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1. Introduction

In insurance modeling, the Poisson process has been used as a claim arrival process. Extensive
discussion of the Poisson process, from both applied and theoretical viewpoints, can be
found in [1–6]. However there has been a significant volume of literature that questions the
suitability of the Poisson process in insurance modeling [7, 8]. From a practical point of view,
there is no doubt that the insurance industry needs a more suitable claim arrival process than
the Poisson process that has deterministic intensity.

As an alternative point process to generate the claim arrivals, we can employ a Cox
process or a doubly stochastic Poisson process [9–15]. An important book on Cox processes
is the book by Bening and Korolev [16], where the applications in both insurance and finance
are discussed. A Cox process provides us with the flexibility to allow the intensity not only to
depend on time but also to be a stochastic process. Dassios and Jang [17] demonstrated how a
Cox process with shot noise intensity could be used in the pricing of catastrophe reinsurance
and derivatives.
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It is important to measure the time interval between the claims in insurance. Thus
in this paper, we examine the distribution of the interval of a Cox process with shot noise
intensity for insurance claims. The result of this paper can be used or easily modified
in computer science/telecommunications modeling, electrical engineering, and queueing
theory.

We start by defining the quantity of interest; this is a doubly stochastic (with a shot-
noise intensity) point process of claim arrivals. Then, we derive the probability generating
function of a Cox process with shot noise intensity using piecewise deterministic Markov
processes (PDMPs) theory, for which see the appendix. The piecewise deterministic Markov
processes theory is a powerful mathematical tool for examining nondiffusion models. For
details, we refer the reader to [17–25]. In Section 3, we derive the Laplace transform of the
distribution of the shot noise process at claim times, using stationary assumption of the shot
noise process at any times. Using this Laplace transform within the probability generating
function of a Cox process with shot noise intensity, we derive the distribution between events
of a Cox process with shot noise intensity. These can be insurance claims for examples. We
also derive the first two moments of this distribution. Section 4 contains some concluding
remarks .

2. A Cox process and the shot noise process

A Cox process (or a doubly stochastic Poisson process) can be viewed as a two-step
randomisation procedure. A process λt is used to generate another process Nt by acting as its
intensity. That is, Nt is a Poisson process conditional on λt which itself is a stochastic process
(if λt is deterministic then Nt is a Poisson process). Many alternative definitions of a doubly
stochastic Poisson process can be given. We will offer the one adopted by Brémaud [15].

Definition 2.1. Let (Ω, F, P) be a probability space with information structure given by F =
{It, t ∈ [0, T]}. Let Nt be a point process adapted to F. Let λt be a nonnegative process
adapted to F such that

∫ t

0
λs ds <∞ almost surely (no explosions). (2.1)

If for all 0 ≤ t1 ≤ t2 and u ∈ R

E
{
eiu(Nt2−Nt1 ) | Iλt2

}
= exp

{(
eiu − 1

)∫ t2

t1

λs ds

}
(2.2)

then Nt is called a It-doubly stochastic Poisson process with intensity, λt where Iλt is the
σ-algebra generated by λ up to time t, that is, Iλt = σ{λs; s ≤ t}.

Equation (2.2) gives us

Pr
{
Nt2 −Nt1 = k | λs; t1 ≤ s ≤ t2

}
=

exp
( − ∫ t2

t1
λs ds

)(∫ t2
t1
λs ds

)k
k!

, (2.3)

Pr
{
τ2 > t | λs; t1 ≤ s ≤ t2

}
= Pr

{
Nt2 −Nt1 = 0 | λs; t1 ≤ s ≤ t2

}
= exp

(
−
∫ t2

t1

λs ds

)
, (2.4)
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where τk = inf{t > 0 : Nt = k}. Therefore from (2.4), we can easily find that

Pr
(
τ2 ≤ t) = E

{
λt2 exp

(
−
∫ t2

t1

λs ds

)}
. (2.5)

If we consider the process Λt =
∫ t

0λs ds (the aggregated process), then from (2.3) we can also
easily find that

E
(
θNt2−Nt1

)
= E

{
e−(1−θ)(Λt2−Λt1 )

}
, (2.6)

where θ is a constant between 0 and 1. Equation (2.6) suggests that the problem of finding the
distribution of Nt, the point process, is equivalent to the problem of finding the distribution
of Λt, the aggregated process. It means that we just have to find the probability generating
function (p.g.f.) of Nt to retrieve the moment generating function (m.g.f.) of Λt and vice
versa.

One of the processes that can be used to measure the impact of primary events is
the shot noise process [26–28]. The shot noise process is particularly useful within the claim
arrival process as it measures the frequency, magnitude, and time period needed to determine
the effect of primary events. As time passes, the shot noise process decreases as more and
more claims are settled. This decrease continues until another event occurs which will result
in a positive jump in the shot noise process. Therefore the shot noise process can be used as
the parameter of doubly stochastic Poisson process to measure the number of claims due to
primary events, that is, we will use it as a claim intensity function to generate the Cox process.
We will adopt the shot noise process used by Cox and Isham [26]:

λt = λ0e
−δt +

Mt∑
i=1

Yie
−δ(t−Si), (2.7)

where

(i) λ0 is initial value of λt;

(ii) {Yi}i=1,2,... is a sequence of independent and identically distributed random
variables with distribution function G(y) (y > 0), where E(Yi) = μ1;

(iii) {Si}i=1,2,... is the sequence representing the event times of a Poisson process Mt with
constant intensity ρ;

(iv) δ is rate of exponential decay.

We assume that the Poisson process Mt and the sequences {Yi}i=1,2,... are independent of each
other. Figure 1 is the graph illustrating shot noise process. Figure 2 is the graph illustrating a
Cox process with shot noise intensity.

The generator of the process (Λt, λt, t) acting on a function f(Λ, λ, t) belonging to its
domain is given by

Af(Λ, λ, t) =
∂f

∂t
+ λ

∂f

∂Λ
− δλ∂f

∂λ
+ ρ

[∫∞

0
f(Λ, λ + y, t)dG(y) − f(Λ, λ, t)

]
. (2.8)
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Figure 1: Graph illustrating shot noise process.
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Figure 2: Graph illustrating a Cox process with shot noise process.

For f(Λ, λ, t) to belong to the domain of the generator A, it is sufficient that f(Λ, λ, t) is
differentiable with respect to Λ, λ, t for all Λ, λ, t and that |∫∞0 f(·, λ+y, ·)dG(y)−f(·, λ, ·)| <∞.

Let us find a suitable martingale in order to derive the probability generating function
(p.g.f.) of Nt at time t.

Theorem 2.2. Let us assume that Λt and λt evolve up to a fixed time t∗. Considering constants k1

and k2 are such that k1 ≥ 0 and k2 ≥ −k1e
−δt∗ ,

exp
( − k1δΛt

)
exp

{ − (
k1 + k2e

δt)λt} exp
[
ρ

∫ t

0

{
1 − ĝ(k1 + k2e

δs)}ds
]

(2.9)

is a martingale, where ĝ(u) =
∫ t

0e
−uydG(y) and t > 0.

Proof. Define Wt = δΛt + λt and Zt = λteδt, then the generator of the process (Wt,Zt, t) acting
on a function f(w, z, t) is given by

Af(w, z, t) =
∂f

∂t
+ ρ

[∫∞

0
f
(
w + y, z + yeδt, t

)
dG(y) − f(w, z, t)

]
, (2.10)
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and f(w, z, t) has to satisfy Af = 0 for f(Wt,Zt, t) to be a martingale. We try a solution of
the form e−k1we−k2zh(t), where h(t) is a differentiable function. Then we get the following
equation:

h′(t) − ρ[1 − ĝ(k1 + k2e
δt)]h(t) = 0. (2.11)

e−k1we−k2zh(t) belongs to the domain of the generator because of our choice of k1, k2; the
function is bounded for all t ≤ t∗ and our process evolves up to time t∗ only. Solving (2.11)

h(t) = Keρ
∫ t

0{1−ĝ(k1+k2e
δs)}ds, (2.12)

where K is an arbitrary constant. Therefore

e−k1Wte−k2Zteρ
∫ t

0{1−ĝ(k1+k2e
δs)}ds (2.13)

is a martingale and hence the result follows.

Corollary 2.3. Let ν1 ≥ 0, ν2 ≥ 0, ν ≥ 0, 0 ≤ θ ≤ 1, and t1, t2 be fixed times. Then

E
{
e−ν1(Λt2−Λt1 )e−ν2λt2 | Λt1 , λt1

}
= exp

[
−
{
ν1

δ
+
(
ν2 − ν1

δ

)
e−δ(t2−t1)

}
λt1

]

× exp
[
− ρ

∫ t2−t1

0

[
1 − ĝ

{
ν1

δ
+
(
ν2 − ν1

δ

)
e−δs

}]
ds

]
,

(2.14)

E
{
θ(Nt2−Nt1 )e−νλt2 |Nt1 , λt1

}
= exp

[
−
{

1 − θ
δ

+
(
ν − 1 − θ

δ

)
e−δ(t2−t1)

}
λt1

]

× exp
[
− ρ

∫ t2−t1

0

[
1 − ĝ

{
1 − θ
δ

+
(
ν − 1 − θ

δ

)
e−δs

}]
ds

]
.

(2.15)

Proof. We set k1 = ν1/δ, k2 = (ν2 − ν1/δ)e−δt2 , t∗ ≥ t2 in Theorem 2.2 and (2.14) follows
immediately. Equation (2.15) follows from (2.14) and (2.6).

Now we can easily derive the probability generating function (p.g.f.) of Nt and the
Laplace transform of λt using Corollary 2.3.

Corollary 2.4. The probability generating function ofNt is given by

E
{
θ(Nt2−Nt1 ) | λt1

}
= exp

[
− 1 − θ

δ

{
1 − e−δ(t2−t1)}λt1

]

× exp
[
− ρ

∫ t2−t1

0

[
1 − ĝ

{
1 − θ
δ

(
1 − e−δs)

}]
ds

]
,

(2.16)
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the Laplace transform of the distribution of λt is given by

E
{
e−νλt | λ0

}
= exp

( − νλ0e
−δt) exp

[
− ρ

∫ t

0

{
1 − ĝ(νe−δs)}ds

]
(2.17)

and if λt is asymptotic (stationary), it is given by

E
(
e−νλt

)
= exp

[
− ρ

∫∞

0

{
1 − ĝ(νe−δs)}ds

]
(2.18)

which can also be written as

E
(
e−νλt

)
= exp

{
− ρ

δ

∫ν

0
Ĝ(u)du

}
, (2.19)

where Ĝ(u) = (1 − ĝ(u))/u.

Proof. If we set ν = 0 in (2.15) then (2.16) follows. Equation (2.17) follows if we either set ν1 =
0 in (2.14) or set θ = 1 in (2.15). Let t→∞ in (2.17) and the result follows immediately.

Theorem 2.2, Corollaries 2.3 and 2.4 can be found in [17, 19], but they have been
included here for completeness and for comparison purposes.

If we differentiate (2.17) and (2.19) with respect to ν and put ν = 0, we can easily
obtain the first moments of λt, that is,

E
(
λt | λ0

)
=
μ1ρ

δ
+
(
λ0 −

μ1ρ

δ

)
e−δt, (2.20)

E
(
λt
)
=
μ1ρ

δ
. (2.21)

The higher moments can be obtained by differentiating them further, that is,

Var
(
λt | λ0

)
=
(
1 − e−2δt)μ2ρ

2δ
,

Var
(
λt
)
=
μ2ρ

2δ
,

(2.22)

where μ2 = E(Y 2) =
∫∞

0 y
2dG(y).

3. The distribution of the interval between events of a Cox process with
shot noise intensity and its moment

Let us examine the Laplace transform of the distribution of the shot noise intensity at claim
times. To do so, let us denote the time of the nth claim of Nt by τn and denote the value of
λt, when Nt takes the value n for the first time by λτn . Since a claim occurs at time τ , this
implies that the intensity at claim times, λτ , should be higher than the intensity at any times
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λt. Therefore the distribution of λτ should not be the same as the distribution of λt, which will
be clear from Theorem 3.2.

Let us start with the following lemma in order to obtain the Laplace transform of the
distribution of the shot noise intensity at claim times. We assume that the claims and jumps
(or primary events) in shot noise intensity do not occur at the same time.

Lemma 3.1. LetNt be a Cox process with shot noise intensity λt. LetA be the generator of the process
λt and suppose that f(λ) is a function belonging to its domain and furthermore that it satisfies

lim
t→∞

E

{
f
(
λt
)

exp
(
−
∫ t

0
λs ds

)
| λ0

}
= 0. (3.1)

If h(λ) is such that

λ
{
h(λ) − f(λ)} +Af(λ) = 0 (3.2)

then

E
{
h
(
λτ1

) | λ0
}
= f

(
λ0
)
. (3.3)

Proof. From (3.2)

f
(
λt
)
+
∫ t

0

[
λs
{
h
(
λs
) − f(λs)}]ds (3.4)

is a martingale and since τt1 is a stopping time, where Pr(τ1 ≤ s) = Pr(Ns > 0) and Ns is
λs-measurable, we have

Ef
{(
λτt1 | λ0

)}
+ E

[∫ τt1

0

[
λs
{
h
(
λs
) − f(λs)}]ds | λ0

]
= f(λ0). (3.5)

Conditioning on the realisation λv, 0 ≤ v ≤ t, τt1 is distributed with density

λr exp
(
−
∫ r

0
λu du

)
(3.6)
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on (0, t) and a mass exp(−∫ t0λu du) at t. Hence,

E
{
f
(
λτt1

) | λv, 0 ≤ v ≤ t} =
∫ t

0

{
f
(
λr
)
λr exp

(
−
∫ r

0
λu du

)}
dr + f

(
λt
)

exp
(
−
∫ t

0
λu du

)
,

(3.7)

E

[∫ τt1

0
λs
{
h
(
λs
) − f(λs)}ds | λv, 0 ≤ v ≤ t

]

=
∫ t

0

∫ r

0
λs
{
h
(
λs
) − f(λs)}ds λr exp

(
−
∫ r

0
λu du

)
dr

+
∫ t

0
λs
{
h
(
λs
) − f(λs)}ds exp

(
−
∫ t

0
λu du

)
.

(3.8)

Changing the order of integration on the first term of this, it becomes

=
∫ t

0

∫ t

s

λr exp
(
−
∫ r

0
λu du

)
drλs

{
h
(
λs
) − f(λs)}ds

+
∫ t

0
λs
{
h
(
λs
) − f(λs)}ds exp

(
−
∫ t

0
λu du

)

=
∫ t

0

{
exp

(
−
∫s

0
λu du

)
− exp

(
−
∫ t

0
λu du

)}
λs
{
h
(
λs
) − f(λs)}ds

+
∫ t

0
λs
{
h
(
λs
) − f(λs)}ds exp

(
−
∫ t

0
λu du

)

=
∫ t

0
exp

(
−
∫s

0
λu du

)
λs
{
h
(
λs
) − f(λs)}ds.

(3.9)

Adding (3.7) and (3.9), we notice that more terms cancel and we get

E

{
f
(
λτt1

)
+
∫ τt1

0
λs
{
h
(
λs
) − f(λs)}ds | λv, 0 ≤ v ≤ t

}

=
∫ t

0
exp

(
−
∫s

0
λu du

)
λsh

(
λs
)
ds + f

(
λt
)

exp
(
−
∫ t

0
λu du

)

= E
{
h
(
λτ1

)
1{τ1≤t} | λv, 0 ≤ v ≤ t} + f(λt) exp

(
−
∫ t

0
λu du

)
,

(3.10)
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and hence

E

{
f
(
λτt1

)
+
∫ τt1

0
λs
{
h
(
λs
) − f(λs)}ds | λ0

}

= E
{(
h
(
λτ1

)
1{τ1≤t}

)
+ f

(
λt
)

exp
(
−
∫ t

0
λu du

)
| λ0

}
.

(3.11)

From (3.5), we then have

E

{(
h
(
λτ1

)
1{τ1≤t}

)
+ f

(
λt
)

exp
(
−
∫ t

0
λu du

)
| λ0

}
= f

(
λ0
)

(3.12)

and setting t→∞, we get (3.3).

Assuming that the shot noise process λt is stationary, let us derive the Laplace
transform of the distribution of the shot noise process at claim times, λτ .

Theorem 3.2. If the shot noise process λt is stationary, the Laplace transform of the distribution of
the shot noise process at claim times is given by

E
(
e−νλτi

)
=

Ĝ(ν)
μ1

· exp
{
− ρ

δ

∫ν

0
Ĝ(u)du

}
, (3.13)

where Ĝ(u) = (1 − ĝ(u))/u and ĝ(u) =
∫ t

0e
−uydG(y).

Proof. From Lemma 3.1, which implies that if f(λ) and h(λ) are such that

λ
{
h(λ) − f(λ)} − δλf ′(λ) + ρ

{∫∞

0
f(λ + y)dG(y) − f(λ)

}
= 0 (3.14)

and (3.1) is satisfied, we have

E
{
h
(
λτi+1

) | λτi
}
= f

(
λτi

)
(3.15)

by starting the process from τi. Employing f(λ) = {λ− ĝ ′(ν)/(1− ĝ(ν))}e−νλ, the function f(λ)
clearly satisfies (3.1) and substituting into (3.14), then we have

λ

{
h(λ) − λe−νλ + ĝ ′(ν)

1 − ĝ(ν)e
−νλ

}
+ δνλ

{
λ − ĝ ′(ν)

1 − ĝ(ν)
}
e−νλ − δλe−νλ = −ρλe−νλ{ĝ(ν) − 1

}
.

(3.16)

Divide by λ and simplify then we have

h(λ) = λe−νλ(1 − δν) + δe−νλ − (1 − δν) ĝ ′(ν)
1 − ĝ(ν)e

−νλ + ρe−νλ
{

1 − ĝ(ν)}. (3.17)
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From (3.15), it is given that

E
{
h
(
λτi+1

)}
= E

[
E
{
h
(
λτi+1

) | λτi
}]

= E
{
f
(
λτi

)}
. (3.18)

So put (3.17) into (3.18), then

E

[
λτi+1 exp

( − νλτi+1

)
(1 − δν) + δ exp

( − νλτi+1

) − (1 − δν) ĝ ′(ν)
1 − ĝ(ν)

× exp
( − νλτi+1

)
+ ρ exp

( − νλτi+1

){
1 − ĝ(ν)}

]

= E
{
λτi exp

( − νλτi+1

) − ĝ ′(ν)
1 − ĝ(ν) exp

( − νλτi+1

)}
.

(3.19)

When the process λt is stationary, λτi+1 , and λτi have the same distribution whose Laplace
transform we denote by H(ν) = E(e−νλτi ). Therefore from (3.19), we have

−(1 − δν)H ′(ν) − (1 − δν) ĝ ′(ν)
1 − ĝ(ν)H(ν) +

[
δ + ρ

{
1 − ĝ(ν)}]H(ν) = −H ′(ν) − ĝ ′(ν)

1 − ĝ(ν)H(ν).

(3.20)

Divide both sides of (3.20) by δν, then we have

H ′(ν) +
ĝ ′(ν)

1 − ĝ(ν)H(ν) +
{

1
ν
+
ρ

δ

1 − ĝ(ν)
ν

}
H(ν) = 0. (3.21)

Solving (3.21), subject to

H(0) = 1 (3.22)

then the Laplace transform of a distribution of the shot noise process at claim times is given
by

H(ν) = K
(

1 − ĝ(ν)
ν

)
exp

{
− ρ

δ

∫ν

0
Ĝ(u)du

}
, (3.23)

where K is a constant. Therefore from (3.22), K = 1/μ1 and

H(ν) =
1
μ1

1 − ĝ(ν)
ν

· exp
{
− ρ

δ

∫ν

0
Ĝ(u)du

}
=

Ĝ(ν)
μ1

· exp
{
− ρ

δ

∫ν

0
Ĝ(u)du

}
. (3.24)

Equation (3.24) provides us with an interesting result. The distribution defined by the
Laplace transform (3.24) (and (3.13)) is the same as the distribution of two random variables;
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one having the stationary distribution of λt (see Corollary 2.4) and the other having density
G(y)/μ1, where G(y) = 1−G(y). Comparing it with the distribution of the shot noise process,
λt at any times, we can easily find that

Ĝ(ν)
μ1

· exp
{
− ρ

δ

∫ν

0
Ĝ(u)du

}
> exp

{
− ρ

δ

∫ν

0
Ĝ(u)du

}
. (3.25)

It is therefore the case that λτ is stochastically larger than λt. In other words, the intensity at
claim times is higher than the intensity at any times.

Now let us derive the distribution of the interval of a Cox process with shot noise
intensity for insurance claims using Theorem 3.2.

Corollary 3.3. Assume that 0 is the time at which a claim of Nt has occurred and the stationary of
λt has been achieved. Then the tail of the distribution of the interval of a Cox process with shot noise
intensity is given by

Pr(τ > t) =
Ĝ
(
1/δ − (1/δ)e−δt

)
μ1

exp
{
− ρ

δ

∫ t

0
Ĝ
(

1
δ
− 1
δ
e−δs

)
ds

}
. (3.26)

Proof. From (2.16), the probability generating function of Nt is given by

E
(
θNt | λ0

)
= exp

{
− 1 − θ

δ

(
1 − e−δt)λ0

}
exp

[
− ρ

∫ t

0

[
1 − ĝ

{
1 − θ
δ

(
1 − e−δs)

}]
ds

]
. (3.27)

Set θ = 0 in (3.27) and take expectation, then the tail of the distribution of τ is given by

Pr(τ > t) = exp
[
− ρ

∫ t

0

{
1 − ĝ

(
1 − eδs
δ

)}
ds

]
E

[
exp

{
−
(
1 − e−δt)

δ
λ0

}]
. (3.28)

Substitute (3.13) into (3.28), then the result follows immediately as 0 is the time at which a
claim has occurred and λt is stationary.

Corollary 3.4. The expectation and variance of the interval between claims are given by

E(τ) =
∫∞

0
Pr(τ > t)dt =

δ

μ1ρ
, (3.29)

Var (τ) = 2
∫∞

0

[
u
Ĝ
(
1/δ − (1/δ)e−δu

)
μ1

exp
{
− ρ

δ

∫u

0
Ĝ
(

1
δ
− 1
δ
e−δs

)
ds

}]
du −

(
δ

μ1ρ

)2

.

(3.30)
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Proof. Integrate (3.26), then (3.29) follows. (3.30) is obtained from

E(τ2) =
∫∞

0
t2f(t)dt = 2

∫∞

0

[
u
Ĝ
(
1/δ − (1/δ)e−δu

)
μ1

exp
{
− ρ

δ

∫u

0
Ĝ
(

1
δ
− 1
δ
e−δs

)
ds

}]
du.

(3.31)

An interesting result we can find from (3.29) and (2.21) is that the expected interval
between claims is the inverse of the expected number of claims, where the number of claims
follows a Cox process with shot noise intensity, which is also the case for a Poisson process.

4. Conclusion

We started with deriving the probability generating function of a Cox process with shot noise
intensity, employing piecewise deterministic Markov processes theory. It was necessary to
obtain the distribution of the shot noise process at claim times as it is not the same as the
distribution of the shot noise process at any times. Assuming that the shot noise process
is stationary, we derived the distribution of the interval of a Cox process with shot noise
intensity for insurance claims and its moments from its probability generating function. The
result of this paper can be used or easily modified in computer science/telecommunications
modeling, electrical engineering, and queueing theory as an alternative counting process to a
Poisson process.

Appendix

This appendix explains the basic definition of a piecewise deterministic Markov process
(PDMP) that is adopted from [20]. A detailed discussion can also be found in [18, 24].

PDMP is a Markov process Xt with two components (ηt, ξt), where ηt takes values in
a discrete set K and given ηt = n ∈ K, ξt takes values in an open set Mn ⊂ Rd(n) for some
function d : K→N. The state space of Xt is equal to E = {(n, z) : n ∈ K, z ∈ Mn}. We further
assume that for every point x = (n, z) ∈ E, there is a unique, deterministic integral curve
φn(t, z) ⊂ Mn, determined by a differential operator χn on Rd(n), such that z ∈ φn(t, z). If for
some t0 ∈ R+, Xt0 = (n0, z0) ∈ E, then ξt, where t ≥ t0 follows φn0(t, z0) until either t = T0,
some random time with hazard rate of function ρ or until ξt = ∂Mn0 , the boundary of Mn0 . In
both cases, the process Xt jumps, according to a Markov transition measure Q on E, to a point
(n1, z1) ∈ E. ξt again follows the deterministic path φn1 till a random time T1 (independent
of T0) or till ξt = ∂Mn1 , and so forth. The jump times Ti are assumed to satisfy the following
condition:

∀t > 0, E

(∑
i

I
(
Ti ≤ t

))
<∞. (A.1)

The stochastic calculus that will enable us to analyse various models rests on the notion
of (extended) generator A of Xt. Let Γ denotes the set of boundary points of E, Γ = {(n, z) :
n ∈ K, z ∈ ∂Mn}, and let A be an operator acting on measurable functions f : E ∪ Γ→R

satisfying the following.

(i) The function t→ f(n, φn(t, z)) is absolutely continuous for t ∈ [0, t(n, z)] for all
(n, z) ∈ E.
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(ii) For all x ∈ Γ, f(x) =
∫
Ef(y)Q(x;dy) (boundary condition).

(iii) For all t ≥ 0, E{∑Ti≤t|f(XTi) − f(XTi− )|} <∞.

Hence, the set of measurable functions satisfying (i), (ii), and (iii) form a subset of
the domain of the extended generator A, denoted by D(A). Now, for piecewise deterministic
Markov processes, we can explicitly calculate A by [18, Theorem 5.5]

∀f ∈ D(A): Af(x) = χf(x) + ρ(x)
∫
E

{f(y) − f(x)}Q(x;dy). (A.2)

In some cases, it is important to have time t as an explicit component of the PDMP. In those
cases A can be decomposed as ∂/∂t + At, where At is given by (A.2) with possibly time-
dependent coefficients.

An application of Dynkin’s formula provides us with the following important result
(martingales will always be with respect to the natural filtration σ{Xs : s ≤ t}).

(a) If for all t, f(·, t) belongs to the domain of At and (∂/∂t)f(x, t) +Atf(x, t) = 0, then
process f(Xt, t) is a martingale.

(b) If f belongs to the domain of A and Af(x) = 0, then f(Xt) is a martingale.

The generator of the process Xt acting on a function f(Xt) belonging to its domain as
described above is also given by

Af
(
Xt

)
= lim

h↓0

E
{
f
(
Xt+h

) | Xt = x
} − f(Xt

)
h

. (A.3)

In other words, Af(Xt) is the expected increment of the process Xt between t and t + h,
given the history of Xt at time t. From this interpretation the following inversion formula is
plausible, that is,

E
[
f
(
Xt+h

) | Xt = x
] − f(Xt

)
=
∫h

0
E
{
Af

(
Xs

)}
ds (A.4)

which is Dynkin’s formula.
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[3] H. Bühlmann, Mathematical Methods in Risk Theory, Die Grundlehren der Mathematischen Wis-

senschaften, Band 172, Springer, New York, NY, USA, 1970.
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