rather than x(t),
selecting a data point at time in principle implies
selecting the subsequent d-1 data points as well.
Therefore the selected subseries consists of data
points x(t) at instants belonging to a set S which
can be formally defined as

d-1S Uk=0Sk, where

So {t" Ao <_ a(t) <_ A1},
s {t + k. tS0}( < k < d- ).

(10)

Depending on the nature of the non-random
contribution to be detected, it may be advan-
tageous to consider only subsets of S.
The choice of the threshold values is crucial and

not obvious. For our purposes it will be conceived
as depending both on Hrof and the si-edf H of the
time series {x(t)} under study. If the difference
A(c0 attains its maximum at c- c_ then it is
expected that most of the c values corresponding

Theto a non-random signal occur at c <
following strategy is proposed to fix this range:

Define Ao resp. A1 as the minimal resp. maximal
c < c+ at which

A(c) 0.05A(cQ) resp. A(c) 0.75A(c_).

Modifications of this strategy may be appropriate
if A0 falls below the continuity onset of Hrer or if

A1 is larger than the median of Href, say d*. For the
examples to be presented below, the fractions 0.05
and 0.75 have been found to produce the largest
signal-to-noise enhancement.
To study the performance of the selection proce-

dure, auxiliary time series are generated according
to the binomial model of Section 2.3. These
auxiliary time series are then perturbed by
"signals" in such a way that at randomly selected
times "r < < "r the segment
x(’rj+l),...,x(-rj+L-1) of {x(t)} is replaced by
some L-tuple =(O,...,L-1) fixed ad hoc.
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(For -j.+ 1--j < L, each segment is overwritten to
the extent to which it overlaps with the subsequent
segment.) The perturbed data series are then used
as the time series {x(t)} under study. Within this
setting, the signal-to-noise ratio is defined as #R/T
for the full time series, and as #RA S/#S for the
subseries {x(t): E S}. Here R denotes the set of all
instants for which the original x value has been
replaced by a value.

Table I summarizes the results for various tuples
of different length and form. Each entry is based

on 20 time series generated as described above,
with the same embedding dimension d and radii

rl,2 as in Section 2.3. The largest enhancements of
the signal-to-noise ratio, up to a factor of 19, are
found when L >_ d(- 4) and when the values are
close to the expectation value 100 of the B(200,1/2)
distribution. This observation may be heuristically
explained as follows.

Suppose that L-d, and that -(0,... ,d-1)
gives rise to a scaling index of

logN2- logN1
c-- where

logr2- logrl

Xl,2--{t" z(t)-l <- rl,2},

where the z(t)’s are constructed from the unper-
turbed time series. Let c1-c+c and N1,2

Nl,2-+-Nl,2 denote the corresponding quantities

for the perturbed series in which a (small) number
u-fT of tuples replaces the original z tuples at
randomly selected times. It is easy to see that
c_<0, such that the scaling indices always
decrease under such replacements. A rough
quantitative estimate of that shift can be obtained
on noting that a fraction f of the (T-Nl,2) tuples
z(t) outside the ball of radius rl,2 around is
expected to be replaced by -tuples. This gives the
estimate (SNI,zf(T-N,2), or

1-f +f T/N2 / log r2log
f +f T/N1 / rl

-f N1 N2 rl
--, (11)

provided that If/(1-f)]T/N1,2 is sufficiently small.
Therefore, the (negative) shift c increases for
decreasing N1. At first sight this seems to contra-
dict the claim that the best enhancement is
achieved for values close to 100, where N is
large (and cd*). However, the statistical vari-

ability of A (c) decreases sharply with decreasing
c in the left wing of H(c). On the other hand, in
rarefied regions of the embedding space, where N1
is relatively small, the (expected) c shift is large, so
that c tends to fall below the threshold A0.
The perturbed time series have a mean and

standard deviation different from that of the

TABLE Results of the selection procedure for random time series in which u 25 sequences of x-values
have been replaced by the -tuples given in column 1. For each type of -tuple Na- 20 independent time
series have been generated. Ntest is the number of time series for which the test rejects 0, hence indicating
non-random contributions. Nmatch is the number of those elements in the selected subseries matching (in
both time and amplitude) with elements of the inserted -tuples. The medians and the standard deviations of

Nmatch are listed. Rsn is the signal-to-noise ratio for the selected subseries and the total time series,
respectively. For the selected subseries the medians and the standard deviations are listed as well

L- tuple Ntest Nmatch Rsn (selected)
{0, 1 ;-1} Na 20 median 4- S.D. median 4- S.D. Rsn (total)

[100, 100, 100] 13 49 4- 6.3 0.079 4- 0.027 0.0075
[100, 100, 100, 100] 20 86 4- 2.9 0.191 4- 0.033 0.0100
[100, 100, 100, 100, 100] 20 111 4- 2.3 0.240 4- 0.033 0.0125
[107, 107, 107] 2 4- 12.3 0.016 4- 0.081 0.0075
[107,107, 107, 107] 6 79 4- 30.2 0.039 4- 0.236 0.0100
[107,107, 107,107, 107] 20 105 4- 5.0 0.135 4- 0.291 0.0125
[101,99,98,96] 16 86 4- 7.6 0.128 4- 0.046 0.0100
[101,98,101,98] 17 83 4- 3.6 0.137 4- 0.030 0.0100
[107,99, 101,103] 5 41 4- 27.6 0.032 4- 0.022 0.0100
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unperturbed series. However, the differences are
too small to be easily detected by a t-test or a

(variance ratio) F-test. What happens if these tests
are applied to the selected subseries? Table II shows
the number of subseries within the 20 time series of
Table I for which the hypothesis is rejected that the
mean and the variance are equal to those of the
binomial model. These results can be compared to
those for subseries of the same length, which are
selected randomly (i.e., not by the described pro-
cedure) from the respective perturbed time series.
While the numbers for those randomly selected
subseries for which the null hypothesis is rejected
are consistent with the required type I error c--

0.05, the numbers for the subseries selected by the
described procedure significantly exceed this type I
error except for the t-test and tuples with values

close to the mean ofthe unperturbed series. It has to
be noted, however, that the null distributions of the
test statistics for the selected subseries generally are
different from the usual ones. To obtain a fair com-
parison further simulations are required to deter-
mine appropriate reference (null) distributions.

Tables III and IV show corresponding results
for random time series according to the binomial
model in which the elements have been reordered
in such a way that the same -tuples as used for
Tables I and II are created, however without
introducing new values of x(t). In contrast to the
replacement procedure discussed above, such a

reordering keeps the state distribution invariant
but may change the distribution of transition
probabilities between states considerably. For each
type of tuple, 20 independent time series have been

TABLE II Results of t-tests and F-tests applied to selected subseries. Ntest is the same as in
Table I. Pt is the number of subseries selected by scaling indices for which the hypothesis of no
mean shift is rejected (t-test, two-sided, c 0.05). PF is the number of subseries selected by scaling
indices for which the hypothesis of no variance change is rejected (:F-test, two-sided, c --0.05). Pt
(random) and PF (random) denote the corresponding numbers for randomly selected subseries

L-tuple Ntost Pt PF
{G0, E1 EL--1} Nail 20 Pt PF (random) (random)

[100, 100, 100] 13 4 20
[100, 100, 100, 100] 20 20 2
[100, 100, 100, 100, 100] 20 0 20 2 2
[107,107,107] 2 5 17 0
[107, 107, 107, 107] 6 13 20 0
[107,107,107,107,107] 20 15 19 0 0
[101,99, 98, 96] 16 18 20 0
[101,98,101,98] 17 3 20 0 2
[107,99, 101,103] 5 11 20 0

TABLE III Results of the selection procedure for binomial model time series which have been
reordered to generate 25 -tuples given in column 1. Ntest, Nail, Nmatch, and Rsn as in Table

L-tuple Ntest Nmatch Rsn (selected)
{E0, E1 E/- l} Nail 20 median + S.D. median + S.D. Rsn (total)

[100, 100, 100] 6 48 4- 13.3 0.086 4- 0.032 0.0075
[100, 100, 100, 100] 19 84 4- 3.9 0.216 4- 0.028 0.0100
[100, 100, 100, 100, 100] 20 109 4- 2.7 0.260 4- 0.027 0.0125
[107, 107, 107] 2 4- 16.9 0.004 4- 0.009 0.0075
[107, 107, 107, 107] 6 81 4- 23.3 0.070 4- 0.101 0.0100
[107, 107, 107, 107, 107] 20 106 4- 2.4 0.117 4- 0.187 0.0125
[101,99,98,96] 12 83 4- 4.0 0.131 4- 0.063 0.0100
[101,98,101,98] 15 80 4- 23.0 0.141 4- 0.055 0.0100
[107,99, 101,103] 2 43 4- 32.0 0.027 4- 0.042 0.0100
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TABLE IV Results of runs tests for the reordered time series
of Table III. Ptotal (Pselected) is the number of total (selected)
reordered time series for which the independence hypothesis (no
temporal order) is rejected (e 0.05)

L-tuple Ntt
{E0, E1 EL- 1} Nal 20 Ptotal Pselected

[100, 100, 100] 6 3 9

[100, 100, 100, 100] 19 6

[100, 100, 100, 100, 100] 20 7
[107,107,107] 2 9

[107,107,107,107] 6 4 11

[107, 107, 107, 107, 107] 20 8 12
[101,99,98,96] 12 0 9

[101,98,101,98] 15 2 19

[107,99,101,103] 2 12

generated. The same selection procedure as for
Tables I and II has been applied. As in case of
replacement, reordering shows that the selection of
subseries with small c can lead to an enhancement
of the signal-to-noise ratio up to a factor of 21.
The reordered time series has the same state

distribution as the original time series but different
transition probabilities. In particular, the elements
x(t) are statistically dependent. Therefore, sequen-
tial correlations (order) are introduced in the gene-
rated time series. These correlations are checked
with a runs test (Tab. IV). Comparing Ptotal and

Pselected in Table IV shows that the runs test is more
sensitive when applied to the selected subseries of
the reordered time series rather than to the whole
reordered series. Of course, the same qualifying
remarks as made above concerning t- and F-tests
apply with respect to Pselected. Comparing the whole
reordered time series to the original random
time series, only tuples of the type [107,107,107,
107,107] lead to a significant difference. For all
other types of tuples, Ptotal in Table IV shows no

significant difference from the original random time
series.

4. DISCUSSION

There are two ways in which the test proposed in
Section 2.2 depends on the null process. (i) It is not

distribution free, in the sense that the distribution of
the test statistics is in general different for different
underlying null distributions Do. (ii) Even the test
statistics itself depends, via the deviation profiles
c(c0, on the assumed model (for the null process)
used for the generation of the auxiliary time series.
As a consequence of (i), the /-adjustments have to
be computed anew (on the basis ofthe given calibra-
tion data) if the test is to be applied to another null
process. Further massive computation is needed for
the construction of the deviation profiles.
The null processes considered in our examples are

all of the i.i.d, type. It is expected that qualitatively
similar results would be obtained for state (null)
distributions different from the binomial distribu-
tion B(200,1/2) (our main example), provided
they are not too long-tailed. The situation must
be more complex with null processes exhibit-
ing statistical dependencies between states,
e.g., ARMA processes containing deterministic
components.
The power of the test depends on the special

type of deviation from the null hypothesis. If the
process {x(t)} under study is i.i.d, and only
changes of the state distribution of {x(t)} are

considered, there are well-known tests which are
more efficient than the one proposed here. Since

H(c0 is invariant under translations of the form
x(t)+x(t)+ constant, the test has no power at all
against mean shifts in the state distribution. It does
have some power against scale dilations (variance
changes), which cannot compete, however, with
the power of the (variance ratio) F-test which is
especially tailored to deviations of that kind. For
instance, for time series generated according to the
binomial model of Section 2.3 with B(193, 0.482),
corresponding to a reduction of the variance by
3.63%, our test rejects the null hypothesis in
about 20% of the data series, whereas the F-test
(one-sided, c =0.05) has a rejection rate of about
50%.
More interesting situations arise if the time series

is not stationary and/or its elements are correlated,
particularly when this is the case only sporadically
within the observed segment. Corresponding types
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of deviations can be studied with random time
series (of the i.i.d, type) modified by various kinds
of perturbations at randomly selected instants (or
intervals). For example, tuples of L subsequent x-
values may be replaced by some ad hoc fixed L-
tuple , or the time series may be reordered in such a

way that the ’s appear at randomly selected
instants (or intervals).
As can be seen from Tables I and III, the test

proposed in Section 2.2 is the more sensitive the less
"complex" the non-random process is. For in-
stance, a deterministic process with a small number
of different states around the median of the x(t)’s of
the random (null) process with a simple temporal
order of the tuples results in a high detection rate.
The test works equally well when the empirical
distribution of the perturbed x(t)’s is the same as for
the unperturbed ones, i.e., when the perturbation
consists in a reordering of the time series. If the
perturbation consists of a replacement by a fixed L-
tuple , the power tends to be the higher the closer
the -values are to the median ofthe x(t)’s. This may
be contrasted with the behavior of standard tests
which often react sensitively to outliers but draw
little information from data points close to the
center of the state distribution.
Summing up, the test proposed in this paper is

well suited for time series in which (1) states gene-
rated by a deterministic process with low complex-
ity are to be separated from random elements, and
(2) the deterministic elements are close to the
median of the random elements. Within the investi-
gated time series, subseries can be selected for which
the signal-to-noise ratio is enhanced compared to
the total time series.
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