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We consider a new class of equilibrium problems, known as hemiequilibrium problems.
Using the auxiliary principle technique, we suggest and analyze a class of iterative algo-
rithms for solving hemiequilibrium problems, the convergence of which requires either
pseudomonotonicity or partially relaxed strong monotonicity. As a special case, we obtain
a new method for hemivariational inequalities. Since hemiequilibrium problems include
hemivariational inequalities and equilibrium problems as special cases, the results proved
in this paper still hold for these problems.

1. Introduction

Variational inequalities theory, introduced in 1964, has emerged as a powerful tool to
investigate and study a wide class of unrelated problems arising in industrial, regional,
physical, pure, and applied sciences in a unified and general framework. The ideas and
techniques of the variational inequalities are being applied in a variety of diverse areas
and prove to be productive and innovative. Variational inequalities have been extended
and generalized in several directions using novel and new techniques; see [1, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. There
are significant developments of variational inequalities related to multivalued, nonmono-
tone, nonconvex optimization and structural analysis. An important and useful general-
ization of variational inequalities is a class of variational inequalities, which is known as
hemivariational inequalities. The hemivariational inequalities were introduced and in-
vestigated by Panagiotopoulos [26] by using the concept of the generalized directional
derivatives of nonconvex and nondifferentiable functions. This class has important ap-
plications in structural analysis and nonconvex optimization. In particular, it has been
shown [3] that if a nonsmooth and nonconvex superpotential of a structure is quasid-
ifferentiable, then these problems can be studied via hemivariational inequalities. The
solution of the hemivariational inequalities gives the position of the state equilibrium of
the structure. It is worth mentioning that hemivariational inequalities can be viewed as
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a special case of mildly nonlinear variational inequalities, considered and introduced by
Noor [17]. However, numerical techniques considered for solving mildly nonlinear varia-
tional inequalities cannot be extended to hemivariational inequalities due to the presence
of nonlinear and nondifferentiable terms. For the applications and formulation of the
hemivariational inequalities, see [3, 15, 26, 27] and the references therein.

Equally important is the field of equilibrium problems. Equilibrium problems related
to variational inequalities were introduced by Blum and Oettli [1] and Noor and Oettli
[25]. It has been shown that variational inequalities, fixed-point problems, Nash equilib-
rium problems, and saddle-point problems can be studied in the framework of equilib-
rium problems. For recent applications and numerical methods for solving equilibrium
problems, see [1, 6, 7, 8, 13, 14, 16, 22, 23, 24, 25] and the references therein.

Thus it is clear that hemivariational inequalities and equilibrium problems are differ-
ent generalizations of variational inequalities. It is natural to consider the unification of
these two generalized problems. Motivated and inspired by this fact, we consider here
another class of equilibrium problems, which is called the hemiequilibrium problems.
This class includes the hemivariational inequalities and equilibrium problems as special
cases.

Variational inequalities and equilibrium problems have witnessed an explosive growth
in theoretical advances and algorithmic developments and applications across almost all
disciplines of engineering, pure, and applied sciences. As a result of interaction between
different branches of mathematical and engineering sciences, we now have a variety of
techniques to suggest and analyze various iterative algorithms for solving hemivariational
inequalities and equilibrium problems. Analysis of these problems requires a blend of
techniques and ideas from convex analysis, functional analysis, numerical analysis, and
nonsmooth analysis. There are several methods for solving variational inequalities and
equilibrium problems. Due to the nature of the hemiequilibrium problems, projection
and resolvent methods cannot be applied for solving them. In recent years, the auxiliary
principle technique is being used to suggest and analyze some iterative methods for solv-
ing variational inequalities and equilibrium problems. This technique is basically due to
Lions and Stampacchia [11] and was used by Noor [17] to obtain the existence results
for the mildly (strongly) nonlinear variational inequalities. However, Glowinski et al. [9]
used this technique to study the existence problem for mixed variational inequalities. The
main idea involving this technique is to first consider an auxiliary problem and then to
show that the solution of the auxiliary problem is the solution of the original problem
by using the fixed-point approach. Noor [16, 21, 22, 23, 24] has used this approach to
suggest and analyze some iterative methods for solving various classes of variational in-
equalities and equilibrium problems. To the best of our knowledge, the auxiliary princi-
ple technique has not been applied for hemivariational inequalities and hemiequilibrium
problems. In this paper, we show that this technique can be used to suggest some itera-
tive schemes for hemiequilibrium problems. We also prove that the convergence of these
methods requires either pseudomonotonicity or partially relaxed strong monotonicity.
These are weaker conditions than monotonicity. As a special case, we obtain new iterative
schemes for solving hemivariational inequalities. The comparison of these methods with
other methods is a subject of future research.
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2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·,·〉 and
‖ · ‖, respectively. Let K be a nonempty closed convex set in H . Let f : H →R be a locally
Lipschitz continuous function. Let Ω be an open bounded subset of Rn.

First of all, we recall the following concepts and results from nonsmooth analysis; see
Clarke [2].

Definition 2.1. Let f be locally Lipschitz continuous at a given point x ∈H and let v be
any other vector in H . Clarke’s generalized directional derivative of f at x in the direction
v, denoted by f 0(x,v), is defined as

f 0(x;v)= lim
t→0+

sup
h→0

f (x+h+ tv)− f (x+h)
t

. (2.1)

The generalized gradient of f at x, denoted by ∂ f (x), is defined to be a subdifferential of
the function f 0(x;v) at 0, that is,

∂ f (x)= {w ∈H : 〈w,v〉 ≤ f 0(x;v), ∀v ∈H
}
. (2.2)

Lemma 2.2. Let f be locally Lipschitz continuous at a given point x ∈H with a constant L.
Then

(i) ∂ f (x) is a noneempty compact subset of H and ‖ξ‖ ≤ L for each ξ ∈ ∂ f (x);
(ii) for every v ∈H , f 0(x;v)=max{〈ξ,c〉 : ξ ∈ ∂ f (x)};

(iii) the function v→ f 0(x;v) is finite, positively homogeneous, subadditive, convex, and
continuous;

(iv) f 0(x;−v)= (− f )0(x,v);
(v) f 0(x;v) is upper semicontinuous as a function of (x;v);

(vi) for all x ∈H , there exists a constant α > 0 such that

∣∣ f 0(x,v)
∣∣≤ α‖v‖, ∀v ∈H. (2.3)

If f is convex on K and locally Lipschitz continuous at x ∈ K , then ∂ f (x) coincides
with the subdifferential f ′(x) of f at x in the sense of convex analysis, and f 0(x;v) coin-
cides with the directional derivative f ′(x;v) for each v ∈H .

For a given nonlinear function F(·,·) : K ×K → R, consider the problem of finding
u∈ K such that

F(u,v) +
∫
Ω
f 0(x,u;v−u)dΩ≥ 0, ∀v ∈ K. (2.4)

Here, f 0(x,u;v−u) := f 0(x,u(x);v(x)−u(x)) denotes the generalized directional deriv-
ative of the function f (x,·) at u(x) in the direction v(x)− u(x). Problems of type (2.4)
are called the hemiequilibrium problems.

If F(u,v)= 〈Tu,v−u〉, then problem (2.4) is equivalent to finding u∈ K such that

〈Tu,v−u〉+
∫
Ω
f 0(x,u;v−u)dΩ≥ 0, ∀v ∈ K , (2.5)
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which are known as the hemivariational inequalities introduced and studied by Pana-
giotopoulos [26] in order to formulate variational principles connected to energy func-
tions which are neither convex nor smooth. It has been shown that the technique of
hemivariational inequalities is very efficient to describe the behavior of complex struc-
ture arising in engineering and industrial sciences; see [3, 15, 26, 27] and the references
therein.

If f = 0, then problem (2.4) is equivalent to finding u∈ K such that

F(u,v)≥ 0, ∀v ∈ K. (2.6)

Problem (2.6) is called the equilibrium problem, which is due to Blum and Oettli [1]
and Noor and Oettli [25]. For recent applications and numerical methods for solving
equilibrium problems, see [1, 6, 13, 16, 22, 23, 24].

Definition 2.3. The function F(·,·) : K ×K →H is said to be

(a) monotone if

F(u,v) +F(v,u)≤ 0, ∀u,v ∈ K ; (2.7)

(b) pseudomonotone with respect to
∫
Ω f 0(x,u;v−u)dΩ if

F(u,v) +
∫
Ω
f 0(x,u;v−u)dΩ≥ 0

=⇒−F(v,u) +
∫
Ω
f 0(x,u;v−u)dΩ≥ 0, ∀u,v ∈ K ;

(2.8)

(c) partially relaxed strongly monotone if there exists a constant γ > 0 such that

F(u,v) +F(v,z)≤ γ‖u− z‖2, ∀u,v,z ∈ K ; (2.9)

(d) hemicontinuous if the mapping t ∈ [0,1] implies that F(u+ t(v−u),v) is continu-
ous for all u,v ∈ K .

Note that for z = u, partially relaxed strong monotonicity reduces to monotonicity.
This shows that partially relaxed strong monotonicity implies monotonicity, but the con-
verse is not true.

Definition 2.4. The function
∫
Ω f 0(x,u;v− u)dΩ is said to be partially relaxed strongly

monotone if there exists a constant α > 0 such that∫
Ω
f 0(x,u;v−u)dΩ+

∫
Ω
f 0(x,z;u− v)dΩ≤ α‖z− v‖2, ∀u,v,z ∈H. (2.10)

Note that for z = v, partially relaxed strong monotonicity reduces to monotonicity.

Lemma 2.5. Let the function F(·,·) be hemicontinuous, pseudomonotone with respect to
the function

∫
Ω f 0(x,u;v− u)dΩ, and convex in the second argument. Then problem (2.4)

is equivalent to finding u∈ K such that

−F(v,u) +
∫
Ω
f 0(x,u;v−u)dΩ≥ 0, ∀v ∈ K. (2.11)
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Proof. Let u∈ K be a solution of (2.4). Then

F(u,v) +
∫
Ω
f 0(x,u;v−u)dΩ≥ 0, ∀v ∈ K , (2.12)

which implies that

F(v,u)≤
∫
Ω
f 0(x,u;v−u)dΩ, ∀v ∈ K , (2.13)

since F(·,·) is pseudomonotone with respect to
∫
Ω f 0(x,u;v−u)dΩ.

For u,v ∈ K , t ∈ [0,1], vt = u+ t(v− u)∈ K , since K is a convex set. Taking v = vt in
(2.11), we have

F
(
vt,u

)≤ t
{∫

Ω
f 0(x,u;v−u)dΩ

}
. (2.14)

Now, using (2.14), we have

0≤ F
(
vt,vt

)
≤ tF

(
vt,v

)
+ (1− t)F

(
vt,u

)

≤ tF
(
vt,v

)
+ t(1− t)

{∫
Ω
f 0(x,u;v−u)dΩ

}
.

(2.15)

Dividing inequality (2.15) by t and taking the limit as t → 0, since F(·,·) is hemi-
continuous, we have F(u,v) +

∫
Ω f 0(x,u;v− u)dΩ ≥ 0 for all v ∈ K , the required result

(2.4). �

Remark 2.6. From Lemma 2.5, we see that problems (2.4) and (2.11) are equivalent. Prob-
lem (2.11) is called the dual hemiequilibrium problem. One can easily show that the solu-
tion set of problem (2.11) is a closed convex set. Lemma 2.2 can be viewed as a natural
generalization of Minty’s result.

Definition 2.7. A function f : K →H is said to be strongly convex if there exists a constant
β > 0 such that

f
(
u+ t(v−u)

)≤ (1− t) f (u) + t f (v)− t(1− t)β‖v−u‖2, ∀u,v ∈ K , t ∈ [0,1].
(2.16)

If the strongly convex function is differentiable, then

f (v)− f (u)≥ 〈 f ′(u),v−u
〉

+β‖v−u‖2, ∀u,v ∈ K , (2.17)

and conversely.

3. Main results

In this section, we suggest and analyze some iterative methods for hemiequilibrium prob-
lems (2.4) using the auxiliary principle technique of Glowinski et al. [9] as developed by
Noor [16, 21, 22, 23, 24].
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For a given u∈ K , consider the auxiliary problem of finding a unique w ∈ K such that

ρF(w,v) +
〈
E′(w)−E′(u),v−w

〉
+ ρ
∫
Ω
f 0(x,u;v−w)dΩ≥ 0, ∀v ∈ K , (3.1)

where ρ > 0 is a constant and E′(u) is the differential of a strongly convex function E(u) at
u∈ K . Since E(u) is a strongly convex function, problem (3.1) has a unique solution. We
note that if w = u, then clearly w is a solution of the hemiequilibrium problem (2.4). This
observation enables us to suggest and analyze the following iterative method for solving
(2.4).

Algorithm 3.1. For a given u0 ∈H , compute the approximate solution un+1 by the iterative
scheme

ρF
(
un+1,v

)
+
〈
E′
(
un+1

)−E′
(
un
)
,v−un+1

〉
+ ρ
∫
Ω
f 0(x,un;v−un+1

)
dΩ≥ 0, ∀v ∈ K ,

(3.2)

where ρ > 0 is a constant.

Algorithm 3.1 is called the proximal method for solving the hemiequilibrium problem
(2.4). In passing, we remark that the proximal point method was suggested by Martinet
[12] in the context of convex programming problems as a regularization technique. For
the recent developments and applications of the proximal point algorithms, see [4, 5, 24,
29].

If F(u,v)= 〈Tu,v−u〉, then Algorithm 3.1 reduces to the following.

Algorithm 3.2. For a given u0 ∈H , calculate the approximate solution un+1 by the iterative
scheme

〈
ρTun+1 +E′

(
un+1

)−E′
(
un
)
,v−un+1

〉
+ ρ
∫
Ω
f 0(x,un;v−un+1

)
dΩ≥ 0, ∀v ∈ K.

(3.3)

Algorithm 3.2 is called the proximal point method for solving hemivariational in-
equalities (2.5) and appears to be a new one.

If f (x,u)= 0, then Algorithm 3.1 collapses to the following.

Algorithm 3.3. For a given u0 ∈H , compute the approximate solution un+1 by the iterative
scheme

ρF
(
un,v

)
+
〈
E′
(
un+1

)−E′
(
un
)
,v−un+1

〉≥ 0, ∀v ∈ K. (3.4)

Algorithm 3.3 is due to Noor [16, 23, 24], for solving the equilibrium problems (2.6).
In brief, for a suitable and appropriate choice of the operators and the spaces, one can

obtain a number of known and new algorithms for solving variational-like inequalities
and related problems.

Theorem 3.4. Let F(·,·) be pseudomonotone with respect to
∫
Ω f 0(x,u;v − u)dΩ. Let∫

Ω f 0(·;·)dΩ be partially relaxed strongly monotone with constant α > 0 and let E be a
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differentiable strongly convex function with module β > 0. If 0 < ρ < β/α, then the approxi-
mate solution un+1 obtained from Algorithm 3.1 converges to the exact solution u∈ K satis-
fying (2.4).

Proof. Let u ∈ K be a solution of (2.4). Then F(u,v) +
∫
Ω f 0(x,u;v − u)dΩ ≥ 0, for all

v ∈ K , implies that

−F(v,u) +
∫
Ω
f 0(x,u;v−u)dΩ≥ 0, ∀v ∈ K , (3.5)

since F(·,·) is pseudomonotone with respect to
∫
Ω f 0(x,u;v−u)dΩ.

Taking v = u in (3.2) and v = un+1 in (3.5), we have

ρF
(
un+1,u

)
+
〈
E′
(
un+1

)−E′
(
un
)
,u−un+1

〉≥−ρ
∫
Ω
f 0(x,un;u−un+1

)
dΩ,

−F(un+1,u
)

+
∫
Ω
f 0(x,u;un+1−u

)
dΩ≥ 0.

(3.6)

We now consider the function

B(u,w)= E(u)−E(w)− 〈E′(w),u−w
〉

≥ β‖u−w‖2 (using strong convexity of E).
(3.7)

Now, combining (3.6) and (3.7), we have

B
(
u,un

)−B
(
u,un+1

)= E
(
un+1

)−E
(
un
)− 〈E′(un+1

)
,un+1−un

〉
+
〈
E′
(
un+1

)−E′
(
un
)
,u−un+1

〉

≥ β
∥∥un+1−un

∥∥2
+
〈
E′
(
un+1

)−E′
(
un
)
,u−un+1

〉

≥ β
∥∥un+1−un

∥∥2− ρF
(
un+1,u

)− ρ
∫
Ω
f 0(x,un;u−un+1

)
dΩ

≥ β
∥∥un+1−un

∥∥2− ρ
∫
Ω
f 0(x,u;un+1−u

)
dΩ

− ρ
∫
Ω
f 0(x,un;u−un+1

)
dΩ

≥ β
∥∥un+1−un

∥∥2− ρα
∥∥un+1−un

∥∥2
,

(3.8)

where we have used the fact that
∫
Ω f 0(x,u;v− u)dΩ is partially relaxed strongly mono-

tone with constant α > 0. If un+1 = un, then clearly un is a solution of the hemiequilibrium
problem (2.4). Otherwise, for 0 < ρ < β/α, it follows that B(u,un)−B(u,un+1) is nonneg-
ative, and we must have

lim
n→∞

∥∥un+1−un
∥∥= 0. (3.9)

Now, using the technique of Zhu and Marcotte [31], it can be shown that the entire se-
quence {un} converges to the cluster point u satisfying the hemiequilibrium problem
(2.4). �
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It is well known that to implement the proximal point methods, one has to find the ap-
proximate solution implicitly, which is itself a difficult problem. To overcome this draw-
back, we now consider another method for solving (2.4) using the auxiliary principle
technique.

For a given u∈ K , find a unique w ∈ K such that

ρF(u,v) +
〈
E′(w)−E′(u),v−w

〉
+ ρ
∫
Ω
f 0(x,u;v−w)dΩ, ∀v ∈ K , (3.10)

where E′(u) is the differential of a strongly convex function E(u) at u∈ K . Problem (3.10)
has a unique solution, since E is a strongly convex function. Note that problems (3.1)
and (3.10) are quite different. It is clear that for w = u, w is a solution of (2.4). This fact
allows us to suggest and analyze another iterative method for solving the hemiequilibrium
problem (2.4).

Algorithm 3.5. For a given u0 ∈H , compute the approximate solution un+1 by the iterative
scheme

ρF
(
un,v

)
+
〈
E′
(
un+1

)−E′
(
un
)
,v−un+1

〉≥−ρ
∫
Ω

(
x,un,v−un+1

)
dΩ, ∀v ∈ K.

(3.11)

Note that for F(u,v)= 〈Tu,v−u〉, Algorithm 3.5 reduces to the following.

Algorithm 3.6. For a given u0 ∈H , compute the approximate solution un+1 by the iterative
scheme

〈
ρTun +E′

(
un+1

)−E′
(
un
)
,v−un+1

〉≥−ρ
∫
Ω

(
x,un,v−un+1

)
dΩ, ∀v ∈ K. (3.12)

Algorithm 3.6 is for solving the hemivariational inequalities (2.5) and appears to be a
new one. Similarly, for a suitable and appropriate choice of the operators and the spaces,
one can obtain various known and new algorithms for solving equilibrium problems and
variational inequalities.

We now consider the convergence analysis of Algorithm 3.5 essentially using the tech-
nique of Theorem 3.4. For the sake of completeness and to convey an idea of the tech-
nique, we sketch the main points.

Theorem 3.7. Let F(·,·) and
∫
Ω f 0(x,u;v− u)dΩ be partially relaxed strongly monotone

with constants γ > 0 and α > 0, respectively. If E is a strongly convex function with modulus
β > 0 and 0 < ρ < β/(α+ γ), then the approximate solution un+1 obtained from Algorithm 3.5
converges to a solution of (2.4).

Proof. Let u∈ K be a solution of (2.4). Setting v = un+1 in (2.4) and v = u in (3.11), we
have

F
(
u,un+1

)
+
∫
Ω
f 0(x,u;un+1−u

)
dΩ≥ 0,

ρF
(
un,u

)
+
〈
E′
(
un+1

)−E′
(
un
)
,u−un+1

〉≥−ρ
∫
Ω
f 0(x,un;u−un+1

)
dΩ.

(3.13)
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As in Theorem 3.4 and from (3.13), we have

B
(
u,un

)−B
(
u,un+1

)= E
(
un+1

)−E
(
un
)− 〈E′(un+1

)
,un+1−un

〉
+
〈
E′
(
un+1

)−E′
(
un
)
,u−un+1

〉

≥ β
∥∥un+1−un

∥∥2
+
〈
E′
(
un+1

)−E′
(
un
)
,u−un+1

〉

≥ β
∥∥un+1−un

∥∥2− ρF
(
un,u

)− ρ
∫
Ω
f 0(x,un;u−un+1

)
dΩ

≥ β
∥∥un+1−un

∥∥2− ρ
{
F
(
un,u

)
+F
(
u,un+1

)}

− ρ
{∫

Ω
f 0(x,u;un+1−u

)
dΩ+

∫
Ω
f 0(x,un;u−un+1

)
dΩ
}

≥ β
∥∥un+1−un

∥∥2− ρ(α+ γ)
∥∥un+1−un

∥∥2
,

(3.14)

where we have used the fact that F(·,·) and
∫
Ω f 0(x,·;·)dΩ are partially relaxed strongly

monotone with constants α > 0 and γ > 0, respectively.
If un+1 = un, then clearly un is a solution of the hemiequilibrium problem (2.4). Oth-

erwise, for 0 < ρ < β/(α+ γ), it follows that B(u,un)−B(u,un+1) is nonnegative, and we
must have

lim
n→∞

∥∥un+1−un
∥∥= 0. (3.15)

Now, using the technique of Zhu and Marcotte [31], it can be shown that the entire se-
quence {un} converges to the cluster point u satisfying the hemiequilibrium problem
(2.4). �
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