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Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing
transport dynamics in complex systems that are governed by anomalous diffusion and nonex-
ponential relaxation patterns. However, effective numerical methods and analytic techniques for
the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional
Fokker-Planck equations with a nonlinear source term (TSFFPENST), which involve the Caputo
time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional
derivative (RSFD) of order μ ∈ (1, 2]. Approximating the CTFD and RSFD using the L1-algorithm
and shifted Grünwald method, respectively, a computationally effective numerical method is pre-
sented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method
are investigated. Finally, numerical experiments are carried out to support the theoretical claims.

1. Introduction

The Fokker-Planck equation (FPE) has commonly been used to describe the Brownian motion
of particles. Normal diffusion in an external force field is often modeled in terms of the
following Fokker-Planck equation (FPE) [1]:

∂u(x, t)
∂t

=

[
∂

∂x

V ′(x)
mη1

+K1
∂2

∂x2

]
u(x, t), (1.1)

where m is the mass of the diffusing test particle, η1 denotes the fraction constant
characterising the interaction between the test particle and its embedding, and the force is
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related to the external potential through F(x) = dV (x)/dx. The FPE (1.1) is well studied for
a variety of potential types, and the respective results have found wide application. In many
studies of diffusion processes where the diffusion takes place in a highly nonhomogeneous
medium, the traditional FPE may not be adequate [2, 3]. The nonhomogeneities of the
medium may alter the laws of Markov diffusion in a fundamental way. In particular,
the corresponding probability density of the concentration field may have a heavier tail
than the Gaussian density, and its correlation function may decay to zero at a much
slower rate than the usual exponential rate of Markov diffusion, resulting in long-range
dependence. This phenomenon is known as anomalous diffusion [4]. Fractional derivatives
play a key role in modeling particle transport in anomalous diffusion including the space
fractional Fokker-Planck (advection-dispersion) equation describing Lévy flights, the time
fractional Fokker-Planck equation depicting traps, and the time-space fractional equation
characterizing the competition between Lévy flights and traps [5, 6]. Different assumptions
on this probability density function lead to a variety of time-space fractional Fokker-Planck
equations (TSFFPEs).

TSFFPE has been successfully used for modeling relevant physical processes. When
the fractional differential equation is used to describe the asymptotic behavior of continuous
time random walks, its solution corresponds to the Lévy walks, generalizing the Brownian
motion to the Lévy motion. The following space fractional Fokker-Planck equation has been
considered [2, 3, 7]:

∂u(x, t)
∂t

= −v∂u(x, t)
∂x

+Kμ

[
c+ aD

μ
xu(x, t) + c− xD

μ

b
u(x, t)

]
, (1.2)

where v is the drift of the process, that is, the mean advective velocity; Kμ is the coefficient of
dispersion; aD

μ
x and xD

μ

b are the left and right Riemann-Liouville space fractional derivatives
of order μ given by

aD
μ
xu(x, t) =

1
Γ
(
2 − μ

) ∂2

∂x2

∫x

a

u(ξ, t)dξ

(x − ξ)μ−1
,

xD
μ

bu(x, t) =
1

Γ
(
2 − μ

) ∂2

∂x2

∫b

x

u(ξ, t)dξ

(ξ − x)μ−1
;

(1.3)

c+ and c− indicate the relative weight of transition probability; Benson et al. [2, 3] took c+ =
1/2+ β/2 and c− = 1/2− β/2, (−1 ≤ β ≤ 1), which indicate the relative weight forward versus
backward transition probability. If c+ = c− = −cμ = −1/2 cos(πμ/2), (1.2) can be rewritten in
the following form:

∂u(x, t)
∂t

= −v∂u(x, t)
∂x

+Kμ
∂μu(x, t)
∂|x|μ

, (1.4)

where ∂μ/∂|x|μ is the symmetric space fractional derivative of order μ (1 < μ ≤ 2). This is also
referred to as the Riesz derivative [8], which contains a left Riemann-Liouville derivative
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(aD
μ
x) and a right Riemann-Liouville derivative (xD

μ

b ), namely,

∂μ

∂|x|μ
u(x, t) = −cμ

(
aD

μ
x + xD

μ

b

)
u(x, t). (1.5)

As a model for subdiffusion in the presence of an external field, a time fractional
extension of the FPE has been introduced as the time fractional Fokker-Planck equation
(TFFPE) [5, 9]:

∂u(x, t)
∂t

= 0D
1−α
t

[
∂

∂x

V ′(x)
mηα

+Kα
∂2

∂x2

]
u(x, t), (1.6)

where the Riemann-Liouville operator 0D
1−α
t , (0 < α < 1) is defined through its operation:

0D
1−α
t u(x, t) =

1
Γ(α)

∂

∂t

∫ t

0

u
(
x, η

)
(
t − η

)1−α dη. (1.7)

Yuste and Acedo [10] proposed an explicit finite difference method and a new von
Neumann-type stability analysis for the anomalous subdiffusion equation (1.6) with V ′(x) =
0. However, they did not give a convergence analysis and pointed out the difficulty of this
task when implicit methods are considered. Langlands and Henry [11] also investigated
this problem and proposed an implicit numerical L1-approximation scheme and discussed
the accuracy and stability of this scheme. However, the global accuracy of the implicit
numerical scheme has not been derived and it seems that the unconditional stability for
all α in the range 0 < α ≤ 1 has not been established. Recently, Chen et al. [12] presented
a Fourier method for the anomalous subdiffusion equation, and they gave the stability
analysis and the global accuracy analysis of the difference approximation scheme. Zhuang
et al. [13] also proposed an implicit numerical method and an analytical technique for the
anomalous subdiffusion equation. Chen et al. [14] proposed implicit and explicit numerical
approximation schemes for the Stokes’ first problem for a heated generalized second grade
fluid with fractional derivatives. The stability and convergence of the numerical scheme
are discussed using a Fourier method. A Richardson extrapolation technique for improving
the order of convergence of the implicit scheme is presented. However, effective numerical
methods and error analysis for the time-space fractional Fokker-Planck equation with a
nonlinear source term are still in their infancy and are open problems.

Equation (1.6) can be written as the following equivalent form [15]:

0D
α
t u(x, t) −

u(x, 0)t−α

Γ(1 − α) =

[
∂

∂x

V ′(x)
mηα

+Kα
∂2

∂x2

]
u(x, t). (1.8)

By noting that [15]

∂αu(x, t)
∂tα

= 0D
α
t u(x, t) −

u(x, 0)t−α

Γ(1 − α) , (1.9)
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we arrive at

∂αu(x, t)
∂tα

=

[
∂

∂x

V ′(x)
mηα

+Kα
∂2

∂x2

]
u(x, t), (1.10)

where ∂αu(x, t)/∂tα is the Caputo time fractional derivative (CTFD) of order α (0 < α < 1)
with starting point at t = 0 defined by [16]

∂αu(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

∂u
(
x, η

)
∂η

dη(
t − η

)α . (1.11)

The time-space fractional Fokker-Plank equation (TSFFPE), which describes the competition
between subdiffusion and Lévy flights, is given by [5]

∂u(x, t)
∂t

= 0D
1−α
t

[
∂

∂x

V ′(x)
mηα

+Kμ
α
∂μ

∂|x|μ
]
u(x, t), (1.12)

or

∂αu(x, t)
∂tα

=
[
∂

∂x

V ′(x)
mηα

+Kμ
α
∂μ

∂|x|μ
]
u(x, t), (1.13)

where Kμ
α denotes the anomalous diffusion coefficient.

Schot et al. [17] investigated a fractional diffusion equation that employs time and
space fractional derivatives by taking an absorbent (or source) term and an external force
into account, which can be described by the following time-space fractional Fokker-Plank
equation with an absorbent term and a linear external force:

∂αu(x, t)
∂tα

= − ∂

∂x
[F(x)u(x, t)] +Kμ

α
∂μ

∂|x|μ
u(x, t) −

∫ t

0
r
(
t − η

)
u
(
x, η

)
dη, (1.14)

where F(x) is the external force and r(t) is a time-dependent absorbent term, which may be
related to a reaction diffusion process.

The fractional Fokker-Planck equations (FFPEs) have been recently treated by many
authors and are presented as a useful approach for the description of transport dynamics in
complex systems that are governed by anomalous diffusion and nonexponential relaxation
patterns. The analytical solution of FFPE is only possible in simple and special cases [2, 3, 18]
and the analytical solution provides a general representation in terms of Green’s functions.
We note that the representation of Green’s functions is mostly expressed as convergent
expansions in negative and positive power series. These special functions are not suitable
for numerical evaluation when x is sufficiently small or sufficiently large. Therefore, a new
numerical strategy is important for solving these equations. Although numerical methods
for the time fractional Fokker-Planck type equation, the space fractional Fokker-Plank type
equation, and the time-space fractional Fokker-Planck type equation have been considered
[7, 15, 19], numerical methods and stability and convergence analysis for the FFPE are quite
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limited and difficult. In fact, published papers on the numerical methods for the FFPE are
sparse. We are unaware of any other published work on numerical methods for the time-
space fractional Fokker-Planck type equation with a nonlinear source term. This motivates
us to consider an effective numerical method for the time-space fractional Fokker-Planck
equation with a nonlinear source term and to investigate its stability and convergence.

In this paper, we consider the following time-space fractional Fokker-Planck equation
with a nonlinear source term (TSFFPE-NST):

∂αu(x, t)
∂tα

=
[
∂

∂x

V ′(x)
mηα

+Kμ
α
∂μ

∂|x|μ
]
u(x, t) + s(u, x, t) (1.15)

subject to the boundary and initial conditions:

u(a, t) = u(b, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = u0(x), a ≤ x ≤ b,
(1.16)

where p(x) = V ′(x)/mηα is known as the drift coefficient. The nonlinear source (or absorbent)
term s(u, x, t) is assumed to satisfy the Lipschitz condition:

‖s(u, x, t) − s(v, x, t)‖ ≤ L‖u − v‖. (1.17)

Let X be a Banach space with associated norm ‖u‖. We say that s : X → X is globally
Lipschitz continuous if for some L > 0, we have ‖s(u) − s(v)‖ ≤ L‖u − v‖ for all u, v ∈ X, and
is locally Lipschitz continuous, if the latter holds for ‖u‖, ‖v‖ ≤ M with L = L(M) for any
M > 0 [20].

Let Ω = [a, b] × [0, T]. In this paper, we suppose that the continuous problem (1.15)-
(1.16) has a smooth solution u(x, t) ∈ C1+μ,2

x,t (Ω).
The rest of this paper is organized as follows. In Section 2, the Caputo time fractional

derivative (CTFD) and the Riesz space fractional derivative (RSFD) are approximated by
the L1-algorithm and the shifted Grünwald method, respectively. An effective numerical
method (ENM) for solving the TSFFPE-NST (1.15)-(1.16) is proposed. The stability and
convergence of the ENM are discussed in Sections 3 and 4, respectively. In Section 5,
numerical experiments are carried out to support the theoretical analysis. Finally, some
conclusions are drawn in Section 6.

2. An Effective Numerical Method for the TSFFPE-NST

In this section, we present an effective numerical method to simulate the solution behavior
of the TSFFPE-NST (1.15)-(1.16). Let xl = lh (l = 0, 1, . . . ,M) and tn = nτ (n = 0, 1, . . . ,N),
where h = (b − a)/M and τ = T/N are the spatial and temporal steps, respectively.

Firstly, adopting the L1-algorithm [21], we discretize the Caputo time fractional
derivative as

∂αu(x, tn+1)
∂tα

=
τ−α

Γ(2 − α)

n∑
j=0

bj
[
u
(
x, tn+1−j

)
− u

(
x, tn−j

)]
+O

(
τ1+α

)
, (2.1)

where bj = (j + 1)1−α − j1−α, j = 0, 1, 2, . . . ,N − 1.
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For the symmetric Riesz space fractional derivative, we use the following shifted
Grünwald approximation [22]:

∂μu(xl, t)
∂|x|μ

= − h−μ

2 cos
(
πμ/2

)
[
l+1∑
i=0

wiu(xl−i+1, t) +
M−l+1∑
i=0

wiu(xl+i−1, t)

]
+O(hq), (2.2)

where the coefficients are defined by

w0 = 1, wi = (−1)i
μ
(
μ − 1

)
· · ·

(
μ − i + 1

)
i!

, i = 1, 2, . . . ,M. (2.3)

This formula is not unique because there are many different valid choices for wi that lead to
approximations of different orders q [23]. The definition (2.2) provides order q = 1.

The first-order spatial derivative can be approximated by the backward difference
scheme if p(x) < 0, (otherwise, the forward difference scheme can be used if p(x) > 0):

∂

∂x
p(xl)u(xl, t) =

p(xl)u(xl, t) − p(xl−1)u(xl−1, t)
h

+O(h). (2.4)

The nonlinear source term can be discretised either explicitly or implicitly. In this
paper, we use an explicit method and evaluate the nonlinear source term at the previous
time step:

s(u(x, tn+1), x, tn+1) = s(u(x, tn), x, tn) +O(τ). (2.5)

In this way, we avoid solving a nonlinear system at each time step and obtain an
unconditionally stable and convergent numerical scheme, as shown in Section 3. However,
the shortcoming of the explicit method is that it generates additional temporal error, as shown
in (2.5).

Thus, using (2.1)–(2.5), we have

τ−α

Γ(2 − α)

n∑
j=0

bj
[
u
(
xl, tn+1−j

)
− u

(
xl, tn−j

)]

=
p(xl)u(xl, tn+1) − p(xl−1)u(xl−1, tn+1)

h

− K
μ
αh
−μ

2 cos
(
πμ/2

)
[
l+1∑
i=0

wiu(xl−i+1, tn+1) +
M−l+1∑
i=0

wiu(xl+i−1, tn+1)

]

+ s(u(xl, tn), xl, tn) +O
(
τ1+α + h + τ

)
.

(2.6)
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After some manipulation, (2.6) can be written in the following form:

u(xl, tn+1) = bnu(xl, t0) +
n−1∑
j=0

(
bj − bj+1

)
u
(
xl, tn−j

)

+
μ0

h

(
p(xl)u(xl, tn+1) − p(xl−1)u(xl−1, tn+1)

)

− μ0r0

[
l+1∑
i=0

wiu(xl−i+1, tn+1) +
M−l+1∑
i=0

wiu(xl+i−1, tn+1)

]

+ μ0s(u(xl, tn), xl, tn) + Rn+1
l ,

(2.7)

where μ0 = ταΓ(2 − α) > 0, r0 = Kμ
αh
−μ/2 cos(πμ/2) < 0, and

∣∣∣Rn+1
l

∣∣∣ ≤ C1τ
α
(
τ1+α + h + τ

)
. (2.8)

Let un
l

be the numerical approximation of u(xl, tn), and let sn
l

be the numerical
approximation of s(u(xl, tn), xl, tn). We obtain the following effective numerical method
(ENM) of the TSFFPE-NST (1.15)-(1.16):

un+1
l = bnu0

l +
n−1∑
j=0

(
bj − bj+1

)
u
n−j
l +

μ0

h

(
plu

n+1
l − pl−1u

n+1
l−1

)

− μ0r0

[
l+1∑
i=0

wiu
n+1
l−i+1 +

M−l+1∑
i=0

wiu
n+1
l+i−1

]
+ μ0s

n
l

(2.9)

for l = 1, 2, . . . ,M − 1, n = 0, 1, 2, . . . ,N − 1. The boundary and initial conditions can be
discretised using

un0 = unM = 0, n = 0, 1, 2, . . . ,N,

u0
l = u0(lh), l = 0, 1, 2, . . . ,M.

(2.10)

Remark 2.1. If we use the implicit method to approximate the nonlinear source term, the
numerical method of the TSFFPE-NST can be written as

un+1
l = bnu0

l +
n−1∑
j=0

(
bj − bj+1

)
u
n−j
l +

μ0

h

(
plu

n+1
l − pl−1u

n+1
l−1

)

− μ0r0

[
l+1∑
i=0

wiu
n+1
l−i+1 +

M−l+1∑
i=0

wiu
n+1
l+i−1

]
+ μ0s

n+1
l ,

(2.11)

that is, replace snl in (2.9) with sn+1
l . This numerical method is stable and convergent when

the source term s(u(x, t), x, t) satisfies the Lipschitz condition (1.17) (see, e.g., [24]).
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Lemma 2.2 (see [19]). The coefficients bj satisfy

(1) bj > 0 for j = 0, 1, 2, . . . , n;

(2) 1 = b0 > b1 > · · · > bn, bn → 0 as n → ∞;

(3) when 0 < α < 1,

lim
j→∞

b−1
j

jα
= lim

j→∞

j−1(
1 + j−1

)1−α − 1
=

1
1 − α.

(2.12)

Thus, there is a positive constant C2 such that

b−1
j ≤ C2j

α, j = 0, 1, 2, . . . . (2.13)

Lemma 2.3 (see [25]). The coefficients wi satisfy

(1) w0 = 0, w1 = −μ < 0, and wi > 0 for i = 2, 3, . . . ,M;

(2)
∑∞

i=0 wi = 0, and
∑n

i=0 wi < 0 for ∀n ∈ N.

3. Stability of the Effective Numerical Method

In this section, we analyze the stability of the ENM (2.9)-(2.10). Firstly, we rewrite (2.9) in the
following form:

un+1
l −

μ0

h

(
plu

n+1
l − pl−1u

n+1
l−1

)
+ μ0r0

[
l+1∑
i=0

wiu
n+1
l−i+1 +

M−l+1∑
i=0

wiu
n+1
l+i−1

]

= bnu0
l +

n−1∑
j=0

(
bj − bj+1

)
u
n−j
l + μ0s

n
l .

(3.1)

Let ũn
l

be the approximate solution of the ENM (3.1), and let s̃n
l

be the approximation
of snl . Setting ρnl = unl − ũ

n
l , we obtain the following roundoff error equation:

ρn+1
l −

μ0

h

(
plρ

n+1
l − pl−1ρ

n+1
l−1

)
+ μ0r0

[
l+1∑
i=0

wiρ
n+1
l−i+1 +

M−l+1∑
i=0

wiρ
n+1
l+i−1

]

= bnρ0
l +

n−1∑
j=0

(
bj − bj+1

)
ρ
n−j
l + μ0

(
snl − s̃

n
l

) (3.2)

for l = 1, 2, . . . ,M − 1; n = 0, 1, . . . ,N − 1.
We suppose that p(x) ≤ 0 and that p(x) decreases monotonically on [a, b]. This is

based on the fact that physical considerations and stability dictate that p′(x) < 0 [26, 27].
Assuming ‖ρn‖∞ = max1≤l≤M−1|ρnl |, and using mathematical induction, we obtain the

following theorem.
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Theorem 3.1. Suppose that ρnl (l = 1, 2, . . . ,M − 1, n = 1, 2, . . . ,N) is the solution of the roundoff
error equation (3.2), and the nonlinear source term s(u(x, t), x, t) satisfies the Lipschitz condition
(1.17), then there is a positive constant C0, such that

∥∥ρn∥∥∞ ≤ C0

∥∥∥ρ0
∥∥∥
∞
, n = 1, 2, . . . ,N. (3.3)

Proof. When n = 1, assume that |ρ1
l0
| = max{|ρ1

1|, |ρ
1
2|, . . . , |ρ

1
M−1|}. Because p(x) ≤ 0 and

decreases monotonically on [a, b], we have

0 ≤ −
μ0

h

(
pl0 − pl0−1

)∣∣∣ρ1
l0

∣∣∣ ≤ −μ0

h
pl0

∣∣∣ρ1
l0

∣∣∣ + μ0

h
pl0−1

∣∣∣ρ1
l0−1

∣∣∣. (3.4)

Using the properties of ωi in Lemma 2.3, we have

0 ≤ μ0r0

[
l0+1∑
i=0

wi

∣∣∣ρ1
l0

∣∣∣ +M−l0+1∑
i=0

wi

∣∣∣ρ1
l0

∣∣∣
]

≤ μ0r0

[
l0+1∑
i=0

wi

∣∣∣ρ1
l0−i+1

∣∣∣ +M−l0+1∑
i=0

wi

∣∣∣ρ1
l0+i−1

∣∣∣
]
.

(3.5)

Combining (3.4) with (3.5), using the Lipschitz condition (1.17) and smooth solution
condition, we obtain

∣∣∣ρ1
l0

∣∣∣ ≤ ∣∣∣ρ1
l0

∣∣∣ − μ0

h
pl0

∣∣∣ρ1
l0

∣∣∣ + μ0

h
pl0−1

∣∣∣ρ1
l0−1

∣∣∣
+ μ0r0

[
l0+1∑
i=0

wi

∣∣∣ρ1
l0−i+1

∣∣∣ +M−l0+1∑
i=0

wi

∣∣∣ρ1
l0+i−1

∣∣∣
]

≤
∣∣∣∣∣ρ1

l0
−
μ0

h
pl0ρ

1
l0
+
μ0

h
pl0−1ρ

1
l0−1 + μ0r0

[
l0+1∑
i=0

wiρ
1
l0−i+1 +

M−l0+1∑
i=0

wiρ
1
l0+i−1

]∣∣∣∣∣
=
∣∣∣b0ρ

0
l0
+ μ0

(
s0
l0
− s̃0

l0

)∣∣∣
≤ b0

∣∣∣ρ0
l0

∣∣∣ + μ0L
∣∣∣ρ0

l0

∣∣∣ = (
1 + μ0L

)∣∣∣ρ0
l0

∣∣∣.

(3.6)

Let C = 1 + μ0L. Thus, we obtain

∥∥∥ρ1
∥∥∥
∞
≤ C

∥∥∥ρ0
∥∥∥
∞
. (3.7)

Now, suppose that

∥∥∥ρk∥∥∥
∞
≤ C

∥∥∥ρ0
∥∥∥
∞
, k = 2, . . . , n. (3.8)



10 International Journal of Differential Equations

By assuming |ρn+1
l0
| = max{|ρn+1

1 |, |ρn+1
2 |, . . . , |ρn+1

M−1|}, we have that

∣∣∣ρn+1
l0

∣∣∣ ≤
∣∣∣∣∣ρn+1

l0
−
μ0

h

(
pl0ρ

n+1
l0
− pl0−1ρ

n+1
l0−1

)
+ μ0r0

[
l0+1∑
i=0

wiρ
n+1
l0−i+1 +

M−l0+1∑
i=0

wiρ
n+1
l0+i−1

]∣∣∣∣∣
=

∣∣∣∣∣∣bnρ0
l0
+
n−1∑
j=0

(
bj − bj+1

)
ρ
n−j
l0

+ μ0

(
snl0 − s̃

n
l0

)∣∣∣∣∣∣
≤ bn

∣∣∣ρ0
l0

∣∣∣ + n−1∑
j=0

(
bj − bj+1

)∣∣∣ρn−jl0

∣∣∣ + μ0L
∣∣∣ρnl0

∣∣∣.

(3.9)

Using (3.7) and (3.8), we have

∣∣∣ρn+1
l0

∣∣∣ ≤ bn∣∣∣ρ0
l0

∣∣∣ + Cn−1∑
j=0

(
bj − bj+1

)∣∣∣ρ0
l0

∣∣∣ + Cμ0L
∣∣∣ρ0

l0

∣∣∣
= bn

∣∣∣ρ0
l0

∣∣∣ + C(b0 − bn)
∣∣∣ρ0

l0

∣∣∣ + Cμ0L
∣∣∣ρ0

l0

∣∣∣
=
(
bnμ0L + C2

)∣∣∣ρ0
l0

∣∣∣.
(3.10)

Let C0 = bnμ0L + C2. Hence, we have

∥∥∥ρn+1
∥∥∥
∞
≤ C0

∥∥∥ρ0
∥∥∥
∞
. (3.11)

The proof of Theorem 3.1 is completed.

Applying Theorem 3.1, the following theorem of stability is obtained.

Theorem 3.2. Assuming that the nonlinear source term s(u(x, t), x, t) satisfies the Lipschitz
condition (1.17) and that the drift coefficient p(x) ≤ 0 decreases monotonically on [a, b], the ENM
defined by (2.9)-(2.10) is stable.

Remark 3.3. If p(x) > 0 and decreases monotonically on [a, b], we can use the forward
difference method to approximate the first-order spatial derivative and apply a similar
analysis of stability.

Remark 3.4. In fact, for the case p(x) does not decrease monotonically, we can still obtain a
stable numerical scheme by a minor change in our current ENM. We can expand the first
term on the RHS of (1.15) as (∂/∂x)[p(x)u(x, t)] = (dp/dx)u(x, t) +p(x)(∂u(x, t)/∂x), which
enables us to group (dp/dx)u(x, t) together with the nonlinear source term s(u, x, t) to obtain
a new nonlinear source term s∗(u, x, t) = s(u, x, t) + (dp/dx)u(x, t). This way we can weaken
the assumption on p(x) and the analysis given in this section still can be used.

Remark 3.5. If we use an implicit method to approximate the nonlinear source term, as shown
in Remark 2.1, we can prove that the numerical method defined in (2.11) is stable when
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1 − μ0L > 0, which is independent of the spatial step. In fact, when the time step is small,
the condition 1 − μ0L > 0 is generally satisfied.

4. Convergence of the Effective Numerical Method

In this section, we analyze the convergence of the ENM (2.9)-(2.10). Let u(xl, tn) be the exact
solution of the TSFFPE-NST (1.15)-(1.16) at mesh point (xl, tn), and let unl be the numerical
solution of the TSFFPE-NST (1.15)-(1.16) computed using the ENM (2.9)-(2.10). Define ηn

l
=

u(xl, tn) − unl and Yn = (ηn1 , η
n
1 , . . . , η

n
M−1)

T . Subtracting (2.9) from (2.7) leads to

ηn+1
l −

μ0

h

(
plη

n+1
l − pl−1η

n+1
l−1

)
+ μ0r0

[
l+1∑
i=0

wiη
n+1
l−i+1 +

M−l+1∑
i=0

wiη
n+1
l+i−1

]

= bnη0
l +

n−1∑
j=0

(
bj − bj+1

)
η
n−j
l + μ0

(
s(u(xl, tn), xl, tn) − snl

)
+ Rn+1

l ,

(4.1)

where l = 1, 2, . . . ,M − 1; n = 0, 1, . . . ,N − 1.
Assuming that ‖Yn‖∞ = max1≤l≤M−1|ηnl | and using mathematical induction, we obtain

the following theorem.

Theorem 4.1. Assuming the nonlinear source term s(u(x, t), x, t) satisfies the Lipschitz condition
(1.17), and the drift coefficient p(x) ≤ 0 decreases monotonically on [a, b], the ENM defined by
(2.9)-(2.10) is convergent, and there exists a positive constant C∗, such that

‖Yn‖∞ ≤ C∗
(
τ1+α + h + τ

)
, n = 1, 2, . . . ,N. (4.2)

Proof. Assume |Rk0
l0
| = max1≤l≤M−1,1≤n≤N |Rn

l |. Following a similar argument to that presented
above for the stability analysis of the ENM (2.9)-(2.10), when n = 1, assuming that |η1

l0
| =

max{|η1
1|, |η

1
2|, . . . , |η

1
M−1|}, we have

∣∣∣η1
l0

∣∣∣ ≤ ∣∣∣b0η
0
l0
+ μ0

(
s(u(xl0 , t0), xl0 , t0) − s0

l0

)
+ R1

l0

∣∣∣. (4.3)

Utilising Y0 = 0, the Lipschitz condition (1.17), and smooth solution condition, we obtain

∣∣∣η1
l0

∣∣∣ ≤ b0

∣∣∣η0
l0

∣∣∣ + μ0L
∣∣∣η0

l0

∣∣∣ + ∣∣∣Rk0
l0

∣∣∣ = ∣∣∣Rk0
l0

∣∣∣. (4.4)

Thus,

∥∥∥Y1
∥∥∥
∞
≤
∣∣∣Rk0

l0

∣∣∣. (4.5)

Now, suppose that

∥∥∥Yk∥∥∥
∞
≤ b−1

k−1

∣∣∣Rk0
l0

∣∣∣, k = 1, 2, . . . , n. (4.6)
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Using Lemma 2.2, bk > bk+1, we have

∥∥∥Yk∥∥∥
∞
≤ b−1

n

∣∣∣Rk0
l0

∣∣∣. (4.7)

Similarly, assuming |ηn+1
l0
| = max{|ηn+1

1 |, |ηn+1
2 |, . . . , |ηn+1

M−1|}, we have

∣∣∣ηn+1
l0

∣∣∣ ≤
∣∣∣∣∣∣bnη0

l0
+
n−1∑
j=0

(
bj − bj+1

)
η
n−j
l0

+ μ0

(
s(u(xl0 , tn), xl0 , tn) − snl0

)
+ Rn+1

l0

∣∣∣∣∣∣. (4.8)

Utilising Y0 = 0, the Lipschitz condition (1.17), and smooth solution condition, we obtain

∣∣∣ηn+1
l0

∣∣∣ ≤ b−1
n (b0 − bn)

∣∣∣Rk0
l0

∣∣∣ + μ0Lb
−1
n

∣∣∣Rk0
l0

∣∣∣ + ∣∣∣Rk0
l0

∣∣∣
= b−1

n

(
b0 − bn + μ0L + bn

)∣∣∣Rk0
l0

∣∣∣
= b−1

n

(
b0 + μ0L

)∣∣∣Rk0
l0

∣∣∣ = Cb−1
n

∣∣∣Rk0
l0

∣∣∣.
(4.9)

Hence,

∥∥∥Yn+1
∥∥∥
∞
≤ Cb−1

n

∣∣∣Rk0
l0

∣∣∣. (4.10)

Finally, utilising (2.8) and Lemma 2.2, b−1
n ≤ C2n

α, we obtain the result on the convergence of
the ENM (2.9)-(2.10), namely,

‖Yn‖∞ ≤ CC1C2n
ατα

(
τ1+α + h + τ

)

≤ C∗
(
τ1+α + h + τ

) (4.11)

for n = 1, 2, . . . ,N.

Remark 4.2. If we use an implicit method to approximate the nonlinear source term, as shown
in Remark 2.1, we can prove that the numerical method defined in (2.11) is convergent when
1 − μ0L > 0, which is independent of the spatial step. In fact, when the time step is small, the
condition 1 − μ0L > 0 is generally satisfied.

5. Numerical Results

In this section, we present four numerical examples of the TSFFPE to demonstrate the
accuracy of our theoretical analysis. We also use our solution method to illustrate the changes
in solution behavior that arise when the exponent is varied from integer order to fractional
order and to identify the differences between solutions with and without the external force
term.
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Table 1: Maximum error behavior versus grid size reduction for Example 5.1 at T = 1.0.

h = τ Maximum error
1/10 4.8148E-2
1/20 1.0111E-2
1/40 2.0587E-3
1/80 7.3019E-4

T = 5

T = 1

10.80.60.40.20

x

ENM
Exact

0

0.5

1

1.5

2

2.5

3
u
(x
,t
)

Figure 1: Comparison of the numerical solution with the exact solution for Example 5.1 at T = 1.0, 3.0, 5.0.
T increases in the direction of the arrow.

Example 5.1. Consider the following TSFFPE:

∂αu(x, t)
∂tα

=
[
−υ ∂

∂x
+Kμ

α
∂μ

∂|x|μ
]
u(x, t) + f(x, t),

u(a, t) = u(b, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = Kμ
α(x − a)2(b − x)2, a ≤ x ≤ b,

(5.1)

where

f(x, t) = (1 + α)υΓ(1 + α)t(x − a)2(b − x)2

+
K
μ
α

(
K
μ
α + υt1+α

)
2 cos

(
πμ/2

) [
g(x − a) + g(b − x)

]
+ 2υ

(
K
μ
α + υt1+α

)
(x − a)(b − x)(a + b − 2x),

g(x) =
4!

Γ
(
5 − μ

)x4−μ − 2(b − a) 3!
Γ
(
4 − μ

)x3−μ

+ (b − a)2 2
Γ
(
3 − μ

)x2−μ.

(5.2)
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The exact solution of the TSFFPE (5.1) is found to be

u(x, t) =
(
K
μ
α + υt1+α

)
(x − a)2(b − x)2, (5.3)

which can be verified by direct fractional differentiation of the given solution, and
substituting into the fractional differential equation.

In this example, we take a = 0, b = 1, Kμ
α = 25, υ = 1, α = 0.8, and μ = 1.9. From

Figure 1, it can be seen that the numerical solution using the ENM is in good agreement with
the exact solution at different times T , with h = 1/40 and τ = 1/40. The maximum errors
of the ENM at time T = 1.0 are presented in Table 1. It can be seen that the ENM is stable
and convergent for solving the TSFFPE (5.1). The errors, as our theory indicated, satisfy the
relationship error ≤ (τ1+α + h + τ).

Example 5.2. Consider the following TSFFPE-NST:

∂αu(x, t)
∂tα

= Kμ
α
∂μ

∂|x|μ
u(x, t) −

γ

Γ
(
β
)∫ t

0
(t − ξ)β−1u(x, ξ)dξ,

u(−5, t) = u(5, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = δ(x).

(5.4)

This example is a TSFFPE-NST without the external force term. In fact, it reduces to
the fractional diffusion equation with an absorbent term. The formulae to approximate the
absorbent term are presented in the appendix. Here, we take β = 0.5, γ = 1, and K

μ
α = 1.

Figures 2–4 show the changes in the solution profiles of the TSFFPE-NST (5.4) when α and
μ are changed from integer to fraction at different times T . We see that the solution profile
of the fractional order model is characterized by a sharp peak and a heavy tail. The peak
height in Figure 2 (α = 1.0 and μ = 2.0) decreases more rapidly than that in Figure 3 (α = 0.8
and μ = 1.8). Furthermore, when we choose α = 0.5 and μ = 1.5, a more interesting result
can be observed; that is, the peak height in Figure 2 decreases more slowly than that shown
in Figure 4 at the early time T = 0.1, but this trend reverses for the later times T = 0.5 and
T = 1.0. Hence, the TSFFPE-NST (5.4) may be useful to investigate several physical processes
in the absence of an external force field by choosing appropriate α and μ.

Example 5.3. Consider the following TSFFPE-NST:

∂αu(x, t)
∂tα

=
[
∂

∂x
p(x) +Kμ

α
∂μ

∂|x|μ
]
u(x, t) −

γ

Γ
(
β
)∫ t

0
(t − ξ)β−1u(x, ξ)dξ,

u(−5, t) = u(5, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = δ(x).

(5.5)

This example of the TSFFPE-NST incorporates the external force term with p(x) =
−1 and an absorbent term. The formula to approximate the absorbent term is presented in
the appendix. Here, we take β = 0.5, γ = 1, and K

μ
α = 1. Figures 5–7 show the changes
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Figure 2: Numerical solutions for Example 5.2 with α = 1.0 and μ = 2.0 at different times T = 0.1, 0.5, 1.0.
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Figure 3: Numerical solutions for Example 5.2 with α = 0.8 and μ = 1.8 at different times T = 0.1, 0.5, 1.0.

in the solution profiles of the TSFFPE-NST (5.5) when α and μ are changed from integer
order to fractional order at different times T . Again, we see that the solution profile of the
fractional order model is characterized by a sharp peak and a heavy tail. Furthermore, due
to the presence of the external force term with p(x) = −1, the solution profiles are shifted to
the right. It is worthwhile to note that the peak of the integer order model in Figure 5 (α = 1.0
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Figure 4: Numerical solutions for Example 5.2 with α = 0.5 and μ = 1.5 at different times T = 0.1, 0.5, 1.0.

and μ = 2.0) moves to the right as time increases, but the peak of the fractional order model
in Figure 6 (α = 0.8 and μ = 1.8) and Figure 7 (α = 0.5 and μ = 1.5) does not move.

We also see that the peak heights in Figures 5 and 6 remain almost the same for
increasing time. The peak height in Figure 5 decreases more slowly than that shown in
Figure 7 at the early time T = 0.1, but this trend reverses for the later times T = 0.5 and
T = 1.0. Hence, the TSFFPE-NST (5.5) may be useful to investigate several physical processes
within an external force field by choosing appropriate α and μ.

Example 5.4. Consider the following TSFFPE-NST:

∂αu(x, t)
∂tα

=
[
∂

∂x
p(x) +Kμ

α
∂μ

∂|x|μ
]
u(x, t) + ru(x, t)

(
1 − u(x, t)

K

)
,

u(0, t) = u(5, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = x2(5 − x)2, 0 ≤ x ≤ 5.

(5.6)

In applications to population biology, u(x, t) is the population density at location x ∈ R and
time t > 0. The nonlinear source term s(u(x, t), x, t) = ru(x, t)(1−u(x, t)/K) is Fisher’s growth
term that models population growth, where r is the intrinsic growth rate of a species and K
is the environmental carrying capacity, representing the maximum sustainable population
density [20, 28, 29].

In this example, we take r = 0.2, K = 1. Figure 8 shows the solution behavior when
α = 0.8, μ = 1.6 at different times T = 0.1, 0.5, 1.0, while Figure 9 shows the solution behavior
with different values of α between 0 and 1 and fixed value of μ = 1.8 at time T = 1.0. Figure 9
also shows that the system exhibits anomalous diffusion behavior and that the solution
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Figure 5: Numerical solutions for Example 5.3 with α = 1.0 and μ = 2.0 at different times T = 0.1, 0.5, 1.0.
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Figure 6: Numerical solutions for Example 5.3 with α = 0.8 and μ = 1.8 at different times T = 0.1, 0.5, 1.0.

continuously depends on the time and space fractional derivatives. Although the source
term for Fisher’s equation s(u(x, t), x, t) = ru(x, t)(1 − u(x, t)/K) is not globally Lipschitz
continuous, the solution of the discrete numerical method still yields bounds on the solution
of the continuous problem and the solution of the numerical method (ENM) converges to
the unique solution of the continuous problem (5.6) as the time and space steps tend to zero
[30].
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Figure 7: Numerical solutions for Example 5.3 with α = 0.5 and μ = 1.5 at different times T = 0.1, 0.5, 1.0.
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Figure 8: Numerical solutions for Example 5.4 with α = 0.8 and μ = 1.6 at different times T = 0.1, 0.5, 1.0.

6. Conclusions

In this paper, we have proposed an effective numerical method to solve the TSFFPE-NST
and proved that the ENM is stable and convergent provided that the nonlinear source term
satisfies the Lipschitz condition, the solution of the continuous problem satisfies the smooth
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Figure 9: Numerical solutions for Example 5.4 with fixed μ = 1.8 at time T = 1.0, and different values of
α = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

solution condition, and p′(x) can be either > 0 or < 0. Numerical experiments have been
carried out to support the theoretical claims. These numerical methods can also be used to
investigate other types of fractional partial differential equations.

Appendix

Formulae for Examples 5.2 and 5.3

Let us start from (3.1), that is,

un+1
l −

μ0

h

(
plu

n+1
l − pl−1u

n+1
l−1

)
+ μ0r0

[
l+1∑
i=0

wiu
n+1
l−i+1 +

M−l+1∑
i=0

wiu
n+1
l+i−1

]

= bnu0
l +

n−1∑
j=0

(
bj − bj+1

)
u
n−j
l + μ0s

n
l .

(A.1)

Now setting sn
l
= −(γ/Γ(β))

∫ tn
0 (tn − ξ)

β−1u(xl, ξ)dξ, then we have

snl ≈ −
γ

Γ
(
β
) n−1∑
j=0

∫ tj+1

tj

(tn − ξ)β−1u(xl, ξ)dξ. (A.2)
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Applying the Mean Value Theorem (M.V.T) for integration yields

snl ≈ −
γ

Γ
(
β
) n−1∑
j=0

u
(
xl, ξj

)∫ tj+1

tj

(tn − ξ)β−1dξ, where tj < ξj < tj+1

≈ −
γ

Γ
(
β
) n−1∑
j=0

u
j

l
+ uj+1

l

2

⎡
⎣(

tn − tj
)β

β
−
(
tn − tj+1

)β
β

⎤
⎦

= −
γτβ

Γ
(
β
)
· 2 · β

n−1∑
j=0

(
u
j

l
+ uj+1

l

)[(
n − j

)β − (n − j − 1
)β]

= −
γτβ

2Γ
(
β + 1

) n−1∑
j=0

(
u
n−j−1
l

+ un−j
l

)[(
j + 1

)β − jβ]

= −μ1

n−1∑
j=0

qj
(
u
n−j−1
l

+ un−j
l

)
,

(A.3)

where μ1 = γτβ/2Γ(β + 1), qj = (j + 1)β − jβ, j = 0, 1, . . . .
Also, we have

l+1∑
i=0

wiu
n+1
l−i+1 +

M−l+1∑
i=0

wiu
n+1
l+i−1 =

M−1∑
i=0

ηliu
n+1
i , (A.4)

where

ηli =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wl−i+1, 1 ≤ i ≤ l − 2,

w0 +w2, i = l − 1,

2w1, i = l,

w0 +w2, i = l + 1,

wi−l+1, l + 2 ≤ i ≤M − 1.

(A.5)

Now, substituting (A.3) and (A.4) into (A.1), we obtain the numerical scheme for
Example 5.2 as

un+1
l + μ0r0

M−1∑
i=0

ηliu
n+1
i = bnu0

l +
n−1∑
j=0

[(
bj − bj+1

)
u
n−j
l − μ1qj

(
u
n−j−1
l + un−jl

)]
, (A.6)
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and the numerical scheme for Example 5.3 as

(
1 −

μ0pl
h

)
un+1
l +

μ0pl−1

h
un+1
l−1 + μ0r0

M−1∑
i=0

ηliu
n+1
i

= bnu0
l +

n−1∑
j=0

[(
bj − bj+1

)
u
n−j
l − μ1qj

(
u
n−j−1
l + un−jl

)]
.

(A.7)
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